Rule:CopperHeads2

From LifeWiki
Revision as of 22:11, 19 December 2019 by Dvgrn (talk | contribs) (Rule 'CopperHeads2' from auto-import project)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE CopperHeads2

https://conwaylife.com/forums/viewtopic.php?p=72919#p72928

@TREE

num_states=9 num_neighbors=8 num_nodes=302 1 0 1 2 3 4 5 6 7 8 2 0 0 0 0 0 0 0 0 0 3 1 1 1 1 1 1 1 1 1 4 2 2 2 2 2 2 2 2 2 5 3 3 3 3 3 3 3 3 3 1 0 3 2 3 4 5 3 7 8 2 0 0 0 0 5 0 0 0 0 1 1 1 2 3 4 5 6 7 8 1 0 1 2 0 4 5 6 7 8 2 0 0 7 0 8 0 0 7 0 1 6 1 2 0 4 5 6 7 8 2 0 7 0 0 0 0 10 0 0 2 5 8 0 0 0 0 8 0 0 2 0 0 10 0 8 0 0 10 0 3 6 9 11 1 12 1 13 11 1 4 14 2 2 2 2 2 2 2 2 5 15 3 3 3 3 3 3 3 3 6 4 4 16 4 4 4 4 16 4 1 5 1 2 3 0 2 6 7 8 2 0 0 18 0 0 0 0 18 0 3 19 1 1 1 1 1 1 1 1 4 20 2 2 2 2 2 2 2 2 5 21 3 3 3 3 3 3 3 3 6 4 22 4 4 4 4 4 4 4 3 6 1 1 1 1 1 1 1 1 3 9 1 1 1 1 1 1 1 1 3 11 1 1 1 1 1 1 1 1 3 12 1 1 1 1 1 1 1 1 3 13 1 1 1 1 1 1 1 1 4 24 25 26 2 27 2 28 26 2 5 29 3 3 3 3 3 3 3 3 1 1 1 2 0 4 5 6 7 8 2 0 0 31 0 0 0 0 31 0 1 0 3 2 0 4 5 3 7 8 2 0 0 33 0 0 0 0 33 0 2 0 0 10 0 0 0 0 10 0 3 1 32 1 34 1 1 35 1 1 3 32 1 1 1 1 1 1 1 1 2 0 0 8 0 0 0 0 8 0 3 34 1 1 38 1 1 1 1 1 3 35 1 1 1 1 1 1 1 1 4 36 37 2 39 2 2 40 2 2 5 41 3 3 3 3 3 3 3 3 2 0 0 7 0 0 0 0 7 0 2 0 0 5 0 0 0 0 5 0 1 6 1 2 3 4 5 6 7 8 2 0 0 45 0 0 0 0 45 0 3 1 43 1 44 1 1 46 1 1 1 0 1 2 3 4 5 1 7 8 1 0 6 2 3 4 5 6 7 8 2 0 0 48 0 0 0 0 49 0 3 50 1 1 1 1 1 1 1 1 4 47 37 2 51 2 2 40 2 2 5 52 3 3 3 3 3 3 3 3 1 0 3 2 3 4 5 6 7 8 2 0 0 54 0 0 0 0 54 0 3 55 1 1 1 1 1 1 1 1 4 56 2 2 2 2 2 2 2 2 5 57 3 3 3 3 3 3 3 3 1 0 1 2 3 4 5 3 7 8 2 0 0 59 0 0 0 0 59 0 3 60 1 1 1 1 1 1 1 1 4 61 2 2 2 2 2 2 2 2 5 62 3 3 3 3 3 3 3 3 6 30 4 42 4 53 58 4 42 63 1 0 1 4 3 4 5 6 4 8 2 0 0 65 0 0 0 0 65 0 1 0 1 2 3 4 5 6 4 8 2 0 0 67 0 0 0 0 65 0 3 1 66 1 1 1 1 