This page documents minor static symmetries , a subclass of static symmetries which concern significant attributes conserved by any qualifying pattern in a given rule, or group thereof, which are not rotational or reflectional geometric symmetries.
Bilaterality
In some rules, all even-symmetric patterns will behave equivalently to their odd-symmetric counterparts. They preserve a unique pseudo-static symmetry:
D8_2 : Rotation around a edge of a cell. The bounding rectangle is even by odd.
x = 32, y = 31, rule = B/S012345678
32o$o14b2o14bo$o14b2o14bo$o7bo6b2o6bo7bo$o6bobo5b2o5bobo6bo$o7bo3bo2b
2o2bo3bo7bo$o11bo2b2o2bo11bo$o3bo7bo2b2o2bo7bo3bo$o2bobo6bo2b2o2bo6bob
o2bo$o3bo6bo3b2o3bo6bo3bo$o9bo4b2o4bo9bo$o8bo5b2o5bo8bo$o4b4o6b2o6b4o
4bo$o14b2o14bo$o14b2o14bo$32o$o14b2o14bo$o14b2o14bo$o4b4o6b2o6b4o4bo$o
8bo5b2o5bo8bo$o9bo4b2o4bo9bo$o3bo6bo3b2o3bo6bo3bo$o2bobo6bo2b2o2bo6bob
o2bo$o3bo7bo2b2o2bo7bo3bo$o11bo2b2o2bo11bo$o7bo3bo2b2o2bo3bo7bo$o6bobo
5b2o5bobo6bo$o7bo6b2o6bo7bo$o14b2o14bo$o14b2o14bo$32o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D8_2 symmetry
To preserve D8_2 symmetry, the following isotropic non-totalistic transitions must either all exist simultaneously with all other transitions in the same line or none should:[1]
B4i=B2a=B2i=B1e
S6a=S7e=S4t=S6i
S4c=S3y=S4q
B1c=B2c=B4c
S3a=S1e=S0
S7c=S6c=S4e
B5y=B4w=B4e
B8=B7e=B5a
B5e=B4n
B4a=B5i
B4t=B5r
S5y=S5q
S5e=S5j
B6i=B3i
B6c=B6k
S4i=S3r
B3j=B3e
B3y=B3q
S2k=S2c
S4a=S3i
S3e=S4r
S5i=S2i
Skew symmetry
A pattern which exhibits symmetry only after its constituent congruent pieces are offset by certain amounts in one or both orthogonal directions is said to exhibit skew symmetry .
It is not currently known if any rules support patterns with non-trivial skew symmetry, outside of trivial cases. However, skew symmetry can be combined with gutter symmetry (see section below) to form skew-gutter symmetry .
Gutter symmetry
Gutter symmetries are distinguished from non-gutter symmetries by the existence of an empty lane of cells – referred to as a gutter – separating the congruent pieces making up overall pattern.
A pattern that exhibits gutter symmetry only after its pieces are skewed in the above sense is said to exhibit skew-gutter symmetry.
Trivially, 0-dimensional gutters can also be considered for sufficiently symmetric patterns, but these are not interesting.
On a square grid
Gutter and skewgutter symmetries are known to exist for both orthogonal and diagonal lines of symmetry.
It is not known if this list is exhaustive.
x = 16, y = 33, rule = B/S012345678
16o$o14bo$o14bo$o3b2o4b2o3bo$o2bo2bo2bo2bo2bo$o2bo2bo2bo2bo2bo$o3b2o4b
2o3bo$o14bo$o14bo$o2b10o2bo$o2b4o8bo$o2b4o8bo$o3b2o9bo$o14bo$o14bo$16o
2$16o$o14bo$o14bo$o3b2o9bo$o2b4o8bo$o2b4o8bo$o2b10o2bo$o14bo$o14bo$o3b
2o4b2o3bo$o2bo2bo2bo2bo2bo$o2bo2bo2bo2bo2bo$o3b2o4b2o3bo$o14bo$o14bo$
