Rule:Devore2

From LifeWiki
Revision as of 20:12, 18 November 2019 by Rowett (talk | contribs) (Created page with "@RULE Devore2 @TABLE # Rules file for Devore's cellular automaton # (a variation on Codd's CA) # # See patterns in Patterns/Codd/Devore/ # # Devore,J. and Hightower,R. (1992...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE Devore2

@TABLE

  1. Rules file for Devore's cellular automaton
  2. (a variation on Codd's CA)
  3. See patterns in Patterns/Codd/Devore/
  4. Devore,J. and Hightower,R. (1992)
  5. The Devore variation of the Codd self-replicating computer,
  6. Third Workshop on Artificial Life, Santa Fe, New Mexico,
  7. Original work carried out in the 1970s though apparently never published.
  8. Reported by John R. Koza, "Artificial life: spontaneous emergence of
  9. self-replicating and evolutionary self-improving computer programs,"
  10. in Christopher G. Langton, Artificial Life III, Proc. Volume XVII
  11. Santa Fe Institute Studies in the Sciences of Complexity,
  12. Addison-Wesley Publishing Company, New York, 1994, p. 260.
  13. The Devore2 ruleset was created by Elliott Mahler to fix bugs/oversights with the Devore ruleset.
  14. Many are sheathing problems, but a few signal propagation bugs are also included.
  15. Changes from the original are marked with comments.
  16. To see examples of each problem, see Patterns/Self-Rep/Devore/rule-fixes.rle

n_states:8 neighborhood:vonNeumann symmetries:rotate4

var a={4,5}

0,0,0,0,4,0 # j 0,0,0,0,5,0 0,0,0,0,6,2 0,0,0,1,4,0 0,0,0,1,6,2 0,0,0,2,5,2 0,0,0,2,6,2 0,0,0,3,5,0 0,0,0,4,1,0 0,0,0,4,2,2 0,0,0,6,1,2 0,0,0,6,2,2 0,0,0,6,6,2 0,0,1,0,4,0 0,0,1,0,5,0 0,0,1,0,6,2 0,0,1,0,7,3 0,0,1,1,6,2 0,0,1,6,1,2 # addition from original. fixes problem D 0,0,1,6,2,2 0,0,1,6,6,2 0,0,2,0,6,2 0,0,2,1,3,1 0,0,2,1,6,2 # addition from original. fixes problem E 0,0,2,2,6,2 0,0,2,6,1,2 0,0,2,6,2,2 0,0,2,6,6,2 0,0,2,7,2,1 0,0,2,7,3,0 0,0,3,0,7,0 0,0,3,1,2,1 0,0,3,6,3,1 0,0,3,7,2,0 0,0,6,1,2,2 # addition from originl. fixes problem G 0,0,6,2,2,2 0,0,6,6,1,2 0,0,6,6,2,2 0,1,1,1,6,2 0,1,1,2,3,1 # addition from original. fixes problem U 0,1,1,2,4,1 