68 1 1 2 0 0 65 0 0 0 0 0 0 3 1 68 1 1 1 1 70 1 1 4 2 69 2 2 2 2 71 2 2 5 3 3 3 3 72 3 3 3 3 6 4 4 4 73 4 4 4 4 4 3 1 32 1 50 1 1 35 1 1 3 43 1 1 1 1 1 1 1 1 3 44 1 1 1 1 1 1 1 1 3 46 1 1 1 1 1 1 1 1 4 75 76 2 77 2 2 78 2 2 5 79 3 3 3 3 3 3 3 3 6 4 4 80 4 4 4 4 80 4 6 4 4 58 4 4 4 4 58 4 1 8 1 2 3 0 5 6 7 7 2 0 0 83 0 0 0 0 83 0 3 84 1 1 1 1 1 1 1 1 4 85 2 2 2 2 2 2 2 2 5 86 3 3 3 3 3 3 3 3 6 4 4 4 4 4 4 87 4 4 6 4 4 63 4 4 4 4 63 4 7 17 23 64 74 81 82 88 64 89 2 18 0 0 0 0 0 0 0 0 3 1 1 91 1 1 1 1 91 1 4 92 2 2 2 2 2 2 2 2 5 93 3 3 3 3 3 3 3 3 6 4 94 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 7 95 96 96 96 96 96 96 96 96 2 5 0 0 0 0 0 0 0 0 3 1 1 1 1 98 1 1 1 1 4 99 2 2 2 2 2 2 2 2 2 7 0 0 0 0 0 0 0 0 2 8 0 0 0 0 0 0 0 0 3 1 1 101 1 102 1 1 101 1 4 103 2 2 2 2 2 2 2 2 2 10 0 0 0 0 0 0 0 0 3 1 101 1 1 1 1 105 1 1 4 106 2 2 2 2 2 2 2 2 3 98 102 1 1 1 1 102 1 1 4 108 2 2 2 2 2 2 2 2 3 1 1 105 1 102 1 1 105 1 4 110 2 2 2 2 2 2 2 2 5 100 104 107 3 109 3 111 107 3 2 0 31 0 33 0 0 10 0 0 3 1 1 113 1 1 1 1 113 1 4 114 2 2 2 2 2 2 2 2 2 31 0 0 0 0 0 0 0 0 3 1 1 116 1 1 1 1 116 1 4 117 2 2 2 2 2 2 2 2 2 33 0 0 8 0 0 0 0 0 3 1 1 119 1 1 1 1 119 1 4 120 2 2 2 2 2 2 2 2 3 1 1 105 1 1 1 1 105 1 4 122 2 2 2 2 2 2 2 2 5 115 118 3 121 3 3 123 3 3 2 0 7 0 5 0 0 45 0 0 3 1 1 125 1 1 1 1 125 1 4 126 2 2 2 2 2 2 2 2 2 48 0 0 0 0 0 0 0 0 2 49 0 0 0 0 0 0 0 0 3 1 1 128 1 1 1 1 129 1 4 130 2 2 2 2 2 2 2 2 5 127 118 3 131 3 3 123 3 3 2 54 0 0 0 0 0 0 0 0 3 1 1 133 1 1 1 1 133 1 4 134 2 2 2 2 2 2 2 2 5 135 3 3 3 3 3 3 3 3 2 59 0 0 0 0 0 0 0 0 3 1 1 137 1 1 1 1 137 1 4 138 2 2 2 2 2 2 2 2 5 139 3 3 3 3 3 3 3 3 6 112 4 124 4 132 136 4 124 140 7 141 96 96 96 96 96 96 96 96 2 0 65 0 0 0 0 67 0 0 2 0 65 0 0 0 0 65 0 0 3 1 1 143 1 1 1 1 144 1 4 2 2 2 2 145 2 2 2 2 2 0 67 0 0 0 0 65 0 