A lone dot agar is an agar in which every live cell is isolated in every generation. There are many different lone dot agars; all of them are phoenixes. In 1995, Dean Hickerson and Alan W. Hensel found stabilizations for finite patches of ten lone dot agars to create period-2oscillators. One of these (a tiling of 8 × 8 squares) is shown in the first viewer below.
There is a simpler one also, comprised of 6 × 6 squares, of which finite stabilisations have appeared in a C4_4 soup in Catagolue, one achieving volatility 0.9 with components of the Lei.
#C Example stabilization of a finite patch of lone dot agar, creating a period-2 oscillator.
#O Dean Hickerson and Alan W. Hensel, 1995
x = 38, y = 38, rule = B3/S23
4b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$4bo2bobo2bo2bobo2bo2bobo2bo2bobo$5bo
7bo7bo7bo$8bo7bo7bo7bo$2o2bobo5bobo5bobo5bobo5b2o$obo5bobo5bobo5bobo5b
obo2bo$4bo7bo7bo7bo7bo$bo7bo7bo7bo7bo$o2bobo5bobo5bobo5bobo5bobo$2o5bo
bo5bobo5bobo5bobo2b2o$5bo7bo7bo7bo$8bo7bo7bo7bo$2o2bobo5bobo5bobo5bobo
5b2o$obo5bobo5bobo5bobo5bobo2bo$4bo7bo7bo7bo7bo$bo7bo7bo7bo7bo$o2bobo
5bobo5bobo5bobo5bobo$2o5bobo5bobo5bobo5bobo2b2o$5bo7bo7bo7bo$8bo7bo7bo
7bo$2o2bobo5bobo5bobo5bobo5b2o$obo5bobo5bobo5bobo5bobo2bo$4bo7bo7bo7bo
7bo$bo7bo7bo7bo7bo$o2bobo5bobo5bobo5bobo5bobo$2o5bobo5bobo5bobo5bobo2b
2o$5bo7bo7bo7bo$8bo7bo7bo7bo$2o2bobo5bobo5bobo5bobo5b2o$obo5bobo5bobo
5bobo5bobo2bo$4bo7bo7bo7bo7bo$bo7bo7bo7bo7bo$o2bobo5bobo5bobo5bobo5bob
o$2o5bobo5bobo5bobo5bobo2b2o$5bo7bo7bo7bo$8bo7bo7bo7bo$4bobo2bo2bobo2b
o2bobo2bo2bobo2bo$4b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 600 WIDTH 600 THUMBSIZE 2 ZOOM 12 GPS 2 AUTOSTART ]]
The first two members of two families varying in orthogonal end stabilisation. The top-left[1] and bottom-left[2] have occurred seminaturally (click above to open LifeViewer)