0,1,1,2,5,1 0,1,1,2,6,1 0,1,1,2,7,1 0,1,1,4,2,1 0,1,1,5,2,1 0,1,1,6,2,1 0,1,1,6,6,3 0,1,1,7,2,1 0,1,1,7,3,1 0,1,2,1,2,1 0,1,2,1,3,1 0,1,2,1,4,1 0,1,2,1,5,1 0,1,2,1,6,1 0,1,2,1,7,1 0,1,2,2,2,7 0,1,2,2,3,1 0,1,2,2,4,1 0,1,2,2,5,1 0,1,2,2,6,1 0,1,2,2,7,1 0,1,2,3,2,6 0,1,2,3,5,1 0,1,2,4,2,1 0,1,2,4,3,1 0,1,2,4,4,1 0,1,2,5,2,1 0,1,2,5,3,1 0,1,2,5,5,1 0,1,2,6,2,1 0,1,2,6,6,1 0,1,2,7,2,1 0,1,2,7,3,1 0,1,2,7,7,1 0,1,3,2,2,1 0,1,3,2,4,1 0,1,3,2,5,1 # addition from original. fixes problem X 0,1,3,2,6,1 # addition from original. fixes problem Z 0,1,3,2,7,1 # addition from original. fixes problem Y 0,1,3,3,3,7 # addition from original. fixes problem W 0,1,3,4,2,1 0,1,3,4,3,1 0,1,3,4,4,1 0,1,3,5,2,1 0,1,3,6,2,1 0,1,3,7,2,1 0,1,3,7,3,1 0,1,4,2,2,1 0,1,4,2,3,1 0,1,4,2,4,1 0,1,4,3,2,1 0,1,4,3,3,1 0,1,4,4,2,1 0,1,5,2,2,1 0,1,5,2,3,1 0,1,5,2,5,1 0,1,5,2,6,1 #addition from original. fixes problem V 0,1,5,3,2,1 0,1,5,5,2,1 0,1,6,2,2,1 0,1,6,2,3,1 0,1,6,2,6,1 0,1,6,6,2,1 0,1,6,6,6,3 0,1,7,2,2,1 0,1,7,2,3,1 0,1,7,2,7,1 0,1,7,7,2,1 0,2,2,2,6,2 0,2,2,6,6,2 0,2,3,2,6,1 0,2,6,6,6,2 0,3,3,3,7,1 # addition from original. fixes problem W 1,0,0,0,4,0 1,0,0,0,5,0 1,0,0,0,6,6 1,0,0,0,7,3 1,0,0,1,4,0 1,0,0,1,5,3 1,0,0,1,6,6 1,0,0,1,7,2 1,0,0,2,4,4 1,0,0,2,6,6 1,0,0,3,6,2 1,0,0,4,1,0 #addition from original. fixes problem S 1,0,0,5,1,3 1,0,0,5,2,5 1,0,0,6,1,6 1,0,0,6,2,6 1,0,0,6,3,2 1,0,0,6,6,6 1,0,0,7,1,2 1,0,1,0,4,0 1,0,1,0,5,0 1,0,1,0,6,6 1,0,1,0,7,2 1,0,1,1,6,6 1,0,1,2,6,6 1,0,1,4,1,0 #addition from original. fixes problem T 1,0,1,6,1,6 1,0,1,6,2,6 1,0,1,6,6,6 1,0,2,2,6,6 1,0,2,5,2,5 1,0,2,6,1,6 1,0,2,6,2,6 1,0,2,6,6,6 1,0,2,7,2,7 1,0,3,5,2,5 1,0,6,0,6,6 1,0,6,1,1,6 1,0,6,1,2,6 # addition from original. fixes problem F 1,0,6,1,6,6 1,0,6,2,1,6 1,0,6,2,2,6 1,0,6,2,6,6 1,0,6,6,1,6 1,0,6,6,2,6 # addition from original. fixed problem C 1,0,6,6,6,6 1,1,1,1,4,0 1,1,1,1,5,6 1,1,1,1,6,6 1,1,1,2,4,4 1,1,1,2,5,5 1,1,1,2,6,6 1,1,1,2,7,7 1,1,1,4,2,4 1,1,1,5,2,5 1,1,1,6,2,6 1,1,1,6,6,6 1,1,1,7,2,7 1,1,2,1,4,4 1,1,2,1,5,5 1,1,2,1,6,6 1,1,2,1,7,7 1,1,2,2,4,4 1,1,2,2,5,5 1,1,2,2,6,6 1,1,2,2,7,7 1,1,2,3,5,5 1,1,2,4,2,4 1,1,2,4,3,1 1,1,2,4,4,3 1,1,2,5,2,5 