Rule:BusyBeaver5
@RULE BusyBeaver5
@TABLE n_states:7 neighborhood:Moore symmetries:none var s={0,1,2,3,4,5,6} var t={0,1,2,3,4,5,6} var u={0,1,2,3,4,5,6} var v={0,1,2,3,4,5,6} var w={0,1,2,3,4,5,6} var x={0,1,2,3,4,5,6} var y={0,1,2,3,4,5,6} 2,s,t,u,v,0,w,x,y,0 0,2,s,t,u,v,w,x,y,1 0,s,t,2,0,u,v,w,x,3 2,s,t,u,v,1,w,x,y,0 1,2,s,t,u,v,w,x,y,1 0,s,t,u,v,w,1,2,x,4 3,s,t,u,v,0,w,x,y,0 0,3,s,t,u,v,w,x,y,1 0,s,t,3,0,u,v,w,x,4 3,s,t,u,v,1,w,x,y,0 1,3,s,t,u,v,w,x,y,1 0,s,t,3,1,u,v,w,x,3 4,s,t,u,v,0,w,x,y,0 0,4,s,t,u,v,w,x,y,1 0,s,t,4,0,u,v,w,x,5 4,s,t,u,v,1,w,x,y,0 1,4,s,t,u,v,w,x,y,0 0,s,t,u,v,w,1,4,x,6 5,s,t,u,v,0,w,x,y,0 0,5,s,t,u,v,w,x,y,1 0,s,t,u,v,w,0,5,x,2 5,s,t,u,v,1,w,x,y,0 1,5,s,t,u,v,w,x,y,1 0,s,t,u,v,w,1,5,x,5 6,s,t,u,v,0,w,x,y,6 0,6,s,t,u,v,w,x,y,0 6,s,t,u,v,1,w,x,y,0 1,6,s,t,u,v,w,x,y,0 0,s,t,u,v,w,1,6,x,2