0 2 0 65 0 0 0 0 0 0 0 3 1 1 147 1 1 1 1 148 1 4 2 2 2 2 149 2 2 2 2 5 3 146 3 3 3 3 150 3 3 6 4 4 4 151 4 4 4 4 4 7 152 96 96 96 96 96 96 96 96 2 0 31 0 48 0 0 10 0 0 2 0 31 0 49 0 0 10 0 0 3 1 1 154 1 1 1 1 155 1 4 156 2 2 2 2 2 2 2 2 3 1 1 101 1 1 1 1 101 1 4 158 2 2 2 2 2 2 2 2 3 1 1 98 1 1 1 1 98 1 4 160 2 2 2 2 2 2 2 2 2 45 0 0 0 0 0 0 0 0 3 1 1 162 1 1 1 1 162 1 4 163 2 2 2 2 2 2 2 2 5 157 159 3 161 3 3 164 3 3 6 4 4 165 4 4 4 4 165 4 7 166 96 96 96 96 96 96 96 96 6 4 4 136 4 4 4 4 136 4 7 168 96 96 96 96 96 96 96 96 2 83 0 0 0 0 0 0 0 0 3 1 1 170 1 1 1 1 170 1 4 171 2 2 2 2 2 2 2 2 5 172 3 3 3 3 3 3 3 3 6 4 4 4 4 4 4 173 4 4 7 174 96 96 96 96 96 96 96 96 6 4 4 140 4 4 4 4 140 4 7 176 96 96 96 96 96 96 96 96 8 90 97 142 153 167 169 175 142 177 3 91 1 1 1 1 1 1 1 1 4 2 2 179 2 2 2 2 179 2 5 180 3 3 3 3 3 3 3 3 6 181 4 4 4 4 4 4 4 4 7 96 182 96 96 96 96 96 96 96 4 179 2 2 2 2 2 2 2 2 5 3 3 184 3 3 3 3 184 3 6 185 4 4 4 4 4 4 4 4 7 186 96 96 96 96 96 96 96 96 7 96 96 96 96 96 96 96 96 96 8 183 187 188 188 188 188 188 188 188 3 98 1 1 1 1 1 1 1 1 4 2 2 2 2 190 2 2 2 2 3 101 1 1 1 1 1 1 1 1 3 102 1 1 1 1 1 1 1 1 4 2 2 192 2 193 2 2 192 2 3 105 1 1 1 1 1 1 1 1 4 2 192 2 2 2 2 195 2 2 4 190 193 2 2 2 2 193 2 2 4 2 2 195 2 193 2 2 195 2 5 191 194 196 3 197 3 198 196 3 6 199 4 4 4 4 4 4 4 4 3 113 1 1 1 1 1 1 1 1 4 2 2 201 2 2 2 2 201 2 3 116 1 1 1 1 1 1 1 1 4 2 2 203 2 2 2 2 203 2 3 119 1 1 1 1 1 1 1 1 4 2 2 205 2 2 2 2 205 2 4 2 2 195 2 2 2 2 195 2 5 202 204 3 206 3 3 207 3 3 6 208 4 4 4 4 4 4 4 4 3 125 1 1 1 1 1 1 1 1 4 2 2 210 2 2 2 2 210 2 3 128 1 1 1 1 1 1 1 1 3 129 1 1 1 1 1 1 1 1 4 2 2 212 2 2 2 2 213 2 5 211 204 3 214 3 3 207 3 3 6 215 4 4 4 4 4 4 4 4 3 133 1 1 1 1 1 1 1 1 4 2 2 217 2 2 2 2 217 2 5 218 3 3 3 3 3 3 3 3 6 219 4 4 4 4 4 4 4 4 3 137 1 1 1 1 1 1 1 1 