Logarithmic replicator rule
x=64, y = 64, rule = B36/S245
! #C [[ THEME Inverse ]]
#C [[ RANDOMIZE2 RANDSEED 1729 THUMBLAUNCH THUMBNAIL THUMBSIZE 2 GRID ZOOM 6 WIDTH 600 HEIGHT 600 LABEL 90 -20 2 "#G" AUTOSTART PAUSE 2 GPS 8 LOOP 256 ]]
Please enable Javascript to view this LifeViewer.
LifeViewer -generated pseudorandom soup
Rulestring
245/36 B36/S245
Rule integer
26696
Character
Stable
Black/white reversal
B012578/S0134678
This article is a stub. You can help LifeWiki by expanding it .
The logarithmic replicator rule is a Life-like cellular automaton in which cells survive from one generation to the next if they have 2, 4, or 5 neighbours and are born if they have 3 or 6 neighbours. It is extremely similar to Move , differing only by the B8 transition. The time required to stabilize is generally much shorter than in Conway's Game of Life .
On August 19, 2020 , Peter Naszvadi constructed a Rule 110 unit cell in B36/S245, proving the rule Turing-complete.[1]
Notable patterns
The replicator
The name of this rule comes from an elementary replicator first discovered by Mark Niemiec . Unlike other replicators, (such as the one from HighLife ) this one does not reproduce itself cleanly, instead leaving oscillators behind which result in a more chaotic growth pattern.[2]
x = 19, y = 3, rule = B36/S245
6o7b6o$o4bo7bo4bo$b4o9b4o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ]]
Please enable Javascript to view this LifeViewer.
The namesake logarithmic replicator.(click above to open LifeViewer ) RLE : here Plaintext : here
Spaceships
The rule has several known elementary spaceships, the smallest ones having speeds of c/4 orthogonal , 4c/23 orthogonal, and c/7 diagonal , shown below. Other known elementary spaceship speeds include c/2 orthogonal , c/3 orthogonal , c/5 orthogonal , 2c/5 orthogonal , c/6 orthogonal , c/7 orthogonal , c/3 diagonal, and c/4 diagonal .[3]
x = 7, y = 27, rule = B36/S245
b2o3bo$3ob3o$2bob3o$6bo7$3o$b2o$5bo$4b2o$4b2o$5bo$b2o$3o7$3o$2o$o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer ) RLE : here Plaintext : here
In 1997 , Dean Hickerson discovered two replicator-based spaceships traveling at 7c/150 orthogonal and 7c/300 orthogonal respectively:
x = 38, y = 17, rule = B36/S245
15bobo$16bo4bobo$12bo3bo4bobo12bo$12bo2bobo2bo3bo9b2obo$12bo2bobo2bo3b
o9b2obo$12bo3bo4bobo12bo$16bo4bobo$15bobo4$b4o$3bo17bo$o2bo15b2obo$o2b
o15b2obo$3bo17bo$b4o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer ) RLE : here Plaintext : here
x = 280, y = 163, rule = B36/S245
170bo$171bo$170bo16bo$127b3o38b2obo14bob2o$168b2obo14bob2o$170bo16bo$
171bo$170bo7$171bobo$170b2obo$169bo2bo15b2o$169b3o16bobo$169b3o16bobo$