1,1,2,5,3,1 1,1,2,5,5,3 1,1,2,6,2,6 1,1,2,6,3,1 1,1,2,6,6,3 1,1,2,7,2,7 1,1,2,7,3,1 1,1,2,7,7,3 1,1,3,4,2,1 1,1,3,4,3,7 1,1,3,5,2,1 1,1,3,5,3,7 1,1,3,6,2,1 1,1,3,6,3,7 1,1,3,7,2,1 1,1,3,7,3,7 1,1,3,7,6,7 1,1,3,7,7,1 1,1,4,2,2,4 1,1,4,2,4,5 1,1,4,3,2,4 1,1,4,4,2,4 1,1,5,2,2,5 1,1,5,2,5,6 1,1,5,5,2,5 1,1,6,2,2,6 1,1,6,2,6,6 # addition from original. fixes problem A 1,1,6,6,2,6 1,1,6,7,2,1 1,1,7,2,2,7 1,1,7,2,7,4 1,1,7,7,2,7 1,2,2,2,3,3 1,2,2,2,4,4 1,2,2,2,5,5 1,2,2,2,6,6 1,2,2,2,7,7 1,2,2,3,5,5 1,2,2,3,6,6 1,2,2,4,3,4 1,2,2,4,4,1 1,2,2,5,3,5 1,2,2,5,5,1 1,2,2,6,3,6 1,2,2,6,6,1 1,2,2,7,7,1 1,2,3,2,4,4 1,2,3,2,5,5 1,2,3,2,6,6 1,2,3,2,7,7 1,2,3,6,3,6 1,2,3,7,3,7 1,2,5,3,3,5 1,2,6,2,6,6 1,2,6,6,6,6 # addition from original. fixes problem B 1,3,3,3,6,6 1,3,3,3,7,7 # addition from original. fixes problem W 2,0,0,0,4,2 2,0,0,0,5,2 2,0,0,0,6,0 2,0,0,0,7,1 2,0,0,1,4,2 2,0,0,1,5,2 2,0,0,1,6,2 2,0,0,1,7,1 2,0,0,2,4,2 2,0,0,2,5,3 2,0,0,2,6,2 2,0,0,2,7,2 2,0,0,3,4,2 2,0,0,3,5,2 2,0,0,3,6,2 2,0,0,3,7,2 2,0,0,4,1,2 2,0,0,4,2,3 2,0,0,5,1,2 2,0,0,5,2,2 2,0,0,5,3,2 2,0,0,6,1,2 2,0,0,6,2,2 2,0,0,6,3,2 2,0,0,7,1,1 2,0,0,7,2,2 2,0,0,7,3,2 2,0,1,0,4,2 2,0,1,0,5,2 2,0,1,0,6,0 2,0,1,0,7,1 2,0,1,1,4,2 2,0,1,1,5,2 2,0,1,1,6,2 2,0,1,1,7,1 2,0,1,4,1,2 2,0,1,4,2,3 2,0,1,5,1,2 2,0,1,5,2,2 2,0,1,5,3,2 2,0,1,6,1,2 2,0,1,6,2,2 2,0,1,7,1,1 2,0,1,7,2,2 2,0,2,0,6,2 2,0,2,0,7,3 2,0,2,1,4,2 2,0,2,1,5,2 2,0,2,1,6,2 2,0,2,1,7,2 2,0,2,2,4,2 2,0,2,2,5,2 2,0,2,2,6,2 2,0,2,2,7,2 2,0,2,4,1,2 2,0,2,4,2,2 2,0,2,4,3,2 2,0,2,5,1,3 2,0,2,5,2,2 2,0,2,5,3,2 2,0,2,6,1,2 2,0,2,6,2,2 2,0,2,6,3,2 2,0,2,6,6,2 2,0,2,7,1,2 2,0,2,7,2,2 2,0,2,7,3,2 2,0,2,7,7,2 2,0,3,0,6,3 2,0,3,0,7,3 2,0,3,1,6,2 2,0,3,1,7,2 2,0,3,4,1,2 2,0,3,4,2,2 2,0,3,4,3,2 2,0,3,5,2,2 2,0,3,5,3,2 2,0,3,6,2,2 2,0,3,7,1,2 2,0,3,7,2,2 2,0,3,7,3,2 2,0,4,1,2,2 2,0,4,2,2,2 2,0,5,1,2,2 2,0,5,2,2,2 2,0,6,1,2,2 2,0,6,1,3,2 2,0,6,2,2,2 2,0,6,6,2,2 2,0,7,1,2,2 2,0,7,2,2,2 2,0,7,3,2,2 2,0,7,7,2,2 2,1,1,1,4,2 2,1,1,1,5,2 2,1,1,1,6,5 2,1,1,1,7,1 2,1,1,6,2,2 2,1,2,2,4,2 2,1,2,2,5,2 2,1,2,2,6,2 2,1,2,2,7,2 2,1,2,3,2,3 2,1,2,3,4,2 2,1,2,3,5,2 2,1,2,3,6,2 2,1,2,3,7,2 2,1,3,2,6,2 2,1,3,2,7,2 2,1,4,2,2,2 2,1,5,2,2,2 