4 2 2 221 2 2 2 2 221 2 5 222 3 3 3 3 3 3 3 3 6 223 4 4 4 4 4 4 4 4 7 200 96 209 96 216 220 96 209 224 2 33 0 0 0 0 0 0 0 0 3 1 116 1 226 1 1 105 1 1 3 226 1 1 102 1 1 1 1 1 4 227 203 2 228 2 2 195 2 2 5 3 3 229 3 3 3 3 229 3 6 230 4 4 4 4 4 4 4 4 7 231 96 96 96 96 96 96 96 96 3 1 101 1 98 1 1 162 1 1 4 233 203 2 212 2 2 195 2 2 4 233 203 2 213 2 2 195 2 2 5 3 3 234 3 3 3 3 235 3 6 236 4 4 4 4 4 4 4 4 7 237 96 96 96 96 96 96 96 96 4 217 2 2 2 2 2 2 2 2 5 3 3 239 3 3 3 3 239 3 6 240 4 4 4 4 4 4 4 4 7 241 96 96 96 96 96 96 96 96 4 221 2 2 2 2 2 2 2 2 5 3 3 243 3 3 3 3 243 3 6 244 4 4 4 4 4 4 4 4 7 245 96 96 96 96 96 96 96 96 8 225 188 232 188 238 242 188 232 246 3 1 1 1 1 143 1 1 1 1 3 1 1 1 1 144 1 1 1 1 4 2 2 248 2 2 2 2 249 2 3 1 1 1 1 147 1 1 1 1 3 1 1 1 1 148 1 1 1 1 4 2 2 251 2 2 2 2 252 2 5 3 250 3 3 3 3 253 3 3 6 254 4 4 4 4 4 4 4 4 7 96 96 96 255 96 96 96 96 96 2 0 0 0 0 65 0 0 0 0 2 0 0 0 0 67 0 0 0 0 3 1 257 1 1 1 1 258 1 1 3 1 258 1 1 1 1 257 1 1 4 2 259 2 2 2 2 260 2 2 3 1 257 1 1 1 1 257 1 1 3 1 257 1 1 1 1 1 1 1 4 2 262 2 2 2 2 263 2 2 5 3 3 261 3 3 3 3 264 3 6 265 4 4 4 4 4 4 4 4 7 266 96 96 96 96 96 96 96 96 8 256 188 188 267 188 188 188 188 188 3 154 1 1 1 1 1 1 1 1 3 155 1 1 1 1 1 1 1 1 4 2 2 269 2 2 2 2 270 2 4 2 2 192 2 2 2 2 192 2 4 2 2 190 2 2 2 2 190 2 3 162 1 1 1 1 1 1 1 1 4 2 2 274 2 2 2 2 274 2 5 271 272 3 273 3 3 275 3 3 6 276 4 4 4 4 4 4 4 4 7 96 96 277 96 96 96 96 277 96 3 1 116 1 128 1 1 105 1 1 4 279 192 2 190 2 2 274 2 2 3 1 116 1 129 1 1 105 1 1 4 281 192 2 190 2 2 274 2 2 5 3 3 280 3 3 3 3 282 3 6 283 4 4 4 4 4 4 4 4 7 284 96 96 96 96 96 96 96 96 8 278 188 285 188 188 188 188 285 188 7 96 96 220 96 96 96 96 220 96 8 287 188 242 188 188 188 188 242 188 3 170 1 1 1 1 1 1 1 1 4 2 2 289 2 2 2 2 289 2 5 290 3 3 3 3 3 3 3 3 6 291 4 4 4 4 