16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 160 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
Orthogonal gutter symmetry (D2_+1_gO1S0)
x = 17, y = 33, rule = B/S012345678
16o$o14bo$o14bo$o3b2o4b2o3bo$o2bo2bo2bo2bo2bo$o2bo2bo2bo2bo2bo$o3b2o4b
2o3bo$o14bo$o14bo$o2b10o2bo$o2b4o8bo$o2b4o8bo$o3b2o9bo$o14bo$o14bo$16o
2$b16o$bo14bo$bo14bo$bo3b2o9bo$bo2b4o8bo$bo2b4o8bo$bo2b10o2bo$bo14bo$b
o14bo$bo3b2o4b2o3bo$bo2bo2bo2bo2bo2bo$bo2bo2bo2bo2bo2bo$bo3b2o4b2o3bo$
bo14bo$bo14bo$b16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 160 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
Orthogonal skewgutter symmetry (D2_+1_gO1S1)
x = 18, y = 33, rule = B/S012345678
16o$o14bo$o14bo$o3b2o4b2o3bo$o2bo2bo2bo2bo2bo$o2bo2bo2bo2bo2bo$o3b2o4b
2o3bo$o14bo$o14bo$o2b10o2bo$o2b4o8bo$o2b4o8bo$o3b2o9bo$o14bo$o14bo$16o
2$2b16o$2bo14bo$2bo14bo$2bo3b2o9bo$2bo2b4o8bo$2bo2b4o8bo$2bo2b10o2bo$
2bo14bo$2bo14bo$2bo3b2o4b2o3bo$2bo2bo2bo2bo2bo2bo$2bo2bo2bo2bo2bo2bo$
2bo3b2o4b2o3bo$2bo14bo$2bo14bo$2b16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 160 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
Orthogonal double skewgutter symmetry[2] (D2_+1_gO1S2)
x = 31, y = 33, rule = B/S012345678
31o$o14bo14bo$o14bo14bo$o3b2o4b2o3bo3b2o4b2o3bo$o2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo$o2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo$o3b2o4b2o3bo3b2o4b2o3bo$o14b
o14bo$o14bo14bo$o2b10o2bo2b10o2bo$o2b4o8bo8b4o2bo$o2b4o8bo8b4o2bo$o3b
2o9bo9b2o3bo$o14bo14bo$o14bo14bo$31o2$31o$o14bo14bo$o14bo14bo$o3b2o9bo
9b2o3bo$o2b4o8bo8b4o2bo$o2b4o8bo8b4o2bo$o2b10o2bo2b10o2bo$o14bo14bo$o
14bo14bo$o3b2o4b2o3bo3b2o4b2o3bo$o2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo$o2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo$o3b2o4b2o3bo3b2o4b2o3bo$o14bo14bo$o14bo14b
o$31o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_+1 with orthogonal gutter symmetry (D4_+1_gO1S0)
x = 33, y = 33, rule = B/S012345678
16ob16o$o14bobo14bo$o14bobo14bo$o3b2o4b2o3bobo3b2o4b2o3bo$o2bo2bo2bo2b
o2bobo2bo2bo2bo2bo2bo$o2bo2bo2bo2bo2bobo2bo2bo2bo2bo2bo$o3b2o4b2o3bobo
3b2o4b2o3bo$o14bobo14bo$o14bobo14bo$o2b10o2bobo2b10o2bo$o2b4o8bobo8b4o
2bo$o2b4o8bobo8b4o2bo$o3b2o9bobo9b2o3bo$o14bobo14bo$o14bobo14bo$16ob
16o2$16ob16o$o14bobo14bo$o14bobo14bo$o3b2o9bobo9b2o3bo$o2b4o8bobo8b4o
2bo$o2b4o8bobo8b4o2bo$o2b10o2bobo2b10o2bo$o14bobo14bo$o14bobo14bo$o3b
2o4b2o3bobo3b2o4b2o3bo$o2bo2bo2bo2bo2bobo2bo2bo2bo2bo2bo$o2bo2bo2bo2bo
2bobo2bo2bo2bo2bo2bo$o3b2o4b2o3bobo3b2o4b2o3bo$o14bobo14bo$o14bobo14bo
$16ob16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_+1 with two orthogonal gutters (D4_+1_gO1SO_gO1S0)
x = 32, y = 33, rule = B/S012345678
32o$o14b2o14bo$o14b2o14bo$o3b2o4b2o3b2o3b2o4b2o3bo$o2bo2bo2bo2bo2b2o2b
o2bo2bo2bo2bo$o2bo2bo2bo2bo2b2o2bo2bo2bo2bo2bo$o3b2o4b2o3b2o3b2o4b2o3b
