O(sqrt(t)) replicator rule
x=64, y = 64, rule = B36/S245
! #C [[ THEME Inverse ]]
#C [[ RANDOMIZE2 RANDSEED 1729 THUMBLAUNCH THUMBNAIL THUMBSIZE 2 GRID ZOOM 6 WIDTH 600 HEIGHT 600 LABEL 90 -20 2 "#G" AUTOSTART PAUSE 2 GPS 8 LOOP 256 ]]
Please enable Javascript to view this LifeViewer.
LifeViewer -generated pseudorandom soup
Rulestring
245/36 B36/S245
Rule integer
26696
Character
Stable
Black/white reversal
B012578/S0134678
The O(sqrt(t)) is a Life-like cellular automaton in which cells survive from one generation to the next if they have 2, 4, or 5 neighbours and are born if they have 3 or 6 neighbours. It is extremely similar to Move , differing only by the B8 transition. The time required to stabilize is generally much shorter than in Conway's Game of Life .
On August 19, 2020 , Peter Naszvadi constructed a Rule 110 unit cell in B36/S245, proving the rule Turing-complete .[1]
Notable patterns
The replicator
The name of this rule comes from an elementary replicator first discovered by Mark Niemiec . Unlike other replicators, (such as the one from HighLife ) this one does not reproduce itself cleanly , instead leaving oscillators behind which result in a more chaotic growth pattern.[2]
x = 19, y = 3, rule = B36/S245
6o7b6o$o4bo7bo4bo$b4o9b4o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ZOOM 10 ]]
Please enable Javascript to view this LifeViewer.
The namesake O(sqrt(t)) replicator(click above to open LifeViewer ) RLE : here Plaintext : here
Its behaviour can be emulated by the following pattern, discovered by AforAmpere on April 11, 2020 in an isotropic non-totalistic rule:[3]
x = 3, y = 2, rule = B2a3eny4at/S01c2ci3i4e5e
bo$obo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ZOOM 10 ]]
Please enable Javascript to view this LifeViewer.
A small replicator that emulates the one above(click above to open LifeViewer )
Spaceships
The rule has several known elementary spaceships, the smallest ones having speeds of c/4 orthogonal , 4c/23 orthogonal, and c/7 diagonal , shown below. Other known elementary spaceship speeds include c/2 orthogonal , c/3 orthogonal , c/5 orthogonal , 2c/5 orthogonal , c/6 orthogonal , c/7 orthogonal , c/3 diagonal, c/4 diagonal ,[4] and (2,1)c/6 .[5]
x = 7, y = 27, rule = B36/S245
b2o3bo$3ob3o$2bob3o$6bo7$3o$b2o$5bo$4b2o$4b2o$5bo$b2o$3o7$3o$2o$o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ZOOM 10 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer ) RLE : here Plaintext : here
In 1997 , Dean Hickerson discovered two replicator-based spaceships traveling at 7c/150 orthogonal and 7c/300 orthogonal respectively:
x = 38, y = 17, rule = B36/S245
15bobo$16bo4bobo$12bo3bo4bobo12bo$12bo2bobo2bo3bo9b2obo$12bo2bobo2bo3b
o9b2obo$12bo3bo4bobo12bo$16bo4bobo$15bobo4$b4o$3bo17bo$o2bo15b2obo$o2b
o15b2obo$3bo17bo$b4o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ZOOM 10 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer ) RLE : here Plaintext : here
x = 280, y = 163, rule = B36/S245
170bo$171bo$170bo16bo$127b3o38b2obo14bob2o$168b2obo14bob2o$170bo16bo$
171bo$170bo7$171bobo$170b2obo$169bo2bo15b2o$169b3o16bobo$169b3o16bobo$
169bo2bo15b2o$170b2obo$171bobo6$236bobo$170bo32bo15b2o14bo2b2o36b2o$
171bo31bo14bobo14bo3b2o34bobo$170bo16bo15bo14bobo14bo3b2o34bobo$168b2o
bo14bob2o29b2o14bo2b2o36b2o$127b3o38b2obo14bob2o46bobo$170bo16bo$171bo
$170bo6$237bo$94bo27bo27bo27bo41bo15bob2o37bo$93bob2o24bob2o24bob2o24b
ob2o38bob2o13b5o35bob2o$93bob2o24bob2o24bob2o24bob2o38bob2o13b5o35bob
2o$94bo27bo27bo27bo41bo15bob2o37bo$237bo4$4o24b4o24b4o48bo3b2o$81b2o
25bob2o2b2o$10b2o26b2o26b2o13b3o23b3o6b2o19b2o$9bobo25bobo25bobo38bobo
b2ob3o2b2o16bobo$9bobo25bobo25bobo38bobob2ob3o2b2o16bobo$10b2o26b2o26b