4 4 4 4 7 96 96 96 96 96 96 292 96 96 4 289 2 2 2 2 2 2 2 2 5 3 3 294 3 3 3 3 294 3 6 295 4 4 4 4 4 4 4 4 7 296 96 96 96 96 96 96 96 96 8 293 188 188 188 188 188 297 188 188 7 96 96 224 96 96 96 96 224 96 8 299 188 246 188 188 188 188 246 188 9 178 189 247 268 286 288 298 247 300

@TABLE n_states:9 neighborhood:Moore symmetries:rotate4reflect

0,0,1,2,1,0,0,0,0,5 0,1,2,2,2,0,0,0,0,1 0,1,7,2,2,0,0,0,0,1 0,1,2,7,2,0,0,0,0,1 0,1,7,7,2,0,0,0,0,1 0,1,2,2,7,0,0,0,0,1 0,1,7,2,7,0,0,0,0,1 0,1,2,7,7,0,0,0,0,1 0,1,7,7,7,0,0,0,0,1 0,1,2,2,0,0,0,0,0,1 0,1,7,2,0,0,0,0,0,1 0,1,2,7,0,0,0,0,0,1 0,1,7,7,0,0,0,0,0,1 0,1,2,2,4,0,0,0,0,1 0,1,7,2,4,0,0,0,0,1 0,1,2,7,4,0,0,0,0,1 0,1,7,7,4,0,0,0,0,1 1,0,2,2,2,3,0,0,0,3 1,0,7,2,2,3,0,0,0,3 1,0,2,7,2,3,0,0,0,3 1,0,7,7,2,3,0,0,0,3 1,0,2,2,7,3,0,0,0,3 1,0,7,2,7,3,0,0,0,3 1,0,2,7,7,3,0,0,0,3 1,0,7,7,7,3,0,0,0,3 3,1,2,2,2,0,0,0,0,0 3,1,7,2,2,0,0,0,0,0 3,1,2,7,2,0,0,0,0,0 3,1,7,7,2,0,0,0,0,0 3,1,2,2,7,0,0,0,0,0 3,1,7,2,7,0,0,0,0,0 3,1,2,7,7,0,0,0,0,0 3,1,7,7,7,0,0,0,0,0 1,0,5,2,2,0,0,0,0,3 1,0,5,7,2,0,0,0,0,3 1,0,5,2,7,0,0,0,0,3 1,0,5,7,7,0,0,0,0,3 5,0,1,2,1,0,0,0,0,2 5,0,1,7,1,0,0,0,0,2 4,0,1,2,1,0,0,0,0,0 4,0,1,7,1,0,0,0,0,0 2,4,0,1,3,2,3,1,0,4 7,4,0,1,3,2,3,1,0,4 7,4,0,6,3,2,3,1,0,4 2,4,0,1,3,7,3,1,0,4 2,4,0,6,3,7,3,1,0,4 7,4,0,1,3,7,3,1,0,4 7,4,0,6,3,7,3,1,0,4 0,2,4,1,0,0,0,0,2,1 0,7,4,1,0,0,0,0,2,1 0,2,4,1,0,0,0,0,7,1 0,7,4,1,0,0,0,0,7,1 1,3,4,2,2,0,0,0,0,3 1,3,4,7,2,0,0,0,0,3 1,3,4,2,7,0,0,0,0,3 1,3,4,7,7,0,0,0,0,3 3,1,2,4,0,0,0,0,0,0 3,1,7,4,0,0,0,0,0,0 1,4,2,0,0,0,0,0,0,3 1,4,7,0,0,0,0,0,0,3 3,1,2,2,4,0,0,0,0,0 3,1,7,2,4,0,0,0,0,0 3,1,2,7,4,0,0,0,0,0 3,1,7,7,4,0,0,0,0,0 6,3,2,2,2,0,0,0,0,3 6,3,7,2,2,0,0,0,0,3 6,3,2,7,2,0,0,0,0,3 6,3,7,7,2,0,0,0,0,3 6,3,2,2,7,0,0,0,0,3 6,3,7,2,7,0,0,0,0,3 6,3,2,7,7,0,0,0,0,3 6,3,7,7,7,0,0,0,0,3 0,6,2,2,2,0,0,0,0,6 