o$o14b2o14bo$o14b2o14bo$o2b10o2b2o2b10o2bo$o2b4o8b2o8b4o2bo$o2b4o8b2o
8b4o2bo$o3b2o9b2o9b2o3bo$o14b2o14bo$o14b2o14bo$32o2$32o$o14b2o14bo$o
14b2o14bo$o3b2o9b2o9b2o3bo$o2b4o8b2o8b4o2bo$o2b4o8b2o8b4o2bo$o2b10o2b
2o2b10o2bo$o14b2o14bo$o14b2o14bo$o3b2o4b2o3b2o3b2o4b2o3bo$o2bo2bo2bo2b
o2b2o2bo2bo2bo2bo2bo$o2bo2bo2bo2bo2b2o2bo2bo2bo2bo2bo$o3b2o4b2o3b2o3b
2o4b2o3bo$o14b2o14bo$o14b2o14bo$32o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_+2 with orthogonal gutter symmetry (D4_+2_gO1S0)
x = 33, y = 33, rule = B/S012345678
32o$o14b2o14bo$o14b2o14bo$o3b2o4b2o3b2o3b2o4b2o3bo$o2bo2bo2bo2bo2b2o2b
o2bo2bo2bo2bo$o2bo2bo2bo2bo2b2o2bo2bo2bo2bo2bo$o3b2o4b2o3b2o3b2o4b2o3b
o$o14b2o14bo$o14b2o14bo$o2b10o2b2o2b10o2bo$o2b4o8b2o8b4o2bo$o2b4o8b2o
8b4o2bo$o3b2o9b2o9b2o3bo$o14b2o14bo$o14b2o14bo$32o2$b32o$bo14b2o14bo$b
o14b2o14bo$bo3b2o9b2o9b2o3bo$bo2b4o8b2o8b4o2bo$bo2b4o8b2o8b4o2bo$bo2b
10o2b2o2b10o2bo$bo14b2o14bo$bo14b2o14bo$bo3b2o4b2o3b2o3b2o4b2o3bo$bo2b
o2bo2bo2bo2b2o2bo2bo2bo2bo2bo$bo2bo2bo2bo2bo2b2o2bo2bo2bo2bo2bo$bo3b2o
4b2o3b2o3b2o4b2o3bo$bo14b2o14bo$bo14b2o14bo$b32o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_+2 with orthogonal gutter symmetry, skewed (D4_+2_gO1S1)
x = 34, y = 33, rule = B/S012345678
32o$o14b2o14bo$o14b2o14bo$o3b2o4b2o3b2o3b2o4b2o3bo$o2bo2bo2bo2bo2b2o2b
o2bo2bo2bo2bo$o2bo2bo2bo2bo2b2o2bo2bo2bo2bo2bo$o3b2o4b2o3b2o3b2o4b2o3b
o$o14b2o14bo$o14b2o14bo$o2b10o2b2o2b10o2bo$o2b4o8b2o8b4o2bo$o2b4o8b2o
8b4o2bo$o3b2o9b2o9b2o3bo$o14b2o14bo$o14b2o14bo$32o2$2b32o$2bo14b2o14bo
$2bo14b2o14bo$2bo3b2o9b2o9b2o3bo$2bo2b4o8b2o8b4o2bo$2bo2b4o8b2o8b4o2bo
$2bo2b10o2b2o2b10o2bo$2bo14b2o14bo$2bo14b2o14bo$2bo3b2o4b2o3b2o3b2o4b
2o3bo$2bo2bo2bo2bo2bo2b2o2bo2bo2bo2bo2bo$2bo2bo2bo2bo2bo2b2o2bo2bo2bo
2bo2bo$2bo3b2o4b2o3b2o3b2o4b2o3bo$2bo14b2o14bo$2bo14b2o14bo$2b32o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_+2 with orthogonal gutter symmetry, doubly skewed (D4_+2_gO1S2)
x = 34, y = 34, rule = B/S012345678
17b16o$16obo14bo$o14bobo14bo$o14bobo3b2o4b2o3bo$o3b2o4b2o3bobo2bo2bo2b
o2bo2bo$o2bo2bo2bo2bo2bobo2bo2bo2bo2bo2bo$o2bo2bo2bo2bo2bobo3b2o4b2o3b
o$o3b2o4b2o3bobo14bo$o14bobo14bo$o14bobo2b10o2bo$o2b10o2bobo8b4o2bo$o
2b4o8bobo8b4o2bo$o2b4o8bobo9b2o3bo$o3b2o9bobo14bo$o14bobo14bo$o14bob
16o$16o$18b16o$b16obo14bo$bo14bobo14bo$bo14bobo9b2o3bo$bo3b2o9bobo8b4o
2bo$bo2b4o8bobo8b4o2bo$bo2b4o8bobo2b10o2bo$bo2b10o2bobo14bo$bo14bobo
14bo$bo14bobo3b2o4b2o3bo$bo3b2o4b2o3bobo2bo2bo2bo2bo2bo$bo2bo2bo2bo2bo
2bobo2bo2bo2bo2bo2bo$bo2bo2bo2bo2bo2bobo3b2o4b2o3bo$bo3b2o4b2o3bobo14b
o$bo14bobo14bo$bo14bob16o$b16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_+1 with two skew orthogonal gutters (D4_+1_gO1S1_gO1S1)
x = 34, y = 33, rule = B/S012345678
16ob16o$o14bobo14bo$o14bobo14bo$o3b2o4b2o3bobo3b2o4b2o3bo$o2bo2bo2bo2b
o2bobo2bo2bo2bo2bo2bo$o2bo2bo2bo2bo2bobo2bo2bo2bo2bo2bo$o3b2o4b2o3bobo
