Rule:2SQF
@RULE 2SQF @TABLE n_states:3 neighborhood: [(0, 0), (-3, 0), (-2, 0), (-1, 0), (0, -3), (0, -2), (0, -1), (0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (3, 0), (0, 0)] symmetries:permute var a = {0,1,2} var a1 = a var a2 = a var a3 = a var a4 = a var a5 = a var a6 = a var a7 = a var a8 = a var a9 = a var aa = a var ab = a var ac = a 0,1,1,1,1,1,0,0,0,0,0,0,0,1 0,2,1,1,1,0,0,0,0,0,0,0,0,1 0,2,2,1,0,0,0,0,0,0,0,0,0,1 0,1,1,1,1,1,1,0,0,0,0,0,0,2 0,2,1,1,1,1,0,0,0,0,0,0,0,2 0,2,2,1,1,0,0,0,0,0,0,0,0,2 0,2,2,2,0,0,0,0,0,0,0,0,0,2 0,1,1,1,1,1,1,1,0,0,0,0,0,1 0,2,1,1,1,1,1,0,0,0,0,0,0,1 0,2,2,1,1,1,0,0,0,0,0,0,0,1 0,2,2,2,1,0,0,0,0,0,0,0,0,1 1,1,1,1,1,0,0,0,0,0,0,0,0,1 1,2,1,1,0,0,0,0,0,0,0,0,0,1 1,2,2,0,0,0,0,0,0,0,0,0,0,1 1,1,1,1,1,1,0,0,0,0,0,0,0,2 1,2,1,1,1,0,0,0,0,0,0,0,0,2 1,2,2,1,0,0,0,0,0,0,0,0,0,2 1,1,1,1,1,1,1,0,0,0,0,0,0,1 1,2,1,1,1,1,0,0,0,0,0,0,0,1 1,2,2,1,1,0,0,0,0,0,0,0,0,1 1,2,2,2,0,0,0,0,0,0,0,0,0,1 2,1,1,1,0,0,0,0,0,0,0,0,0,1 2,2,1,0,0,0,0,0,0,0,0,0,0,1 2,1,1,1,1,0,0,0,0,0,0,0,0,2 2,2,1,1,0,0,0,0,0,0,0,0,0,2 2,2,2,0,0,0,0,0,0,0,0,0,0,2 2,1,1,1,1,1,0,0,0,0,0,0,0,1 2,2,1,1,1,0,0,0,0,0,0,0,0,1 2,2,2,1,0,0,0,0,0,0,0,0,0,1 a,a1,a2,a3,a4,a5,a6,a7,a8,a9,aa,ab,ac,0