169bo2bo15b2o$170b2obo$171bobo6$236bobo$170bo32bo15b2o14bo2b2o36b2o$
171bo31bo14bobo14bo3b2o34bobo$170bo16bo15bo14bobo14bo3b2o34bobo$168b2o
bo14bob2o29b2o14bo2b2o36b2o$127b3o38b2obo14bob2o46bobo$170bo16bo$171bo
$170bo6$237bo$94bo27bo27bo27bo41bo15bob2o37bo$93bob2o24bob2o24bob2o24b
ob2o38bob2o13b5o35bob2o$93bob2o24bob2o24bob2o24bob2o38bob2o13b5o35bob
2o$94bo27bo27bo27bo41bo15bob2o37bo$237bo4$4o24b4o24b4o48bo3b2o$81b2o
25bob2o2b2o$10b2o26b2o26b2o13b3o23b3o6b2o19b2o$9bobo25bobo25bobo38bobo
b2ob3o2b2o16bobo$9bobo25bobo25bobo38bobob2ob3o2b2o16bobo$10b2o26b2o26b
2o39b3o6b2o19b2o97bobo$108bob2o2b2o103b2o14bo2b2o36b2o$108bo3b2o89bo
14bobo14bo3b2o34bobo$203bo14bobo14bo3b2o34bobo$203bo15b2o14bo2b2o36b2o
$236bobo2$110bo$108b2obobo$20b2o86bo3b3o$19b4o84b2obo2bobobo$19b2o84b
2obo3bo2b4o18bo$20bo83bobo5bob4obo15b2obo$104bobo5bob4obo15b2obo$105b
2obo3bo2b4o18bo$85bo21b2obo2bobobo$85bo22bo3b3o$85bo22b2obobo$110bo15$
26bo$25bo59bo$26bobo56bo18bo$27bo57bo18bo$105b2o16bo13bo$102bob4o13b2o
bo10b2obo$102bob4o13b2obo10b2obo$105b2o16bo13bo$104bo$104bo4$241bo$
203bo15b2o12b3ob4ob2ob2o29b2o$203bo14bobo12bo3bo7bobo27bobo$203bo14bob
o12bo3bo7bobo27bobo$106bo11b2o99b2o12b3ob4ob2ob2o29b2o$10b2o26b2o26b2o
37b3o15b2o12b2o102bo$9bobo25bobo25bobo36b2o12b2o2bobo11bobo$9bobo25bob
o25bobo36b2o12b2o2bobo11bobo$10b2o26b2o26b2o13b3o21b3o15b2o12b2o$81b2o
23bo11b2o$4o24b4o24b4o3$234bo$235bo11bo$94bo27bo27bo27bo41bo14bo3bo4bo
bo30bo$93bob2o24bob2o24bob2o24bob2o38bob2o11b2o4b2o2bo3bo27bob2o$93bob
2o24bob2o24bob2o24bob2o38bob2o11b2o4b2o2bo3bo27bob2o$94bo27bo27bo27bo
41bo14bo3bo4bobo30bo$235bo11bo$234bo4$170bo2$163b2o6bob3o$161b2o7bo3bo
12bo$127b3o30bo3bo2b6obob2o8bob2o51bo$160bo3bo2b6obob2o8bob2o29b2o12b
3ob4ob2ob2o29b2o$161b2o7bo3bo12bo15bo14bobo12bo3bo7bobo27bobo$163b2o6b
ob3o27bo14bobo12bo3bo7bobo27bobo$203bo15b2o12b3ob4ob2ob2o29b2o$170bo
70bo5$169bo3b2o$169b3ob2obo$164bob2o4b3obo$164bo3b2o2b2ob3o10b2o$164b
3o4bobo14bobo$164b3o4bobo14bobo$164bo3b2o2b2ob3o10b2o$164bob2o4b3obo$
169b3ob2obo$169bo3b2o5$170bo2$163b2o6bob3o$161b2o7bo3bo12bo$160bo3bo2b
6obob2o8bob2o$127b3o30bo3bo2b6obob2o8bob2o$161b2o7bo3bo12bo$163b2o6bob
3o2$170bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer ) RLE : here Plaintext : here
Linear growth
Replicators can also be used to create a gun for the c/7 diagonal ship:
x = 74, y = 45, rule = B36/S245
55b2o$55bobo$16bo38bobo$14b4o37bobo$13bo2bobo36bobo$13bo2bobo36b2o$14b
4o$16bo9$69b4o$68bo4bo$2b2o64b6o$bo2bo$bo2bo$6o$bo2bo28b6o$2b2o29bo4bo
$34b4o11$50b2o$49bobo$49bobo$49bobo$23bo25bobo$22b4o24b2o$21bobo2bo$
21bobo2bo$22b4o$23bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer ) RLE : here Plaintext : here
Here is a p23 orthogonal ship gun.