3b2o4b2o3bo$o14bobo14bo$o14bobo14bo$o2b10o2bobo2b10o2bo$o2b4o8bobo8b4o
2bo$o2b4o8bobo8b4o2bo$o3b2o9bobo9b2o3bo$o14bobo14bo$o14bobo14bo$16ob
16o2$b16ob16o$bo14bobo14bo$bo14bobo14bo$bo3b2o9bobo9b2o3bo$bo2b4o8bobo
8b4o2bo$bo2b4o8bobo8b4o2bo$bo2b10o2bobo2b10o2bo$bo14bobo14bo$bo14bobo
14bo$bo3b2o4b2o3bobo3b2o4b2o3bo$bo2bo2bo2bo2bo2bobo2bo2bo2bo2bo2bo$bo
2bo2bo2bo2bo2bobo2bo2bo2bo2bo2bo$bo3b2o4b2o3bobo3b2o4b2o3bo$bo14bobo
14bo$bo14bobo14bo$b16ob16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_+2 with two orthogonal gutters, one skewed (D4_+2_gO1S1_gO1S0)
x = 35, y = 33, rule = B/S012345678
16ob16o$o14bobo14bo$o14bobo14bo$o3b2o4b2o3bobo3b2o4b2o3bo$o2bo2bo2bo2b
o2bobo2bo2bo2bo2bo2bo$o2bo2bo2bo2bo2bobo2bo2bo2bo2bo2bo$o3b2o4b2o3bobo
3b2o4b2o3bo$o14bobo14bo$o14bobo14bo$o2b10o2bobo2b10o2bo$o2b4o8bobo8b4o
2bo$o2b4o8bobo8b4o2bo$o3b2o9bobo9b2o3bo$o14bobo14bo$o14bobo14bo$16ob
16o2$2b16ob16o$2bo14bobo14bo$2bo14bobo14bo$2bo3b2o9bobo9b2o3bo$2bo2b4o
8bobo8b4o2bo$2bo2b4o8bobo8b4o2bo$2bo2b10o2bobo2b10o2bo$2bo14bobo14bo$
2bo14bobo14bo$2bo3b2o4b2o3bobo3b2o4b2o3bo$2bo2bo2bo2bo2bo2bobo2bo2bo2b
o2bo2bo$2bo2bo2bo2bo2bo2bobo2bo2bo2bo2bo2bo$2bo3b2o4b2o3bobo3b2o4b2o3b
o$2bo14bobo14bo$2bo14bobo14bo$2b16ob16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_+2 with two orthogonal gutters, one doubly skewed (D4_+2_gO1S2_gO1S0)
x = 35, y = 35, rule = B/S012345678
17b16o$17bo14bo$16obo14bo$o14bobo3b2o4b2o3bo$o14bobo2bo2bo2bo2bo2bo$o
3b2o4b2o3bobo2bo2bo2bo2bo2bo$o2bo2bo2bo2bo2bobo3b2o4b2o3bo$o2bo2bo2bo
2bo2bobo14bo$o3b2o4b2o3bobo14bo$o14bobo2b10o2bo$o14bobo8b4o2bo$o2b10o
2bobo8b4o2bo$o2b4o8bobo9b2o3bo$o2b4o8bobo14bo$o3b2o9bobo14bo$o14bob16o
$o14bo$16o3b16o$19bo14bo$2b16obo14bo$2bo14bobo9b2o3bo$2bo14bobo8b4o2bo
$2bo3b2o9bobo8b4o2bo$2bo2b4o8bobo2b10o2bo$2bo2b4o8bobo14bo$2bo2b10o2bo
bo14bo$2bo14bobo3b2o4b2o3bo$2bo14bobo2bo2bo2bo2bo2bo$2bo3b2o4b2o3bobo
2bo2bo2bo2bo2bo$2bo2bo2bo2bo2bo2bobo3b2o4b2o3bo$2bo2bo2bo2bo2bo2bobo
14bo$2bo3b2o4b2o3bobo14bo$2bo14bob16o$2bo14bo$2b16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_+1 with two double-skew orthogonal gutters (D4_+1_gO1S2_gO1S2)
x = 16, y = 16, rule = B/S012345678
b15o$obo12bo$2obo3bo5bobo$obobo10bo$o2bobo2bo3bo2bo$o3bobo2b3o3bo$o4bo
bo7bo$obo3bobo6bo$o3bo2bobo5bo$o4bo2bobo4bo$o4bo3bobo3bo$o4bo4bobo2bo$
o3bo6bobobo$obo9bob2o$o12bobo$15o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 160 HEIGHT 160 NOGUI ]]
Please enable Javascript to view this LifeViewer.
Diagonal gutter symmetry (D2_x_gD1S0)
x = 16, y = 17, rule = B/S012345678
b15o$2bo12bo$o2bo3bo5bobo$2o2bo10bo$obo2bo2bo3bo2bo$o2bo2bo2b3o3bo$o3b
o2bo7bo$o4bo2bo6bo$obo3bo2bo5bo$o3bo2bo2bo4bo$o4bo2bo2bo3bo$o4bo3bo2bo
2bo$o4bo4bo2bobo$o3bo6bo2b2o$obo9bo2bo$o12bo$15o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 160 HEIGHT 160 NOGUI ]]
Please enable Javascript to view this LifeViewer.
