Rule:FWKS-2c7and3c14Test

From LifeWiki
Revision as of 22:33, 19 December 2019 by Dvgrn (talk | contribs) (Rule 'FWKS-2c7and3c14Test' from auto-import project)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE FWKS-2c7and3c14Test

https://conwaylife.com/forums/viewtopic.php?p=81024#p81388

@TREE

num_states=4 num_neighbors=8 num_nodes=293 1 0 0 0 0 2 0 0 0 0 1 0 1 1 1 1 0 3 1 1 2 0 2 2 3 2 0 2 2 2 1 0 1 1 0 2 0 3 2 6 3 1 4 5 7 1 0 1 2 1 1 1 1 1 1 2 9 10 10 10 1 1 2 1 1 2 2 12 10 2 2 2 10 2 10 3 4 11 13 14 2 2 10 10 10 2 2 2 10 10 3 5 13 16 17 3 7 14 17 16 4 8 15 18 19 2 0 9 2 2 2 2 10 12 10 2 2 10 10 2 2 3 10 2 10 3 21 22 23 24 2 10 0 0 0 2 12 0 0 0 3 22 26 27 26 2 2 0 0 0 3 23 27 26 29 3 24 26 29 26 4 25 28 30 31 3 13 26 26 29 3 16 26 26 26 3 17 29 26 26 4 18 33 34 35 2 6 10 10 10 3 5 24 17 37 3 37 26 26 26 4 38 31 35 39 5 20 32 36 40 1 0 2 1 1 2 0 9 42 2 2 9 10 12 10 1 2 1 1 1 2 42 12 45 2 3 43 44 46 14 1 1 1 1 3 2 2 48 10 10 3 49 27 27 26 2 42 10 10 2 2 45 0 0 0 3 51 26 52 29 3 14 26 29 26 4 47 50 53 54 2 2 12 12 10 2 48 0 0 0 3 56 57 26 26 3 26 1 1 1 4 58 59 59 59 2 42 10 45 2 3 61 26 26 29 3 29 1 1 1 4 62 59 59 63 4 54 59 63 59 5 55 60 64 65 2 0 42 2 2 2 2 45 2 10 3 67 61 68 17 3 23 26 26 29 4 69 70 34 35 4 70 59 59 63 4 34 59 59 59 4 35 63 59 59 5 71 72 73 74 1 1 1 1 0 2 0 2 2 76 1 1 3 1 1 2 2 78 2 10 2 76 10 10 10 3 77 79 17 80 3 14 26 29 29 4 81 82 35 34 2 2 10 2 2 3 84 26 29 26 4 85 59 63 59 5 83 86 74 73 6 41 66 75 87 3 43 49 51 14 3 44 27 26 26 3 46 27 52 29 4 89 90 91 54 3 56 26 26 26 3 57 1 1 1 4 93 94 59 59 5 92 95 64 65 1 1 1 2 1 2 9 97 45 10 2 78 0 0 0 3 98 26 26 99 3 99 1 1 1 4 100 59 59 101 3 1 1 1 1 4 101 103 103 103 4 59 103 103 103 5 102 104 105 105 2 2 45 10 2 3 107 26 26 29 4 108 59 59 63 3 27 1 1 1 4 110 103 103 103 4 63 103 103 103 5 109 111 111 112 1 1 0 0 0 2 2 0 0 114 3 14 26 29 115 4 116 59 63 59 5 117 105 112 105 6 96 106 113 118 3 67 23 16 17 3 68 26 26 26 4 120 62 121 35 5 122 72 73 74 1 1 1 0 1 2 2 10 124 10 3 125 26 26 26 4 126 59 59 59 5 127 105 105 105 5 74 112 105 105 6 123 113 128 129 3 77 14 17 16 3 79 26 29 26 3 80 29 26 26 4 131 132 35 133 5 134 86 74 73 3 115 1 1 1 4 54 59 63 136 5 137 105 112 105 5 73 105 105 105 6 135 138 129 139 7 88 119 130 140 2 0 2 42 2 2 9 48 10 10 3 142 143 51 14 3 16 27 27 26 4 144 145 53 54 2 9 12 10 10 3 147 26 27 26 4 148 94 59 59 4 91 59 59 63 5 146 149 150 65 2 9 10 10 78 2 97 0 0 0 3 152 153 52 26 4 154 101 59 59 5 155 105 105 104 3 23 52 26 29 4 157 110 110 63 5 158 105 105 112 2 10 0 0 114 3 84 26 29 160 4 161 59 63 59 5 162 105 112 105 6 151 156 159 163 4 103 103 103 103 5 105 165 165 165 6 139 166 166 166 5 72 105 105 112 5 112 165 165 165 6 168 166 166 169 5 65 105 112 105 1 3 0 0 0 2 0 172 0 0 3 1 173 1 1 4 103 174 103 103 5 105 175 165 165 6 171 176 169 166 7 164 167 170 177 3 5 51 16 17 4 179 70 34 35 4 53 59 59 63 3 16 52 29 26 4 182 59 59 59 5 180 181 183 74 2 124 0 0 0 3 16 26 185 26 4 186 59 59 59 5 187 105 105 105 6 184 159 188 129 6 129 169 166 166 7 189 170 167 190 3 5 14 17 80 4 192 82 35 34 3 14 99 29 26 4 194 59 63 59 2 76 2 10 10 3 196 26 26 26 4 197 59 59 59 5 193 195 74 198 2 114 0 0 0 3 29 1 1 200 4 201 103 103 103 5 65 105 112 202 6 199 203 129 139 7 204 177 190 167 8 141 178 191 205 3 142 16 51 14 3 143 27 26 26 3 51 27 52 29 4 207 208 209 54 3 147 57 26 26 4 211 59 110 59 3 46 26 26 29 3 52 1 1 1 4 213 110 214 63 5 210 212 215 65 6 216 139 168 171 3 152 99 26 26 3 153 1 1 1 4 218 219 214 59 5 220 105 105 104 6 221 166 166 176 3 23 27 27 29 4 223 214 59 63 5 224 105 105 112 6 225 166 166 169 3 160 1 1 1 4 85 59 63 227 5 228 105 112 105 6 229 166 169 166 7 217 222 226 230 2 9 78 10 10 3 232 26 26 99 4 233 59 59 101 4 219 103 103 103 4 214 103 103 103 5 234 235 236 105 6 237 166 166 176 5 165 165 165 165 6 166 239 239 239 6 176 239 239 239 7 238 240 240 241 2 2 12 12 2 3 243 26 26 29 4 244 59 59 63 5 245 236 105 112 6 246 166 166 169 6 169 239 239 239 7 247 240 240 248 4 82 59 63 59 3 26 1 1 200 4 251 103 103 103 5 250 105 112 252 6 253 166 169 166 7 254 241 248 240 8 231 242 249 255 3 5 23 16 17 3 51 26 26 29 4 257 258 34 35 4 258 59 214 63 4 34 214 63 59 5 259 260 261 74 6 262 168 139 129 3 185 1 1 1 4 34 59 264 59 5 265 105 105 105 6 266 166 166 166 7 263 226 267 190 4 264 103 103 103 5 73 105 269 105 6 270 166 166 166 7 271 240 240 240 7 190 248 240 240 8 268 249 272 273 3 5 14 17 16 4 275 54 35 133 4 54 101 63 59 5 276 277 74 198 6 278 171 129 139 3 200 1 1 1 4 63 103 103 280 5 65 105 112 281 6 282 176 169 166 7 279 283 190 167 4 54 59 63 63 4 59 103 103 280 5 285 105 112 286 6 287 176 169 166 7 288 240 248 240 7 167 240 240 240 8 284 289 273 290 9 206 256 274 291

