Rule:Antimatter
@RULE Antimatter
https://conwaylife.com/forums/viewtopic.php?p=64657#p64657
Note: earlier variants of this rule were also found: https://conwaylife.com/forums/viewtopic.php?p=63808#p64365 https://conwaylife.com/forums/viewtopic.php?p=64366#p64366
@TREE
num_states=9 num_neighbors=8 num_nodes=139 1 0 0 0 5 0 0 0 1 2 1 4 0 0 5 0 0 0 1 2 1 4 7 8 5 0 0 0 1 2 1 0 7 8 5 0 0 0 1 2 1 0 0 0 0 0 0 0 7 8 2 0 0 0 1 2 3 3 4 4 2 0 0 0 1 3 3 3 4 4 2 1 1 1 0 3 3 3 4 4 1 5 7 8 5 0 0 0 1 2 2 2 3 3 3 8 8 3 4 4 2 3 3 3 3 8 3 3 4 4 2 3 3 3 3 3 3 3 4 4 2 4 4 4 4 4 4 4 4 4 3 5 6 6 7 9 10 11 12 12 1 1 0 0 5 0 0 0 1 2 1 3 0 0 5 0 0 0 1 2 2 0 14 15 1 3 3 3 4 4 2 0 15 15 1 3 3 3 4 4 3 6 16 17 7 11 11 11 12 12 1 2 0 0 5 0 0 0 1 2 2 0 15 19 1 3 3 3 4 4 3 6 17 20 7 11 11 11 12 12 2 0 0 0 0 3 3 3 4 4 3 7 7 7 22 11 11 11 12 12 1 6 7 8 5 0 0 0 1 2 2 8 3 3 3 24 3 3 4 4 2 8 3 3 3 3 3 24 4 4 2 3 3 3 3 3 24 3 4 4 3 9 11 11 11 25 26 27 12 12 2 3 3 3 3 24 3 3 4 4 3 10 11 11 11 26 11 29 12 12 3 11 11 11 11 27 29 11 12 12 3 12 12 12 12 12 12 12 12 12 4 13 18 21 23 28 30 31 32 32 2 14 14 15 1 3 3 3 4 4 2 15 15 15 1 3 3 3 4 4 3 16 34 35 7 11 11 11 12 12 3 17 35 35 7 11 11 11 12 12 3 11 11 11 11 11 11 11 12 12 4 18 36 37 23 38 38 38 32 32 2 19 15 19 1 3 3 3 4 4 3 20 35 40 7 11 11 11 12 12 4 21 37 41 23 38 38 38 32 32 3 22 22 22 22 11 11 11 12 12 4 23 23 23 43 38 38 38 32 32 2 24 3 3 3 3 3 3 4 4 3 25 11 11 11 45 11 11 12 12 3 26 11 11 11 11 11 45 12 12 3 27 11 11 11 11 45 11 12 12 4 28 38 38 38 46 47 48 32 32 3 29 11 11 11 45 11 11 12 12 4 30 38 38 38 47 38 50 32 32 4 31 38 38 38 48 50 38 32 32 4 32 32 32 32 32 32 32 32 32 5 33 39 42 44 49 51 52 53 53 3 34 34 35 7 11 11 11 12 12 3 35 35 35 7 11 11 11 12 12 4 36 55 56 23 38 38 38 32 32 4 37 56 56 23 38 38 38 32 32 4 38 38 38 38 38 38 38 32 32 5 39 57 58 44 59 59 59 53 53 3 40 35 40 7 11 11 11 12 12 4 41 56 61 23 38 38 38 32 32 5 42 58 62 44 59 59 59 53 53 4 43 43 43 43 38 38 38 32 32 5 44 44 44 64 59 59 59 53 53 3 45 11 11 11 11 11 11 12 12 4 46 38 38 38 66 38 38 32 32 4 47 38 38 38 38 38 66 32 32 4 48 38 38 38 38 66 38 32 32 5 49 59 59 59 67 68 69 53 53 4 50 38 38 38 66 38 38 32 32 5 51 59 59 59 68 59 71 53 53 5 52 59 59 59 69 71 59 53 53 5 53 53 53 53 53 53 53 53 53 6 54 60 63 65 70 72 73 74 74 4 55 55 56 23 38 38 38 32 32 4 56 56 56 23 38 38 38 32 32 5 57 76 77 44 59 59 59 53 53 5 58 77 77 44 59 59 59 53 53 5 59 59 59 59 59 59 59 53 53 6 60 78 79 65 80 80 80 74 74 4 61 56 61 23 38 38 38 32 32 5 62 77 82 44 59 59 59 53 53 6 63 79 83 65 80 80 80 74 74 5 64 64 64 64 59 59 59 53 53 6 65 65 65 85 80 80 80 74 74 4 66 38 38 38 38 38 38 32 32 5 67 59 59 59 87 59 59 53 53 5 68 59 59 59 59 59 87 53 53 5 69 59 59 59 59 87 59 53 53 6 70 80 80 80 88 89 90 74 74 5 71 59 59 59 87 59 59 53 53 6 72 80 80 80 89 80 92 74 74 6 73 80 80 80 90 92 80 74 74 6 74 74 74 74 74 74 74 74 74 7 75 81 84 86 91 93 94 95 95 5 76 76 77 44 59 59 59 53 53 5 77 77 77 44 59 59 59 53 53 6 78 97 98 65 80 80 80 74 74 6 79 98 98 65 80 80 80 74 74 6 80 80 80 80 80 80 