Diagonal skewgutter symmetry (D2_x_gD1S1)
x = 31, y = 31, rule = B/S012345678
30o$o14bo12bobo$o14bobo5bo3bob2o$o7bo6bo10bobobo$o6bobo5bo2bo3bo2bobo
2bo$o7bo3bo2bo3b3o2bobo3bo$o11bo2bo7bobo4bo$o3bo7bo2bo6bobo3bobo$o2bob
o6bo2bo5bobo2bo3bo$o3bo6bo3bo4bobo2bo4bo$o9bo4bo3bobo3bo4bo$o8bo5bo2bo
bo4bo4bo$o4b4o6bobobo6bo3bo$o14b2obo9bobo$o14bobo12bo$15ob15o$o12bobo
14bo$obo9bob2o14bo$o3bo6bobobo6b4o4bo$o4bo4bobo2bo5bo8bo$o4bo3bobo3bo
4bo9bo$o4bo2bobo4bo3bo6bo3bo$o3bo2bobo5bo2bo6bobo2bo$obo3bobo6bo2bo7bo
3bo$o4bobo7bo2bo11bo$o3bobo2b3o3bo2bo3bo7bo$o2bobo2bo3bo2bo5bobo6bo$ob
obo10bo6bo7bo$2obo3bo5bobo14bo$obo12bo14bo$b30o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_x1 with diagonal gutter symmetry (D4_x1_gD1S0)
x = 31, y = 31, rule = B/S012345678
b29o$obo12bo12bobo$2obo3b2o3b2obobo5bo3bob2o$obobo10bo10bobobo$o2bobo
2bo3bo2bo2bo3bo2bobo2bo$o3bobo2b3o3bo3b3o2bobo3bo$o4bobo7bo7bobo4bo$ob
o3bobo6bo6bobo3bobo$obobo2bobo5bo5bobo2bo3bo$o4bo2bobo4bo4bobo2bo4bo$o
4bo3bobo3bo3bobo3bo4bo$o4bo4bobo2bo2bobo4bo4bo$obobo6bobobobobo6bo3bo$
obo9bob3obo9bobo$o12bobobo12bo$15ob15o$o12bobobo12bo$obo9bob3obo9bobo$
o3bo6bobobobobo6bobobo$o4bo4bobo2bo2bobo4bo4bo$o4bo3bobo3bo3bobo3bo4bo
$o4bo2bobo4bo4bobo2bo4bo$o3bo2bobo5bo5bobo2bobobo$obo3bobo6bo6bobo3bob
o$o4bobo7bo7bobo4bo$o3bobo2b3o3bo3b3o2bobo3bo$o2bobo2bo3bo2bo2bo3bo2bo
bo2bo$obobo10bo10bobobo$2obo3bo5bobob2o3b2o3bob2o$obo12bo12bobo$b29o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_x1 with two diagonal gutters (D4_x1_gD1S0_gD1S0)
x = 32, y = 32, rule = B/S012345678
31o$o14b2o12bobo$o14b2obo5bo3bob2o$o7bo6b2o10bobobo$o6bobo5b2o2bo3bo2b
obo2bo$o7bo3bo2b2o3b3o2bobo3bo$o11bo2b2o7bobo4bo$o3bo7bo2b2o6bobo3bobo
$o2bobo6bo2b2o5bobo2bo3bo$o3bo6bo3b2o4bobo2bo4bo$o9bo4b2o3bobo3bo4bo$o
8bo5b2o2bobo4bo4bo$o4b4o6b2obobo6bo3bo$o14b3obo9bobo$o14b2obo12bo$15o
2b15o$15o2b15o$o12bob2o14bo$obo9bob3o14bo$o3bo6bobob2o6b4o4bo$o4bo4bob
o2b2o5bo8bo$o4bo3bobo3b2o4bo9bo$o4bo2bobo4b2o3bo6bo3bo$o3bo2bobo5b2o2b
o6bobo2bo$obo3bobo6b2o2bo7bo3bo$o4bobo7b2o2bo11bo$o3bobo2b3o3b2o2bo3bo
7bo$o2bobo2bo3bo2b2o5bobo6bo$obobo10b2o6bo7bo$2obo3bo5bob2o14bo$obo12b
2o14bo$b31o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_x4 with diagonal gutter symmetry (D4_x4_gD1S0)
x = 32, y = 32, rule = B/S012345678
b30o$obo12b2o12bobo$2obo3bo5bob2ob2o3b2o3bob2o$obobo10b2o10bobobo$o2bo
bo2bo3bo2b2o2bo3bo2bobo2bo$o3bobo2b3o3b2o3b3o2bobo3bo$o4bobo7b2o7bobo
4bo$obo3bobo6b2o6bobo3bobo$o3bo2bobo5b2o5bobo2bobobo$o4bo2bobo4b2o4bob
o2bo4bo$o4bo3bobo3b2o3bobo3bo4bo$o4bo4bobo2b2o2bobo4bo4bo$o3bo6bobob2o
bobo6bobobo$obo9bob4obo9bobo$o12bob2obo12bo$15o2b15o$15o2b15o$o12bob2o
bo12bo$obo9bob4obo9bobo$obobo6bobob2obobo6bo3bo$o4bo4bobo2b2o2bobo4bo
4bo$o4bo3bobo3b2o3bobo3bo4bo$o4bo2bobo4b2o4bobo2bo4bo$obobo2bobo5b2o5b
obo2bo3bo$obo3bobo6b2o6bobo3bobo$o4bobo7b2o7bobo4bo$o3bobo2b3o3b2o3b3o
2bobo3bo$o2bobo2bo3bo2b2o2bo3bo2bobo2bo$obobo10b2o10bobobo$2obo3b2o3b
2ob2obo5bo3bob2o$obo12b2o12bobo$b30o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D4_x4 with two diagonal gutters (D4_x4_gD1S0_gD1S0)
x = 33, y = 33, rule = B/S012345678
16ob16o$o14bobo14bo$o14bobo14bo$o7bo6bobo6bo7bo$o6bobo5bobo5bobo6bo$o