2,1,5,3,2,2 2,1,5,3,3,2 2,1,6,2,2,2 2,1,6,2,3,2 2,1,6,3,2,2 2,1,7,2,2,2 2,1,7,2,3,2 2,1,7,3,2,2 2,1,7,7,2,2 2,2,2,2,4,2 2,2,2,2,5,2 2,2,2,2,6,2 2,2,2,2,7,2 2,2,2,3,4,2 2,2,2,4,3,2 2,2,2,4,4,2 2,2,2,5,3,2 2,2,2,5,5,2 2,2,2,6,3,2 2,2,2,6,6,2 2,2,2,6,7,2 2,2,2,7,3,2 2,2,2,7,6,2 2,2,2,7,7,2 2,2,3,7,6,2 2,2,3,7,7,2 2,2,6,7,3,2 2,2,7,7,3,2 3,0,0,0,2,2 3,0,0,0,4,3 3,0,0,0,5,3 3,0,0,0,6,1 3,0,0,1,1,1 3,0,0,2,5,1 3,0,0,2,6,0 3,0,0,2,7,0 3,0,0,4,2,1 3,0,0,5,2,3 3,0,0,6,2,0 3,0,0,7,2,0 3,0,1,0,2,2 3,0,1,0,3,2 3,0,1,0,4,3 3,0,1,0,5,3 3,0,1,0,6,4 3,0,1,0,7,7 3,0,1,1,1,1 3,0,1,5,2,3 3,0,1,6,2,0 3,0,1,7,2,0 3,0,2,6,1,0 3,0,2,7,1,0 3,1,1,1,1,1 3,1,1,1,2,1 3,1,1,1,3,1 3,1,1,7,2,7 3,1,2,3,2,2 3,2,2,2,7,3 4,0,0,0,1,0 4,0,0,0,2,1 4,0,0,2,1,0 4,0,1,0,2,0 4,0,1,1,2,0 4,0,1,2,1,0 4,0,1,2,2,0 4,0,2,1,1,0 4,0,2,1,2,0 4,0,2,2,1,0 4,0,2,2,2,1 4,0,2,3,2,1 4,0,3,2,2,1 5,0,0,0,2,1 5,0,0,2,1,0 5,0,1,0,2,0 5,0,1,1,1,0 5,0,1,1,2,0 5,0,1,2,1,0 5,0,1,2,2,0 5,0,2,0,2,1 5,0,2,1,1,0 5,0,2,1,2,0 5,0,2,2,1,0 5,0,2,2,2,1 5,0,2,2,3,1 5,0,3,2,2,1 5,0,3,3,2,1 6,0,0,0,0,1 6,0,0,0,1,0 6,0,0,0,2,1 6,0,0,1,1,0 6,0,0,1,2,0 6,0,0,2,1,0 6,0,0,2,2,1 6,0,1,0,1,0 6,0,1,0,2,0 6,0,1,1,1,0 6,0,1,1,2,0 6,0,1,2,1,0 6,0,1,2,2,0 6,0,2,0,2,1 6,0,2,1,1,0 6,0,2,1,2,0 6,0,2,2,1,0 6,0,2,2,2,1 6,0,2,2,3,0 6,0,2,3,2,0 6,0,3,2,2,0 6,0,3,2,3,0 6,0,3,3,3,0 6,1,2,3,2,0 7,0,0,0,1,0 7,0,0,1,3,0 7,0,0,2,1,0 7,0,1,1,2,0 7,0,1,2,1,0 7,0,1,2,2,0 7,0,2,0,2,1 7,0,2,1,1,0 7,0,2,1,2,0 7,0,2,2,1,0 7,0,2,2,2,1 7,0,2,3,2,0 7,0,3,1,3,0 7,0,3,2,3,0 7,0,3,3,3,0 # addition from original. fixes problem W 7,1,3,3,3,0 # addition from original. fixes problem W 7,1,2,2,2,0

  1. End of ruleset

@TREE

num_states=8 num_neighbors=4 num_nodes=300 1 0 1 2 3 4 5 1 7 1 0 1 2 3 0 5 0 0 1 0 1 2 2 1 1 1 7 1 0 1 2 3 4 5 6 7 1 0 0 2 3 4 5 6 7 1 2 6 0 1 4 5 6 7 1 0 3 1 3 4 5 6 7 2 0 1 2 3 4 4 5 6 1 0 1 2 1 4 5 0 7 1 0 1 2 3 4 5 0 7 1 0 1 2 3 4 5 6 0 1 0 3 2 3 4 5 6 7 1 2 6 2 3 4 5 6 7 1 0 2 1 3 4 5 6 7 2 1 8 9 10 4 11 12 13 1 0 1 2 3 0 0 0 0 1 0 4 2 3 4 5 6 7 1 2 1 3 1 4 5 6 7 1 2 6 2 0 4 5 6 7 1 0 1 2 0 4 5 6 7 2 2 15 0 3 16 17 18 19 1 0 2 2 3 4 5 6 7 2 3 3 3 3 3 3 21 3 2 4 4 17 3 3 3 3 3 1 0 5 2 3 4 5 6 