80 74 74 7 81 99 100 86 101 101 101 95 95 5 82 77 82 44 59 59 59 53 53 6 83 98 103 65 80 80 80 74 74 7 84 100 104 86 101 101 101 95 95 6 85 85 85 85 80 80 80 74 74 7 86 86 86 106 101 101 101 95 95 5 87 59 59 59 59 59 59 53 53 6 88 80 80 80 108 80 80 74 74 6 89 80 80 80 80 80 108 74 74 6 90 80 80 80 80 108 80 74 74 7 91 101 101 101 109 110 111 95 95 6 92 80 80 80 108 80 80 74 74 7 93 101 101 101 110 101 113 95 95 7 94 101 101 101 111 113 101 95 95 7 95 95 95 95 95 95 95 95 95 8 96 102 105 107 112 114 115 116 116 6 97 97 98 65 80 80 80 74 74 6 98 98 98 65 80 80 80 74 74 7 99 118 119 86 101 101 101 95 95 7 100 119 119 86 101 101 101 95 95 7 101 101 101 101 101 101 101 95 95 8 102 120 121 107 122 122 122 116 116 6 103 98 103 65 80 80 80 74 74 7 104 119 124 86 101 101 101 95 95 8 105 121 125 107 122 122 122 116 116 7 106 106 106 106 101 101 101 95 95 8 107 107 107 127 122 122 122 116 116 6 108 80 80 80 80 80 80 74 74 7 109 101 101 101 129 101 101 95 95 7 110 101 101 101 101 101 129 95 95 7 111 101 101 101 101 129 101 95 95 8 112 122 122 122 130 131 132 116 116 7 113 101 101 101 129 101 101 95 95 8 114 122 122 122 131 122 134 116 116 8 115 122 122 122 132 134 122 116 116 8 116 116 116 116 116 116 116 116 116 9 117 123 126 128 133 135 136 137 137
@TABLE n_states:9 neighborhood:Moore symmetries:permute
- 0: empty space
- 1: matter
- 2: antimatter
- 3: energy
- 4: photon 1
- 5: photon 2
- 6: photon 3
- 7: charged matter
- 8: charged antimatter
var a = {0,1,2} var b = a var c = b var d = c var e = d var f = e var g = f var h = g var i = {0,1,2,3,4,5,6} var j = i var k = j var l = k var m = l var n = m var o = n var p = o var q = {0,1,2,3,5,6} var r = q var s = r var t = s var u = t var v = {1,2} var w = {4,5,6} var x = {7,8} var y = x var z = y var aa = z var bb = aa var cc = bb var dd = cc var ee = dd
0, 1,1,2,a,b,c,d,e, 3
0, 1,2,2,a,b,c,d,e, 3
0, 1,1,1,a,b,c,d,e, 1
0, 2,2,2,a,b,c,d,e, 2
1, a,b,c,d,e,f,g,h, 0 1, 1,a,b,c,d,e,f,g, 0 1, 1,1,1,1,a,b,c,d, 0 1, 1,1,1,1,1,a,b,c, 0 1, 1,1,1,1,1,1,a,b, 0 1, 1,1,1,1,1,1,1,a, 0 1, 1,1,1,1,1,1,1,1, 0
2, a,b,c,d,e,f,g,h, 0 2, 2,a,b,c,d,e,f,g, 0 2, 2,2,2,2,a,b,c,d, 0 2, 2,2,2,2,2,a,b,c, 0 2, 2,2,2,2,2,2,a,b, 0 2, 2,2,2,2,2,2,2,a, 0 2, 2,2,2,2,2,2,2,2, 0
1, i,j,k,l,m,n,o,w, 7 2, i,j,k,l,m,n,o,w, 8
7, i,j,k,l,m,n,o,p, 1 8, i,j,k,l,m,n,o,p, 2
i, j,k,l,m,n,o,p,x, 0 i, j,k,l,m,n,o,y,x, 0 i, j,k,l,m,n,z,y,x, 0 i, j,k,l,m,aa,z,y,x, 0 i, j,k,l,bb,aa,z,y,x, 0 i, j,k,cc,bb,aa,z,y,x, 0 i, j,dd,cc,bb,aa,z,y,x, 0 i, ee,dd,cc,bb,aa,z,y,x, 0
v, 3,j,k,l,m,n,o,p, 0
v, 3,3,k,l,m,n,o,p, 0
v, 3,3,3,l,m,n,o,p, 0
v, 3,3,3,3,m,n,o,p, 0
v, 3,3,3,3,3,n,o,p, 0
v, 3,3,3,3,3,3,o,p, 0
v, 3,3,3,3,3,3,3,p, 0
v, 3,3,3,3,3,3,3,3, 0
3, i,j,k,l,m,n,o,p, 5 0, 3,a,b,c,d,e,f,g, 4
4, i,j,k,l,m,n,o,p, 0
5, i,j,k,l,m,n,o,p, 0
0, 4,0,0,0,0,0,0,0, 4 0, 4,4,0,0,0,0,0,0, 5 0, 4,4,4,0,0,0,0,0, 6
0, 4,5,0,0,0,0,0,0, 5 0, 4,5,6,0,0,0,0,0, 6
6, i,j,k,l,m,n,o,p, 0
@COLORS
1 0 192 254 2 254 64 0 3 254 254 254 4 254 0 254 5 192 0 128 6 128 0 192 7 153 204 254 8 254 153 153