7bo3bo2bobo2bo3bo7bo$o11bo2bobo2bo11bo$o3bo7bo2bobo2bo7bo3bo$o2bobo6bo
2bobo2bo6bobo2bo$o3bo6bo3bobo3bo6bo3bo$o9bo4bobo4bo9bo$o8bo5bobo5bo8bo
$o4b4o6bobo6b4o4bo$o14bobo14bo$o14bobo14bo$16ob16o2$16ob16o$o14bobo14b
o$o14bobo14bo$o4b4o6bobo6b4o4bo$o8bo5bobo5bo8bo$o9bo4bobo4bo9bo$o3bo6b
o3bobo3bo6bo3bo$o2bobo6bo2bobo2bo6bobo2bo$o3bo7bo2bobo2bo7bo3bo$o11bo
2bobo2bo11bo$o7bo3bo2bobo2bo3bo7bo$o6bobo5bobo5bobo6bo$o7bo6bobo6bo7bo
$o14bobo14bo$o14bobo14bo$16ob16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D8_1 with orthogonal gutter symmetry (D8_1_gO1S0)
x = 31, y = 31, rule = B/S012345678
b29o$obo12bo12bobo$2obo3bo5bobobo5bo3bob2o$obobo10bo10bobobo$o2bobo2bo
3bo2bo2bo3bo2bobo2bo$o3bobo2b3o3bo3b3o2bobo3bo$o4bobo7bo7bobo4bo$obo3b
obo6bo6bobo3bobo$o3bo2bobo5bo5bobo2bo3bo$o4bo2bobo4bo4bobo2bo4bo$o4bo
3bobo3bo3bobo3bo4bo$o4bo4bobo2bo2bobo4bo4bo$o3bo6bobobobobo6bo3bo$obo
9bob3obo9bobo$o12bobobo12bo$15ob15o$o12bobobo12bo$obo9bob3obo9bobo$o3b
o6bobobobobo6bo3bo$o4bo4bobo2bo2bobo4bo4bo$o4bo3bobo3bo3bobo3bo4bo$o4b
o2bobo4bo4bobo2bo4bo$o3bo2bobo5bo5bobo2bo3bo$obo3bobo6bo6bobo3bobo$o4b
obo7bo7bobo4bo$o3bobo2b3o3bo3b3o2bobo3bo$o2bobo2bo3bo2bo2bo3bo2bobo2bo
$obobo10bo10bobobo$2obo3bo5bobobo5bo3bob2o$obo12bo12bobo$b29o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D8_1 with diagonal gutter symmetry (D8_1_gD1S0)
x = 33, y = 33, rule = B/S012345678
b15ob15o$obo12bobo12bobo$2obo3bo5bobobobo5bo3bob2o$obobo10bobo10bobobo
$o2bobo2bo3bo2bobo2bo3bo2bobo2bo$o3bobo2b3o3bobo3b3o2bobo3bo$o4bobo7bo
bo7bobo4bo$obo3bobo6bobo6bobo3bobo$o3bo2bobo5bobo5bobo2bo3bo$o4bo2bobo
4bobo4bobo2bo4bo$o4bo3bobo3bobo3bobo3bo4bo$o4bo4bobo2bobo2bobo4bo4bo$o
3bo6bobobobobobo6bo3bo$obo9bob2ob2obo9bobo$o12bobobobo12bo$15o3b15o2$
15o3b15o$o12bobobobo12bo$obo9bob2ob2obo9bobo$o3bo6bobobobobobo6bo3bo$o
4bo4bobo2bobo2bobo4bo4bo$o4bo3bobo3bobo3bobo3bo4bo$o4bo2bobo4bobo4bobo
2bo4bo$o3bo2bobo5bobo5bobo2bo3bo$obo3bobo6bobo6bobo3bobo$o4bobo7bobo7b
obo4bo$o3bobo2b3o3bobo3b3o2bobo3bo$o2bobo2bo3bo2bobo2bo3bo2bobo2bo$obo
bo10bobo10bobobo$2obo3bo5bobobobo5bo3bob2o$obo12bobo12bobo$b15ob15o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D8_1 with orthogonal and diagonal gutters (D8_1_gO1S0_gD1S0)
x = 32, y = 32, rule = B/S012345678
b30o$obo12b2o12bobo$2obo3bo5bob2obo5bo3bob2o$obobo10b2o10bobobo$o2bobo
2bo3bo2b2o2bo3bo2bobo2bo$o3bobo2b3o3b2o3b3o2bobo3bo$o4bobo7b2o7bobo4bo
$obo3bobo6b2o6bobo3bobo$o3bo2bobo5b2o5bobo2bo3bo$o4bo2bobo4b2o4bobo2bo
4bo$o4bo3bobo3b2o3bobo3bo4bo$o4bo4bobo2b2o2bobo4bo4bo$o3bo6bobob2obobo
6bo3bo$obo9bob4obo9bobo$o12bob2obo12bo$15o2b15o$15o2b15o$o12bob2obo12b
o$obo9bob4obo9bobo$o3bo6bobob2obobo6bo3bo$o4bo4bobo2b2o2bobo4bo4bo$o4b
o3bobo3b2o3bobo3bo4bo$o4bo2bobo4b2o4bobo2bo4bo$o3bo2bobo5b2o5bobo2bo3b
o$obo3bobo6b2o6bobo3bobo$o4bobo7b2o7bobo4bo$o3bobo2b3o3b2o3b3o2bobo3bo
$o2bobo2bo3bo2b2o2bo3bo2bobo2bo$obobo10b2o10bobobo$2obo3bo5bob2obo5bo
3bob2o$obo12b2o12bobo$b30o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D8_4 with diagonal gutter symmetry (D8_4_gD1S0)
x = 34, y = 34, rule = B/S012345678
17b16o$16obo14bo$o14bobo14bo$o14bobo6bo7bo$o7bo6bobo5bobo6bo$o6bobo5bo
bo2bo3bo7bo$o7bo3bo2bobo2bo11bo$o11bo2bobo2bo7bo3bo$o3bo7bo2bobo2bo6bo