x = 418, y = 425, rule = B36/S245
63bo2bobo2bo$63b4ob4o$65bobobo$64bobobobo108b2obobob2o$63bo2bobo2bo
108b3ob3o$62b3o5b3o108bobobo$62b2o7b2o108bo3bo$64b7o108bo7bo$179b4ob4o
$179b2o5b2o$179b9o$181b5o$181b5o$183bo10$65b4o2$64b2o2b2o$64b6o$64bob
2obo$181bo4bo$182b4o133bo2bobo2bo$180b2o4b2o131b4ob4o$319bobobobobo$
181bo4bo16bo2bobo2bo108bo5bo$182b4o17b4ob4o106b2o7b2o$182b4o19bobobo
108b2o7b2o$204bobobobo108bo2b3o2bo$203bo2bobo2bo107b9o$202b3o5b3o108b
5o$202b2o7b2o$204b7o3$65b4o$65bo2bo$66b2o115b2o$183b2o$102b4o3bo72bo2b
o$4b2o76bo19b3o3b2o73b2o$3ob4o15bo56bobobo15b3obob3o33bobobo$bobo3bo
14b3ob2o38bo11b2o3bo16b3obo3b2o31bo3b4o$b2o4b2o12bobob2ob2o35bob2o9b2o
3bo15b4o4bo34b2ob2obo261b4o3bo$2o4b3o11b3obob4o35bob2o9b2o3bo16b3obo3b
2o32b2o4b2o15bob3o152b4o65b4o15b3o3b2o$2bo3b3o11b3obob4o36bo11b2o3bo
16b3obob3o32b2o4bob2o12bo2bobobo12b2o136b6o65bo15b3obob3o$2o4b3o12bobo
b2ob2o50bobobo17b3o3b2o33bo2b2ob2o11bo3bobobo11bobo136bo4bo65bo2bo12b
3obo3b2o$b2o4b2o13b3ob2o26b2o26bo19b4o3bo31b2o4bob2o11bo3bobobo11bobo
136b2o2b2o37b2o26bo2bo11b4o4bo$bobo3bo15bo30b2o86b2o4b2o13bo2bobobo12b
2o20b4o113b4o38b2o26bo15b3obo3b2o$3ob4o44b2obo86b2ob2obo16bob3o35bo2bo
113b4o38bob2o23b4o13b3obob3o$4b2o46b4o85bo3b4o55b2o2b2o113b2o39b4o42b
3o3b2o$142bobobo57b2o2b2o200b4o3bo$206b2o$206b2o7$49b4o$48bo4bo$363b2o
4b2o$48b2o2b2o309bo2b2o2bo$49b4o310bo2b2o2bo$50b2o313b4o$365bo2bo$286b
2o$281b2o2b3o$282bobobobo$282b2o4bo17b2o$242b4o3bo31b2ob2o2bo15b4o$97b
3o142b3o3b2o33bo4bo15bo3b2o$96bob2o123b4o13b3obob3o32b2ob2o2bo15bo3b2o
$96b3o53b2o70bo15b3obo3b2o32b2o4bo15b4o10b2o$96b2o56bo69bo2bo11b4o4bo
34bobobobo17b2o12bo$153bobo68bo2bo12b3obo3b2o31b2o2b3o31bobo$152bo2bo
53b3o12bo15b3obob3o37b2o30bo2bo$209b2o12b4o15b3o3b2o$209bo32b4o3bo$47b
7o312b3o$45b2o7b2o309b5o$45b3o5b3o307b3o3b3o$46bo2bobo2bo308bo2b3o2bo$
47bobobobo308b3o2bo2b3o$48bobobo310b2o5b2o$46b4ob4o307bo9bo$46bo2bobo
2bo309b2obob2o$362bob3ob3obo$363bo2bobo2bo13$108bo$108bo$108bo$308b3o
14$49b2obobob2o$50b3ob3o$51bobobo304bo2bobo2bo$51bo3bo304b4ob4o$49bo7b
o302bobobobobo$49b4ob4o303bo5bo$49b2o5b2o301b2o7b2o$49b9o301b2o7b2o$
51b5o304bo2b3o2bo$51b5o304b9o$53bo308b5o13$53b2o$52b4o$52b4o$51bob2obo
306b2o$52b4o306b4o$362bo2bo$361b6o$360b8o$360bob4obo$361b2o2b2o5$8b2o
46b2o$3b2o2b3o44b2ob2o$4bobobobo47bo350bobobo$4b2o4bo16bobo27bo349b4o
3bo$3b2ob2o2bo15b2o2bo26bo304b2o23b3o17bob2ob2o$5bo4bo14b2o3bo330b2ob
2o21bo18b2o4b2o$3b2ob2o2bo14b2o3bo330bo28b2o13b2obo4b2o$4b2o4bo15b2o2b
o331bo25b3o14b2ob2o2bo$4bobobobo16bobo332bo25b3o14b2obo4b2o$3b2o2b3o
380b2o14b2o4b2o$8b2o51bo3b4o25bo292bo19bob2ob2o$61b2o3b3o21b2ob3o291b