2o39b3o6b2o19b2o97bobo$108bob2o2b2o103b2o14bo2b2o36b2o$108bo3b2o89bo
14bobo14bo3b2o34bobo$203bo14bobo14bo3b2o34bobo$203bo15b2o14bo2b2o36b2o
$236bobo2$110bo$108b2obobo$20b2o86bo3b3o$19b4o84b2obo2bobobo$19b2o84b
2obo3bo2b4o18bo$20bo83bobo5bob4obo15b2obo$104bobo5bob4obo15b2obo$105b
2obo3bo2b4o18bo$85bo21b2obo2bobobo$85bo22bo3b3o$85bo22b2obobo$110bo15$
26bo$25bo59bo$26bobo56bo18bo$27bo57bo18bo$105b2o16bo13bo$102bob4o13b2o
bo10b2obo$102bob4o13b2obo10b2obo$105b2o16bo13bo$104bo$104bo4$241bo$
203bo15b2o12b3ob4ob2ob2o29b2o$203bo14bobo12bo3bo7bobo27bobo$203bo14bob
o12bo3bo7bobo27bobo$106bo11b2o99b2o12b3ob4ob2ob2o29b2o$10b2o26b2o26b2o
37b3o15b2o12b2o102bo$9bobo25bobo25bobo36b2o12b2o2bobo11bobo$9bobo25bob
o25bobo36b2o12b2o2bobo11bobo$10b2o26b2o26b2o13b3o21b3o15b2o12b2o$81b2o
23bo11b2o$4o24b4o24b4o3$234bo$235bo11bo$94bo27bo27bo27bo41bo14bo3bo4bo
bo30bo$93bob2o24bob2o24bob2o24bob2o38bob2o11b2o4b2o2bo3bo27bob2o$93bob
2o24bob2o24bob2o24bob2o38bob2o11b2o4b2o2bo3bo27bob2o$94bo27bo27bo27bo
41bo14bo3bo4bobo30bo$235bo11bo$234bo4$170bo2$163b2o6bob3o$161b2o7bo3bo
12bo$127b3o30bo3bo2b6obob2o8bob2o51bo$160bo3bo2b6obob2o8bob2o29b2o12b
3ob4ob2ob2o29b2o$161b2o7bo3bo12bo15bo14bobo12bo3bo7bobo27bobo$163b2o6b
ob3o27bo14bobo12bo3bo7bobo27bobo$203bo15b2o12b3ob4ob2ob2o29b2o$170bo
70bo5$169bo3b2o$169b3ob2obo$164bob2o4b3obo$164bo3b2o2b2ob3o10b2o$164b
3o4bobo14bobo$164b3o4bobo14bobo$164bo3b2o2b2ob3o10b2o$164bob2o4b3obo$
169b3ob2obo$169bo3b2o5$170bo2$163b2o6bob3o$161b2o7bo3bo12bo$160bo3bo2b
6obob2o8bob2o$127b3o30bo3bo2b6obob2o8bob2o$161b2o7bo3bo12bo$163b2o6bob
3o2$170bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ZOOM 1 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer ) RLE : here Plaintext : here
Linear growth
Replicators can also be used to create a gun for the c/7 diagonal ship:
x = 74, y = 45, rule = B36/S245
55b2o$55bobo$16bo38bobo$14b4o37bobo$13bo2bobo36bobo$13bo2bobo36b2o$14b
4o$16bo9$69b4o$68bo4bo$2b2o64b6o$bo2bo$bo2bo$6o$bo2bo28b6o$2b2o29bo4bo
$34b4o11$50b2o$49bobo$49bobo$49bobo$23bo25bobo$22b4o24b2o$21bobo2bo$
21bobo2bo$22b4o$23bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ZOOM 4 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer ) RLE : here Plaintext : here
On May 28, 2021, Luka Okanishi constructed the following period-408 4c/23 spaceship gun without synthesizing from smaller ships.[6]
x = 110, y = 64, rule = B36/S245
23b2obo2b2obo2bo38bo2bob2o2bob2o$23bob3obobo2b2o38b2o2bobob3obo$13bo2b
o6bob3obobo2b2o38b2o2bobob3obo6bo2bo$14b2obo5b2obo2b2obo2bo38bo2bob2o
2bob2o5bob2o$12b3obo76bob3o$15bo78bo12$29bo50bo$28b4o46b4o$27bobo2bo
44bo2bobo$5b3o19bobo2bo44bo2bobo19b3o$3bob2obo19b4o46b4o19bob2obo$5bo
23bo50bo23bo$4b3o47b2o47b3o$52bob2obo$52b2o2b2o$52bob2obo$54b2o$54b2o$
7b2obo88bob2o$5b4o5bo80bo5b4o$4bo2bo2b2ob2o80b2ob2o2bo2bo$4bo2bo2b2ob
2o80b2ob2o2bo2bo$5b4o5bo80bo5b4o$7b2obo88bob2o2$53b4o$54b2o$52bob2obo$
53bo2bo$54b2o$35b2o36b2o$35b2o16b4o16b2o$33bo4bo32bo4bo$2b4o28bo2bo34b
o2bo28b4o$2bo2bo26b2ob2ob2o13bo16b2ob2ob2o26bo2bo$2bo2bo27bob2obo13bob
o16bob2obo27bo2bo$2bo2bo45bobo50bo2bo$3b2o47b2o51b2o$52bobo$52bo5$2bo
2bo14bobo64bobo14bo2bo$2bo2bo14b2obo62bob2o14bo2bo$o2b2o2bo11bo4bo60bo
4bo11bo2b2o2bo$obo2bobo11bo4bo60bo4bo11bobo2bobo$20b2obo62bob2o$2b4o
14bobo12b2o36b2o12bobo14b4o$3b2o29bo2bo34bo2bo29b2o$35b2o36b2o$35b2o
36b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ZOOM 4 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer )
On September 23, 2022, FWKnightship constructed a 14c/504 orthogonal replicator-based puffer ,[7] which Peter Naszvadi [8] and toroidalet [9] both found spaceship versions of on the following day. Also on September 24, FWKnightship found a second puffer with a speed of 28c/2004 orthogonal.[10]
References
External links