bo2bo$o2bobo6bo2bobo3bo6bo3bo$o3bo6bo3bobo4bo9bo$o9bo4bobo5bo8bo$o8bo
5bobo6b4o4bo$o4b4o6bobo14bo$o14bobo14bo$o14bob16o$16o$18b16o$b16obo14b
o$bo14bobo14bo$bo14bobo6b4o4bo$bo4b4o6bobo5bo8bo$bo8bo5bobo4bo9bo$bo9b
o4bobo3bo6bo3bo$bo3bo6bo3bobo2bo6bobo2bo$bo2bobo6bo2bobo2bo7bo3bo$bo3b
o7bo2bobo2bo11bo$bo11bo2bobo2bo3bo7bo$bo7bo3bo2bobo5bobo6bo$bo6bobo5bo
bo6bo7bo$bo7bo6bobo14bo$bo14bobo14bo$bo14bob16o$b16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D8_1 with rotationally-symmetric orthogonal skewgutter symmetry
x = 34, y = 34, rule = B/S012345678
17b15o$b15obo12bobo$obo12bobobo5bo3bob2o$2obo3bo5bobobo10bobobo$obobo
10bobo2bo3bo2bobo2bo$o2bobo2bo3bo2bobo3b3o2bobo3bo$o3bobo2b3o3bobo7bob
o4bo$o4bobo7bobo6bobo3bobo$obo3bobo6bobo5bobo2bo3bo$o3bo2bobo5bobo4bob
o2bo4bo$o4bo2bobo4bobo3bobo3bo4bo$o4bo3bobo3bobo2bobo4bo4bo$o4bo4bobo
2bobobobo6bo3bo$o3bo6bobobob2obo9bobo$obo9bob2obobo12bo$o12bobo2b15o$
15o$19b15o$b15o2bobo12bo$bo12bobob2obo9bobo$bobo9bob2obobobo6bo3bo$bo
3bo6bobobobo2bobo4bo4bo$bo4bo4bobo2bobo3bobo3bo4bo$bo4bo3bobo3bobo4bob
o2bo4bo$bo4bo2bobo4bobo5bobo2bo3bo$bo3bo2bobo5bobo6bobo3bobo$bobo3bobo
6bobo7bobo4bo$bo4bobo7bobo3b3o2bobo3bo$bo3bobo2b3o3bobo2bo3bo2bobo2bo$
bo2bobo2bo3bo2bobo10bobobo$bobobo10bobobo5bo3bob2o$b2obo3bo5bobobo12bo
bo$bobo12bob15o$2b15o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
and diagonal gutters
x = 35, y = 35, rule = B/S012345678
17b16o$17bo14bo$16obo14bo$o14bobo6bo7bo$o14bobo5bobo6bo$o7bo6bobo2bo3b
o7bo$o6bobo5bobo2bo11bo$o7bo3bo2bobo2bo7bo3bo$o11bo2bobo2bo6bobo2bo$o
3bo7bo2bobo3bo6bo3bo$o2bobo6bo2bobo4bo9bo$o3bo6bo3bobo5bo8bo$o9bo4bobo
6b4o4bo$o8bo5bobo14bo$o4b4o6bobo14bo$o14bob16o$o14bo$16o3b16o$19bo14bo
$2b16obo14bo$2bo14bobo6b4o4bo$2bo14bobo5bo8bo$2bo4b4o6bobo4bo9bo$2bo8b
o5bobo3bo6bo3bo$2bo9bo4bobo2bo6bobo2bo$2bo3bo6bo3bobo2bo7bo3bo$2bo2bob
o6bo2bobo2bo11bo$2bo3bo7bo2bobo2bo3bo7bo$2bo11bo2bobo5bobo6bo$2bo7bo3b
o2bobo6bo7bo$2bo6bobo5bobo14bo$2bo7bo6bobo14bo$2bo14bob16o$2bo14bo$2b
16o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
D8_1 with rotationally-symmetric orthogonal double skewgutter symmetry
x = 35, y = 35, rule = B/S012345678
17b15o$17bo12bobo$b15obobo5bo3bob2o$obo12bobo10bobobo$2obo3bo5bobobo2b
o3bo2bobo2bo$obobo10bobo3b3o2bobo3bo$o2bobo2bo3bo2bobo7bobo4bo$o3bobo
2b3o3bobo6bobo3bobo$o4bobo7bobo5bobo2bo3bo$obo3bobo6bobo4bobo2bo4bo$o
3bo2bobo5bobo3bobo3bo4bo$o4bo2bobo4bobo2bobo4bo4bo$o4bo3bobo3bobobobo
6bo3bo$o4bo4bobo2bob2obo9bobo$o3bo6bobobobobo12bo$obo9bob2o2b15o$o12bo
bo$15o5b15o$19bobo12bo$2b15o2b2obo9bobo$2bo12bobobobobo6bo3bo$2bobo9bo
b2obo2bobo4bo4bo$2bo3bo6bobobobo3bobo3bo4bo$2bo4bo4bobo2bobo4bobo2bo4b
o$2bo4bo3bobo3bobo5bobo2bo3bo$2bo4bo2bobo4bobo6bobo3bobo$2bo3bo2bobo5b
obo7bobo4bo$2bobo3bobo6bobo3b3o2bobo3bo$2bo4bobo7bobo2bo3bo2bobo2bo$2b
o3bobo2b3o3bobo10bobobo$2bo2bobo2bo3bo2bobobo5bo3bob2o$2bobobo10bobo
12bobo$2b2obo3bo5bobob15o$2bobo12bo$3b15o!
[[ THEME 6 GRID GRIDMAJOR 0 ZOOM 8 WIDTH 320 HEIGHT 320 NOGUI ]]
Please enable Javascript to view this LifeViewer.
and diagonal gutters
In order to preserve orthogonal gutter symmetry, the birth conditions B0, B2c, B2i, B4i, B4c and B6i must be absent.