3o17b4o3bo$62b3obob3o17b2ob2obobo7bo304bobobo$61b2o3bob3o17b4obob3o4b
2obo4b4o$63bo4b4o16b4obob3o4b2obo4bo2bo$61b2o3bob3o17b2ob2obobo7bo6b2o
$62b3obob3o19b2ob3o$61b2o3b3o25bo$61bo3b4o270bo19b4o3bo$341bo17b3o3b2o
$337b4obo14b3obob3o$315b3o18b7ob2o11b3obo3b2o$111b2o203b2o18b7ob2o10b
4o4bo$110b4o203bo19b4obo14b3obo3b2o$109b2o2b2o226bo15b3obob3o$339bo19b
3o3b2o$109bo4bo244b4o3bo$110b4o9$315b2o$314b4o$313b2o2b2o$312b3o2b3o$
313bob2obo$314b4o$315b2o5$110b3o$109b5o$107b3o3b3o$107bo2b3o2bo$106b3o
2bo2b3o$107b2o5b2o$106bo9bo$108b2obob2o$106bob3ob3obo198b3o$107bo2bobo
2bo198b5o$312b3o3b3o$312bo2b3o2bo$311b3o2bo2b3o$312b2o5b2o$311bo9bo$
313b2obob2o$311bob3ob3obo$312bo2bobo2bo24$104b2obobob2o$105b3ob3o$106b
obobo$106bo3bo$104bo7bo$104b4ob4o$104b2o5b2o$104b9o$106b5o204b2obobob
2o$106b5o205b3ob3o$108bo208bobobo$317bo3bo$315bo7bo$315b4ob4o$315b2o5b
2o$315b9o$317b5o$317b5o$319bo9$107b4o$107b4o$106bob2obo206b2o$106b6o
206b2o$107bo2bo$106bob2obo205b4o$105b3o2b3o203bob2obo$106bob2obo205b4o
$107b4o204bob4obo$108b2o207b4o$63b2o252b4o$58b2o2b3o253b2o$59bobobobo$
59b2o4bo23b2o$58b2ob2o2bo18b2obo3b4o5b2o6b2o$60bo4bo18bobo4b2o2bo4bobo
5b2o$58b2ob2o2bo18bobo4b2o2bo4bobo4bo2bo$59b2o4bo18b2obo3b4o5b2o6b2o$
59bobobobo23b2o272b2o$58b2o2b3o298b3o2b2o$63b2o276bobo18bobobobo$317bo
2bo18bob2o19bo4b2o$318bobo18b2obobo17bo2b2ob2o$319bo17b4ob3o17bo4bo$
317b2o18b4ob3o17bo2b2ob2o$339b2obobo17bo4b2o$339bob2o19bobobobo$341bob
o19b3o2b2o$363b2o19$67bo2bobo2bo$67b4ob4o$69bobobo$68bobobobo$67bo2bob
o2bo$66b3o5b3o$66b2o7b2o$68b7o17$192bo$159b2o30bobo$85b2o67b2o2b3o15bo
bo11bo$83b2ob2o67bobobobo15bo2bo10bo$87bo29b2o36b2o4bo13bo3b2obo$86bo
28b4ob3o31b2ob2o2bo13b2ob3ob2o$86bo11bobo14bo3bobo34bo4bo13b2ob3ob2o$
93b2ob2ob4o11b2o4b2o32b2ob2o2bo13bo3b2obo$92b3o3bobo2bo10b3o4b2o32b2o
4bo15bo2bo$92b3o3bobo2bo10b3o3bo34bobobobo14bobo$93b2ob2ob4o11b3o4b2o
31b2o2b3o$98bobo13b2o4b2o37b2o$115bo3bobo$115b4ob3o$117b2o12$196b2o$
195b4o$79b2o114b4o$77b6o$78b4o113bo2bo$77b6o112bo2bo$79b2o113bob2obo$
195bo2bo$194b6o$77bob2obo112bo2bo$76b8o111bo2bo$76bo2b2o2bo112b2o2$79b
2o$79b2o$79b2o7$194b5o$192b9o$79b3o110bo2b3o2bo$78b5o108b2o7b2o$76b3o
3b3o106b2o7b2o$76bo2b3o2bo108bo5bo$75b3o2bo2b3o106bobobobobo$76b2o5b2o
107b4ob4o$75bo9bo106bo2bobo2bo$77b2obob2o$75bob3ob3obo$76bo2bobo2bo10$
209b5o$209bo3bo$211bo$210bobo$211bo$209bo3bo$209b5o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer )
References
External links
Sqrt replicator rule at Adam P. Goucher 's Catagolue
Sqrt replicator rule at David Eppstein 's Glider Database
B36/S245 (discussion thread) at the ConwayLife.com forums