Lone dot agar

From LifeWiki
Revision as of 21:31, 7 August 2023 by Confocal (talk | contribs) (ce)
Jump to navigation Jump to search

A lone dot agar is an agar in which every live cell is isolated in every generation. There are many different lone dot agars; all of them are phoenixes. In 1995, Dean Hickerson and Alan W. Hensel found stabilizations for finite patches of ten lone dot agars to create period-2 oscillators. One of these (a tiling of 8 × 8 squares) is shown in the first viewer below.

There is a simpler one also, comprised of 6 × 6 squares, of which finite stabilisations have appeared in a C4_4 soup in Catagolue, one achieving volatility 0.9 with components of the Lei.

#C Example stabilization of a finite patch of lone dot agar, creating a period-2 oscillator. #O Dean Hickerson and Alan W. Hensel, 1995 x = 38, y = 38, rule = B3/S23 4b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$4bo2bobo2bo2bobo2bo2bobo2bo2bobo$5bo 7bo7bo7bo$8bo7bo7bo7bo$2o2bobo5bobo5bobo5bobo5b2o$obo5bobo5bobo5bobo5b obo2bo$4bo7bo7bo7bo7bo$bo7bo7bo7bo7bo$o2bobo5bobo5bobo5bobo5bobo$2o5bo bo5bobo5bobo5bobo2b2o$5bo7bo7bo7bo$8bo7bo7bo7bo$2o2bobo5bobo5bobo5bobo 5b2o$obo5bobo5bobo5bobo5bobo2bo$4bo7bo7bo7bo7bo$bo7bo7bo7bo7bo$o2bobo 5bobo5bobo5bobo5bobo$2o5bobo5bobo5bobo5bobo2b2o$5bo7bo7bo7bo$8bo7bo7bo 7bo$2o2bobo5bobo5bobo5bobo5b2o$obo5bobo5bobo5bobo5bobo2bo$4bo7bo7bo7bo 7bo$bo7bo7bo7bo7bo$o2bobo5bobo5bobo5bobo5bobo$2o5bobo5bobo5bobo5bobo2b 2o$5bo7bo7bo7bo$8bo7bo7bo7bo$2o2bobo5bobo5bobo5bobo5b2o$obo5bobo5bobo 5bobo5bobo2bo$4bo7bo7bo7bo7bo$bo7bo7bo7bo7bo$o2bobo5bobo5bobo5bobo5bob o$2o5bobo5bobo5bobo5bobo2b2o$5bo7bo7bo7bo$8bo7bo7bo7bo$4bobo2bo2bobo2b o2bobo2bo2bobo2bo$4b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ HEIGHT 600 WIDTH 600 THUMBSIZE 2 ZOOM 12 GPS 2 AUTOSTART ]]
The pre-block stator cells undergo the same transitions as in barberpoles
(click above to open LifeViewer)
RLE: here Plaintext: here
x = 35, y = 40, rule = B3/S23 22b2o2b2o$22bo2bobo$23bo$4b2o2b2o9b2o5bo2b2o$4bo2bobo9bo2bobo3bobo$5bo 14bo5bo$b2o5bo2b2o3b2o5bo5bo2b2o$bo2bobo3bobo3bo2bobo3bobo3bobo$2bo5bo 8bo5bo5bo$5bo5bo8bo5bo5bo$bobo3bobo2bo3bobo3bobo3bobo2bo$b2o2bo5b2o3b 2o2bo5bo5b2o$8bo14bo5bo$4bobo2bo9bobo3bobo2bo$4b2o2b2o9b2o2bo5b2o$26bo $22bobo2bo$22b2o2b2o3$23bo3bo$21b2o2bobo$25bobo$5bo3bo13bo$3b2o2bobo9b 2o5bo2b2o$7bobo9bo2bobo3bobo$5bo6bo7bo5bo6bo$3o5bo3bo2b3o5bo5bo3bo$4bo bo3bo2bo5bobo3bobo3bo2bo$b2o5bo7b2o5bo5bo$5bo5b2o7bo5bo5b2o$o2bo3bobo 5bo2bo3bobo3bobo$bo3bo5b3o2bo3bo5bo5b3o$bo6bo7bo6bo5bo$4bobo12bobo3bob o2bo$4bobo2b2o8b2o2bo5b2o$4bo3bo17bo$22bobo$22bobo2b2o$22bo3bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ HEIGHT 600 WIDTH 600 THUMBSIZE 2 ZOOM 12 GPS 2 AUTOSTART ]]
The first two members of two families varying in orthogonal end stabilisation. The top-left[1] and bottom-left[2] have occurred seminaturally
(click above to open LifeViewer)
x = 36, y = 36, rule = B3/S23 o5bo5bo5bo5bo5bo$2bobo3bobo3bobo3bobo3bobo3bobo$o5bo5bo5bo5bo5bo$3bo5b o5bo5bo5bo5bo$bo3bobo3bobo3bobo3bobo3bobo3bo$3bo5bo5bo5bo5bo5bo$o5bo5b o5bo5bo5bo$2bobo3bobo3bobo3bobo3bobo3bobo$o5bo5bo5bo5bo5bo$3bo5bo5bo5b o5bo5bo$bo3bobo3bobo3bobo3bobo3bobo3bo$3bo5bo5bo5bo5bo5bo$o5bo5bo5bo5b o5bo$2bobo3bobo3bobo3bobo3bobo3bobo$o5bo5bo5bo5bo5bo$3bo5bo5bo5bo5bo5b o$bo3bobo3bobo3bobo3bobo3bobo3bo$3bo5bo5bo5bo5bo5bo$o5bo5bo5bo5bo5bo$ 2bobo3bobo3bobo3bobo3bobo3bobo$o5bo5bo5bo5bo5bo$3bo5bo5bo5bo5bo5bo$bo 3bobo3bobo3bobo3bobo3bobo3bo$3bo5bo5bo5bo5bo5bo$o5bo5bo5bo5bo5bo$2bobo 3bobo3bobo3bobo3bobo3bobo$o5bo5bo5bo5bo5bo$3bo5bo5bo5bo5bo5bo$bo3bobo 3bobo3bobo3bobo3bobo3bo$3bo5bo5bo5bo5bo5bo$o5bo5bo5bo5bo5bo$2bobo3bobo 3bobo3bobo3bobo3bobo$o5bo5bo5bo5bo5bo$3bo5bo5bo5bo5bo5bo$bo3bobo3bobo 3bobo3bobo3bobo3bo$3bo5bo5bo5bo5bo5bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ HEIGHT 600 WIDTH 600 THUMBSIZE 2 ZOOM 24 GPS 2 AUTOSTART LOOP 2 ]]
(click above to open LifeViewer)


References

External links