In order to preserve orthogonal skewgutter symmetry, the birth conditions B0, B1c, B2k, B2n, B3n, B3y, B4y, B4z, B5r and B6i must be absent.
In order to preserve orthogonal double skewgutter symmetry, the birth conditions B0, B1c, B1e, B2a, B2i, B2k, B2n, B3c, B3q, B3r, B4c, B4n, B4y, B4z, B5e, B5r and B6i must be absent.
In order to preserve diagonal gutter symmetry, the birth conditions B0, B2n, B2e, B4e, B4w and B6n must be absent.
In order to preserve diagonal skewgutter symmetry, the birth consitions B0, B1c, B1e, B2a, B2k, B3k, B3q and B4q must be absent.
Preserving triple or higher orthogonal skewgutter symmetry in a range-1 Moore rule requires that a pattern must not be able to escape its bounding box.
"Zero-dimensional" gutters of a single cell can also exist, and indeed do exist in Life (in which they form immediately due to the lack of S0, S4 or S8). However, these are of absolutely no interest due to applying to every pattern with a symmetry that can support them.
On a hexagonal grid
Non-trivial gutter symmetry is also known to exist on hexagonal grids.[3] Searching with these is not yet supported by apgsearch.
Translational symmetry
Most well-known wicks and agars have translational symmetry, in one and two dimensions respectively, though some may also have reflectional symmetry, and agars can have rotational symmetry.
Compositional/translational symmetry
In certain rules, any pattern completely made of correctly-aligned arrangements of cells that fit within a 2×2 area will always be made up of said 2×2 arrangements of cells in all subsequent generations, simulating what can be described as an isotropic Margolus -neighbourhood rule, or block cellular automaton.[4] The most notable example of this is 2×2 , which does this with solid 2×2 regions of four cells. Due to the presence of B3(c) and absence of S0, Life also simulates a (rather uninteresting) such rule with patterns composed of single cells separated from each other by two cells orthogonally and diagonally - examples of oscillators where this can be seen include the barberpole .
In the case of 2×2's rule, further self-similarity can be noted with certain patterns - anything made of solid 4×4 blocks which are correctly aligned will still be made of 4×4 blocks in even generations, and so on.[5]
apgsearch supports the full block version of these symmetries through the inflation operator.
Population preservation
In certain rules, notably in the Margolus rulespace as well as Partitioned CA, rules exist in which the population of a pattern can never change. Infinite growth cannot happen in these rules. A notable example is the Single Rotation rule.
Such rules, perhaps counterintuitively due to effectively making the population infinite, can feature B0. Population is still conserved for every even generation in these cases. A notable example is Critters.
Reversibility
Another notable attribute rules can have, notably in the two rulespaces detailed above, which may be considered a "symmetry", is reversibility, in which a given rule can map to a respective "reverse rule" which corresponds to the initial rule being run backwards.
References