7 2 4 11 24 3 3 3 3 3 2 5 12 18 21 3 3 12 3 2 6 13 19 3 3 3 3 3 3 7 14 20 22 23 25 26 27 2 1 8 15 3 4 11 12 13 1 0 1 2 1 4 0 0 7 1 0 1 1 3 4 5 6 7 2 9 30 15 3 4 3 12 31 1 0 1 2 2 0 0 0 7 1 0 1 3 3 4 5 6 7 2 33 15 15 3 3 34 18 19 1 0 1 2 2 4 5 6 7 2 36 3 3 3 3 3 3 3 2 4 3 3 3 3 3 3 3 1 2 6 0 4 4 5 6 7 1 0 6 2 3 4 5 6 7 2 39 40 40 3 3 3 12 3 1 3 2 1 7 4 5 6 7 2 42 3 3 3 3 3 3 3 3 29 32 35 37 38 38 41 43 2 2 9 0 3 17 24 18 19 2 33 15 15 3 34 3 18 19 1 0 1 2 3 4 1 1 1 1 0 1 2 3 1 1 1 1 1 0 1 2 3 1 5 0 0 1 1 7 2 3 4 5 6 7 2 47 15 48 49 3 24 12 50 1 1 1 2 3 4 5 6 7 1 0 1 2 3 1 1 0 7 1 0 1 2 3 4 1 6 7 2 3 52 53 54 3 24 3 3 2 3 3 3 3 3 3 3 3 1 2 1 2 3 4 5 6 7 2 57 12 12 3 3 3 12 3 2 34 3 3 3 3 3 3 3 3 45 46 51 55 56 56 58 59 2 3 10 3 3 3 3 21 3 1 0 1 2 3 4 1 0 7 2 3 52 62 3 3 3 3 3 1 0 1 2 3 4 5 0 0 2 3 10 64 64 3 3 52 3 3 61 37 63 65 56 56 59 59 2 4 4 16 3 3 3 3 3 3 67 38 56 56 56 56 56 56 2 4 11 17 3 3 3 3 3 3 69 38 56 56 56 56 56 56 2 39 12 40 3 3 3 12 3 2 57 57 12 3 3 3 12 3 2 40 40 40 3 3 3 40 3 3 26 71 72 59 56 56 73 56 2 42 31 3 3 3 3 3 3 3 27 75 59 59 56 56 56 56 4 28 44 60 66 68 70 74 76 2 1 9 33 36 4 4 39 42 2 8 30 15 3 3 3 12 31 2 9 15 15 3 3 3 40 3 2 10 3 3 3 3 3 3 3 2 4 4 34 3 3 3 3 3 2 11 3 3 3 3 3 3 3 2 12 12 18 3 3 3 12 3 2 13 31 19 3 3 3 3 3 3 78 79 80 81 82 83 84 85 2 8 30 15 3 3 3 40 3 1 0 1 2 1 4 5 6 7 1 2 6 5 3 4 5 6 7 2 30 88 88 88 4 40 89 31 1 1 4 2 3 4 5 6 7 1 1 5 2 3 4 5 6 7 1 1 6 2 3 4 5 6 7 2 15 88 3 52 91 92 93 50 2 3 88 3 3 3 3 3 3 2 3 4 91 3 3 3 3 3 2 3 40 92 3 3 3 3 3 1 3 6 2 3 4 5 6 7 2 12 89 93 3 3 3 98 3 1 1 7 2 7 4 5 6 7 2 31 31 100 52 3 3 3 3 3 87 90 94 95 96 97 99 101 2 15 15 15 3 3 3 40 3 2 15 88 3 3 91 92 93 100 1 7 1 2 3 4 5 6 0 1 6 1 3 2 4 5 0 7 2 15 52 105 106 91 92 93 50 2 52 52 52 3 52 52 52 52 2 3 91 91 91 91 3 3 3 2 3 92 92 52 3 92 3 3 2 57 93 93 3 3 3 93 3 2 3 50 50 3 3 3 3 50 3 103 104 107 108 109 110 111 112 2 3 88 52 3 3 3 3 52 2 52 52 52 3 52 52 3 52 1 0 7 2 3 4 5 6 7 2 10 3 3 105 50 116 116 50 2 3 3 52 52 3 3 3 3 2 3 3 52 3 3 3 3 3 3 56 114 115 117 118 119 119 119 2 4 4 3 3 3 3 3 3 1 1 3 2 3 4 5 6 7 2 3 91 91 3 122 3 3 3 2 3 3 52 3 52 3 3 3 2 3 3 92 3 3 3 3 3 3 