Difference between revisions of "Hexapole"

From LifeWiki
Jump to navigation Jump to search
m (Updated synthesis... again)
(first natural appearance)
 
(One intermediate revision by one other user not shown)
Line 13: Line 13:
 
|v                = 0.67
 
|v                = 0.67
 
|rotor            = Pole 6
 
|rotor            = Pole 6
 +
|discoverer      = MIT group
 
|discoveryear    = 1970
 
|discoveryear    = 1970
 
|rulemin          = B3/S23
 
|rulemin          = B3/S23
Line 28: Line 29:
 
|apgcode          = xp2_xg0k053zca02
 
|apgcode          = xp2_xg0k053zca02
 
}}
 
}}
The '''hexapole''' is the [[barberpole]] of length 6.
+
The '''hexapole''' is the [[barberpole]] of length 6. It first appeared [[natural]]ly on April 16, {{year|2015}}, in a soup submitted to [[Catagolue]] by [[Brett Berger]].<ref name="post18734" />
  
 
==See also==
 
==See also==
Line 36: Line 37:
 
*[[Pentapole]]
 
*[[Pentapole]]
 
*[[Heptapole]]
 
*[[Heptapole]]
 +
 +
==References==
 +
<references>
 +
<ref name="post18734">{{LinkForumThread
 +
|format = ref
 +
|title  = Re: Soup search results
 +
|p      = 18734
 +
|author = Aidan F. Pierce
 +
|date  = April 16, 2015
 +
}}</ref>
 +
</references>
  
 
==External links==
 
==External links==

Latest revision as of 23:36, 7 March 2020

Hexapole
7b2o$6bobo2$4bobo2$2bobo2$obo$2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ AUTOSTART ]] #C [[ LOOP 2 GPS 2 THUMBSIZE 2 ]]
Pattern type Oscillator
Oscillator type Muttering moat
Family Barberpole
Number of cells 12
Bounding box 9×9
Frequency class 39.5
Period 2
Mod 1
Heat 12
Volatility 0.67
Strict volatility 0.67
Rotor type Pole 6
Discovered by MIT group
Year of discovery 1970

The hexapole is the barberpole of length 6. It first appeared naturally on April 16, 2015, in a soup submitted to Catagolue by Brett Berger.[1]

See also

References

  1. Aidan F. Pierce (April 16, 2015). Re: Soup search results (discussion thread) at the ConwayLife.com forums

External links

  • 12P2.3 at Heinrich Koenig's Game of Life Object Catalogs