Rule:3S1CShip5

From LifeWiki
Revision as of 01:25, 2 May 2021 by Yujh (talk | contribs) (Created page with "@RULE 3S1CShip5 TODO startup: 2346 main: sum(3,2348)2^n=2^2349-8 ending: 13 total: 2^2349+2351=13166180802936106447412254199220224954431617247047429089693895788965741170643173...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE 3S1CShip5 TODO startup: 2346 main: sum(3,2348)2^n=2^2349-8 ending: 13 total: 2^2349+2351=131661808029361064474122541992202249544316172470474290896938957889657411706431738059855987100606116738608709863898114516322696806682779725395040361126073989754846342223650752839934282507553095228819445591564242224229100999549808158043220482537489286899542806927109262299798576702052364647531326323060875437512721666750074735365806697524459192563914773873444570420147733289826848369892651509013842153766576752759546709772991670483710813378588223114875800405103605361303657861719088971021114521028156816509308794659625756698728308129465992649969171244954433589856461308546917926791439305402526271547340075851639933262085702464422986758336147589425826676630311810520418347644992379850195840502843574915602319663 @TABLE n_states:3 neighborhood:Moore symmetries:none

  1. delay

0,0,0,0,0,2,1,2,0,2 2,0,0,0,0,0,1,0,0,1 1,0,0,0,0,0,1,0,0,0 2,0,0,0,0,0,2,0,0,1 1,0,0,0,0,0,2,0,0,0

  1. leftward expansion

0,0,0,1,0,0,0,0,0,2 0,0,0,0,0,1,2,0,0,2 0,0,0,2,1,2,0,0,0,1 2,0,0,0,2,1,2,0,0,0 2,1,0,1,2,0,0,0,0,1 1,0,0,0,1,1,0,0,0,0 1,1,0,1,2,0,0,0,0,2 0,0,1,1,0,0,0,0,0,2 0,0,0,1,1,0,0,0,0,1 2,1,0,2,0,0,0,0,0,1 2,0,0,0,0,1,2,0,0,0 1,1,0,2,0,0,0,0,0,2 1,0,0,0,2,1,0,0,0,0

  1. downward expansion

0,1,0,0,0,0,0,0,0,2 0,0,0,0,0,0,2,1,0,2 0,2,0,0,0,0,0,2,1,1 2,0,0,0,0,0,2,1,2,0 2,1,2,1,0,0,0,0,2,1 2,0,0,0,0,1,2,1,0,0 1,0,0,0,0,0,0,1,1,0 2,1,0,1,0,0,0,0,1,1 1,1,0,1,0,0,0,0,2,2 0,1,1,0,0,0,0,0,0,2 0,1,0,0,0,0,0,0,1,1 2,2,0,1,0,0,0,0,0,1 1,2,0,1,0,0,0,0,0,2 1,0,0,0,0,0,0,1,2,0

  1. downward stop

0,1,0,0,0,0,2,1,0,2 2,0,0,0,0,0,2,1,0,0 0,2,0,0,0,1,1,2,2,2 2,1,0,2,0,2,0,0,1,1 2,0,0,0,0,0,2,2,1,0 0,2,0,0,0,1,2,2,2,2 2,0,0,0,0,1,1,2,1,0 2,1,0,2,1,1,0,0,0,1 1,2,2,1,0,0,0,0,0,2 1,2,0,0,0,0,0,1,2,2 2,1,0,2,1,2,0,0,0,1 2,0,0,0,0,1,2,2,1,0 1,2,0,0,0,0,0,2,2,0

  1. downward counting

0,1,0,0,0,0,1,1,0,2 2,0,0,0,0,0,1,1,0,0 1,1,2,0,0,1,0,0,1,2 0,2,0,0,0,0,1,2,1,2 2,0,0,0,0,0,1,2,1,0 2,1,0,2,0,1,0,0,2,1 1,2,2,0,0,1,0,0,0,2 1,1,2,0,0,2,0,0,1,2 0,2,0,0,0,0,2,2,1,2 0,2,0,0,0,0,1,2,2,2 2,1,0,2,0,1,0,0,0,1 1,2,2,0,0,2,0,0,0,2 0,2,0,0,0,0,2,2,2,2 2,1,0,2,0,2,0,0,0,1 0,2,0,0,0,0,0,2,2,2 2,0,0,0,0,0,0,1,1,0 1,1,0,0,0,2,2,0,0,2 2,0,1,2,0,0,0,0,0,0 2,1,0,0,0,0,0,2,0,0 1,2,0,0,0,2,2,0,0,2 0,1,1,1,2,2,0,0,2,2 2,1,1,1,0,0,0,0,2,0 1,1,0,0,0,0,0,2,1,0 1,0,0,0,0,0,0,2,0,2

  1. leftward stop

0,0,0,0,0,2,2,0,0,2 2,0,0,0,0,2,2,0,0,0 0,0,0,0,0,0,2,2,0,2 0,0,0,2,2,2,2,0,0,2 2,0,0,0,2,2,2,0,0,0 2,2,0,2,0,0,0,2,0,1 2,0,0,0,1,2,2,0,0,0 2,2,0,1,0,0,0,2,0,1 0,0,0,2,2,2,1,1,0,2 0,0,0,2,2,2,2,1,0,2 1,0,0,2,2,1,0,0,0,2 2,0,0,0,1,2,1,1,0,0 2,2,0,1,0,0,0,1,1,1 1,0,0,2,1,2,0,0,0,0 2,0,2,0,1,1,2,1,0,1 1,0,1,0,1,1,2,0,0,0

  1. leftward counting

0,0,0,0,0,2,1,0,0,2 2,0,0,0,0,2,1,0,0,0 1,0,2,2,0,0,0,1,0,2 0,0,0,2,2,2,1,0,0,2 2,0,0,0,2,2,1,0,0,0 2,2,0,2,0,0,0,1,0,1 1,0,2,2,0,0,0,2,0,2 2,0,0,0,1,2,1,0,0,0 2,2,0,1,0,0,0,1,0,1 0,0,0,2,2,2,0,0,0,2 2,0,0,0,1,1,0,0,0,0 2,0,0,1,0,2,0,0,0,0 2,2,1,0,0,0,0,0,0,0 1,0,0,1,0,0,2,2,0,2 1,0,0,2,0,0,2,2,0,2 1,0,2,2,0,0,2,2,0,2

  1. ending

2,2,0,2,0,0,0,0,0,0 2,0,0,0,2,0,0,0,0,0 2,0,0,0,0,0,0,0,0,1

  1. diagonal mode
  2. 2,0,0,0,2,0,0,0,0,0
  3. 2,0,1,0,0,0,0,0,2,0
  4. 0,0,0,1,0,2,0,2,0,1
  5. extra length

2,0,2,1,2,0,0,1,1,1 2,1,0,0,1,1,0,0,1,1 2,0,0,0,0,0,1,1,2,0 2,0,0,1,2,0,0,2,0,1 2,2,2,1,0,0,0,0,0,1 1,1,0,0,0,0,0,0,0,0 2,0,1,0,2,0,0,0,0,0 0,1,0,0,0,2,0,2,0,1