121 96 123 124 125 56 56 56 2 11 3 34 3 3 3 3 3 2 3 92 92 92 3 122 3 3 2 3 3 93 3 3 3 3 3 3 127 97 128 119 56 129 56 56 2 40 89 93 3 3 3 98 3 2 12 93 93 3 3 3 122 3 2 3 3 52 3 3 3 3 116 1 3 1 2 3 4 5 6 7 2 40 3 93 3 3 3 134 3 3 84 131 132 133 56 119 135 56 2 3 31 50 3 3 3 3 3 2 3 50 50 3 3 3 3 122 2 3 3 91 3 3 3 3 3 3 85 137 138 119 56 56 56 139 4 86 102 113 120 126 130 136 140 2 2 33 47 3 3 3 57 34 2 15 15 15 52 3 3 57 3 2 0 15 48 62 3 3 12 3 2 3 3 49 3 3 3 3 3 2 16 3 3 3 3 3 3 3 2 17 34 24 3 3 3 3 3 2 18 18 12 3 3 3 12 3 2 19 19 50 3 3 3 3 3 3 142 143 144 145 146 147 148 149 2 9 15 15 52 3 3 12 3 2 15 88 52 52 91 92 93 50 2 15 3 105 52 91 92 93 50 2 3 52 106 3 3 92 3 3 2 3 91 91 52 122 3 3 3 2 3 92 92 52 3 122 3 3 2 40 93 93 3 3 3 122 3 2 3 50 50 52 3 3 3 122 3 151 152 153 154 155 156 157 158 2 0 15 48 53 3 3 12 3 2 48 105 3 11 16 24 12 116 2 62 52 11 3 3 24 40 3 2 3 91 16 16 3 3 3 3 2 3 92 24 24 3 3 3 3 2 12 93 12 40 3 3 57 3 2 3 50 116 3 3 3 3 3 3 160 153 161 162 163 164 165 166 2 3 3 49 54 3 3 3 3 2 3 3 106 3 91 52 3 3 2 53 52 11 3 16 24 40 3 2 64 3 3 3 3 3 40 116 2 3 52 16 3 3 3 3 3 2 3 52 24 24 3 3 3 3 2 3 52 93 3 3 3 3 3 2 3 52 116 3 3 3 3 3 3 168 169 170 171 172 173 174 175 2 17 34 3 3 3 3 3 3 2 3 91 91 52 91 3 3 3 2 3 91 16 3 3 3 3 3 2 3 92 3 3 3 3 3 3 3 177 178 179 172 180 56 56 56 2 24 3 24 24 3 3 3 3 2 3 52 24 3 3 3 3 3 2 3 93 3 3 3 3 3 3 2 3 52 3 3 3 3 3 3 3 182 110 164 183 56 184 185 56 2 40 93 93 52 3 3 93 3 2 40 93 40 3 3 3 12 3 3 148 187 165 174 56 56 188 56 2 3 100 50 52 3 3 3 50 2 3 91 3 3 3 3 3 3 3 149 190 166 175 56 56 56 191 4 150 159 167 176 181 186 189 192 2 3 36 3 3 3 3 34 34 2 3 3 52 10 3 3 3 3 2 3 3 53 64 3 3 3 3 2 3 3 54 64 3 3 3 3 2 3 3 24 3 3 3 3 3 2 21 3 3 52 3 3 3 3 3 194 195 196 197 56 198 199 56 2 10 3 52 10 3 3 3 3 2 3 88 52 3 3 3 3 3 2 3 3 52 3 52 52 52 52 2 3 3 3 105 3 3 3 3 2 3 3 52 50 52 3 3 3 2 3 3 52 116 3 3 3 3 2 3 3 52 50 3 3 116 3 3 201 202 203 204 205 206 206 207 2 3 3 62 64 3 3 3 3 2 3 52 52 3 52 52 52 52 2 49 106 11 3 16 24 93 116 2 3 92 24 3 3 3 3 3 2 3 3 40 40 3 3 3 3 2 3 3 3 116 3 3 3 3 3 209 210 211 56 56 212 213 214 2 3 3 3 64 3 3 3 3 2 3 3 3 105 52 3 3 3 