0,6,7,2,2,0,0,0,0,6 0,6,2,7,2,0,0,0,0,6 0,6,7,7,2,0,0,0,0,6 0,6,2,2,7,0,0,0,0,6 0,6,7,2,7,0,0,0,0,6 0,6,2,7,7,0,0,0,0,6 0,6,7,7,7,0,0,0,0,6 0,6,2,2,0,0,0,0,0,6 0,6,7,2,0,0,0,0,0,6 0,6,2,7,0,0,0,0,0,6 0,6,7,7,0,0,0,0,0,6 3,3,2,2,2,0,0,0,0,0 3,3,7,2,2,0,0,0,0,0 3,3,2,7,2,0,0,0,0,0 3,3,7,7,2,0,0,0,0,0 3,3,2,2,7,0,0,0,0,0 3,3,7,2,7,0,0,0,0,0 3,3,2,7,7,0,0,0,0,0 3,3,7,7,7,0,0,0,0,0 3,3,2,2,2,3,0,0,0,0 3,3,7,2,2,3,0,0,0,0 3,3,2,7,2,3,0,0,0,0 3,3,7,7,2,3,0,0,0,0 3,3,2,2,7,3,0,0,0,0 3,3,7,2,7,3,0,0,0,0 3,3,2,7,7,3,0,0,0,0 3,3,7,7,7,3,0,0,0,0 3,6,2,2,4,0,0,0,0,0 3,6,7,2,4,0,0,0,0,0 3,6,2,7,4,0,0,0,0,0 3,6,7,7,4,0,0,0,0,0 3,6,2,2,2,0,0,0,0,0 3,6,7,2,2,0,0,0,0,0 3,6,2,7,2,0,0,0,0,0 3,6,7,7,2,0,0,0,0,0 3,6,2,2,7,0,0,0,0,0 3,6,7,2,7,0,0,0,0,0 3,6,2,7,7,0,0,0,0,0 3,6,7,7,7,0,0,0,0,0 3,6,2,2,0,0,0,0,0,0 3,6,7,2,0,0,0,0,0,0 3,6,2,7,0,0,0,0,0,0 3,6,7,7,0,0,0,0,0,0 0,0,6,2,6,0,0,0,0,8 0,0,6,7,6,0,0,0,0,8 6,0,8,7,2,0,0,0,0,3 6,0,8,2,7,0,0,0,0,3 6,0,8,7,7,0,0,0,0,3 6,0,8,2,2,0,0,0,0,3 8,0,6,2,6,0,0,0,0,7 8,0,6,7,6,0,0,0,0,7 3,0,7,2,2,6,0,0,0,0 3,0,7,7,2,6,0,0,0,0 3,0,7,2,7,6,0,0,0,0 3,0,7,7,7,6,0,0,0,0 0,6,2,2,4,0,0,0,0,6 0,6,7,2,4,0,0,0,0,6 0,6,2,7,4,0,0,0,0,6 0,6,7,7,4,0,0,0,0,6 4,0,6,2,6,0,0,0,0,0 4,0,6,7,6,0,0,0,0,0 2,4,0,6,3,2,3,6,0,4 7,4,0,6,3,2,3,6,0,4 6,4,2,0,0,0,0,0,0,3 6,4,7,0,0,0,0,0,0,3 0,6,4,2,2,0,0,0,0,6 0,6,4,7,2,0,0,0,0,6 0,6,4,2,7,0,0,0,0,6 0,6,4,7,7,0,0,0,0,6 6,3,4,2,2,0,0,0,0,3 6,3,4,7,2,0,0,0,0,3 6,3,4,2,7,0,0,0,0,3 6,3,4,7,2,0,0,0,0,3 3,6,2,4,0,0,0,0,0,0 3,6,7,4,0,0,0,0,0,0 6,0,4,2,2,3,0,0,0,1 #special case 6,0,4,2,7,3,0,0,0,1 #special case 1,0,4,7,2,3,0,0,0,6 #special case 1,0,4,7,7,3,0,0,0,6 # special case 0,0,1,7,1,0,0,0,0,5 6,3,4,7,7,0,0,0,0,3

@COLORS 0 48 48 48 1 255 0 0 2 0 255 0 3 255 255 0 4 255 255 255 5 0 0 255 6 255 0 255 7 0 255 255 8 0 100 255