2 54 3 3 3 3 24 3 3 2 64 105 3 3 3 3 40 50 2 3 3 3 40 3 3 3 3 2 3 3 3 50 3 3 3 3 3 216 217 218 219 56 56 220 221 2 3 3 52 50 3 3 3 3 3 56 223 179 185 56 56 56 56 3 56 206 183 198 56 56 56 56 3 199 214 213 220 56 56 56 56 2 3 52 52 50 3 3 3 3 3 56 227 214 221 56 56 56 56 4 200 208 215 222 224 225 226 228 2 17 3 3 3 3 3 3 3 3 121 38 230 56 56 56 56 56 2 4 4 91 3 3 3 3 3 2 34 91 91 52 92 3 3 3 2 3 3 91 52 3 3 3 3 3 38 232 233 234 139 56 56 56 2 3 91 91 52 92 3 3 3 2 3 122 3 3 3 3 3 3 3 146 236 163 172 237 56 56 56 2 3 50 3 3 3 3 3 3 3 56 56 185 239 185 56 56 56 2 3 3 122 52 3 3 3 3 3 56 241 191 56 56 56 56 56 3 56 56 56 56 56 56 56 56 4 231 235 238 240 242 243 243 243 2 24 3 3 3 3 3 3 3 3 121 83 245 56 56 56 56 56 2 3 92 92 52 3 93 52 3 3 83 97 247 119 56 125 56 56 2 34 92 92 52 3 93 3 3 2 24 92 24 24 3 3 3 3 3 230 249 250 173 56 237 56 56 2 24 52 24 3 3 3 3 3 2 3 116 3 3 3 3 3 3 3 56 125 252 253 56 56 56 56 2 3 3 122 3 3 3 3 3 3 56 255 180 56 56 56 56 56 4 246 248 251 254 243 256 243 243 2 5 39 57 34 3 3 40 3 2 12 40 12 3 3 3 40 3 2 18 40 12 3 3 3 40 3 2 21 3 3 3 3 3 3 3 2 12 12 12 3 3 3 40 3 3 258 259 260 261 56 56 262 56 2 12 12 57 3 3 3 40 3 2 12 89 93 3 3 3 3 3 2 18 93 93 52 3 3 93 3 2 12 98 93 3 3 3 134 3 3 264 265 266 56 56 56 267 56 2 18 93 93 52 3 52 93 3 2 12 93 12 93 3 3 40 3 2 3 3 40 3 3 3 3 3 2 12 122 57 3 3 3 12 3 3 260 269 270 271 56 56 272 56 2 3 52 40 3 3 3 3 3 2 52 116 40 40 3 3 3 3 3 261 56 274 275 56 56 56 56 2 12 98 122 3 3 3 134 3 2 12 93 57 3 3 3 12 3 2 40 134 12 3 3 3 3 3 3 262 277 278 56 56 56 279 56 3 56 214 56 56 56 56 56 56 4 263 268 273 276 243 243 280 281 2 6 42 34 34 3 3 3 3 2 13 3 3 3 3 3 3 3 2 19 3 3 3 3 3 3 3 3 283 284 285 56 56 56 56 56 2 13 31 3 3 3 3 3 3 2 31 31 50 3 3 3 3 3 2 19 100 50 52 3 3 3 91 2 3 3 50 3 3 3 3 3 3 287 288 289 185 56 56 56 290 2 19 50 50 52 3 3 3 91 2 50 50 116 116 3 3 3 3 3 285 292 293 185 56 56 56 237 2 3 50 116 50 3 3 3 3 3 56 56 185 295 56 56 253 56 3 56 255 239 56 56 56 56 56 4 286 291 294 296 243 243 243 297 5 77 141 193 229 244 257 282 298

@COLORS

0 48 48 48 1 61 61 237 2 20 214 69 3 255 255 0 4 21 234 234 5 234 21 234 6 255 0 0 7 255 255 255