@TABLE n_states:4 neighborhood:Moore symmetries:rotate4reflect

var Aa={1,2,3} var Ab=Aa var Ac=Aa var Ad=Aa var Ae=Aa var Af=Aa var Ag=Aa var Ah=Aa

var all={0,Aa} var bll=all var cll=all var dll=all var ell=all var fll=all var gll=all var hll=all var ill=all

  1. 3c/14

1,1,0,0,1,1,0,0,0,2 1,1,2,0,0,0,0,0,0,2 1,2,1,0,0,1,0,0,0,2 1,2,1,0,0,0,0,0,0,2 0,0,2,1,1,0,0,0,0,2 1,2,0,1,0,1,0,0,0,2 2,1,1,0,0,0,0,0,0,2 0,2,2,1,0,0,0,0,0,2 1,1,1,2,0,0,0,0,0,2 0,2,1,2,0,0,0,0,0,2 2,0,1,0,1,0,0,0,0,2 1,2,0,0,2,0,1,0,0,2 1,1,0,0,2,0,1,0,0,2 0,0,1,2,1,0,0,0,0,2 2,0,1,1,1,0,0,0,0,2 0,2,0,0,1,2,0,0,0,2 1,2,0,0,1,0,0,0,0,2 2,1,0,0,0,1,0,0,0,2 0,2,2,2,0,0,0,0,0,0 2,0,2,2,2,0,0,0,0,0

  1. 2c/7

1,1,0,0,1,0,1,0,0,3 1,1,3,1,0,0,0,0,0,3 1,3,0,1,0,0,0,0,0,3 3,1,0,1,1,0,0,0,0,3 1,3,1,0,1,0,0,0,0,3 0,3,3,0,0,0,0,0,0,1 0,1,3,1,1,1,1,1,0,3 0,3,3,3,1,0,0,0,0,1 3,3,3,0,0,0,0,0,0,0 3,3,0,3,0,0,0,0,0,0 0,3,3,0,1,0,0,0,0,0 0,3,3,0,0,1,0,0,0,0

  1. Life

0,0,1,0,1,0,Aa,0,0,1 0,0,1,0,Aa,0,1,0,0,1 0,0,Aa,0,1,0,1,0,0,1 0,1,0,1,0,Aa,0,0,0,1 0,1,0,Aa,0,1,0,0,0,1 0,Aa,0,1,0,1,0,0,0,1 0,1,0,1,0,0,Aa,0,0,1 0,1,0,Aa,0,0,1,0,0,1 0,Aa,0,1,0,0,1,0,0,1 0,1,1,Aa,0,0,0,0,0,1 0,1,Aa,1,0,0,0,0,0,1 0,Aa,1,1,0,0,0,0,0,1 0,1,1,0,0,0,0,0,Aa,1 0,1,Aa,0,0,0,0,0,1,1 0,Aa,1,0,0,0,0,0,1,1 0,1,1,0,Aa,0,0,0,0,1 0,1,Aa,0,1,0,0,0,0,1 0,Aa,1,0,1,0,0,0,0,1 0,1,0,0,1,0,Aa,0,0,1 0,1,0,0,Aa,0,1,0,0,1 0,Aa,0,0,1,0,1,0,0,1 0,1,1,0,0,0,Aa,0,0,1 0,1,Aa,0,0,0,1,0,0,1 0,Aa,1,0,0,0,1,0,0,1 0,1,1,0,0,0,0,Aa,0,1 0,1,Aa,0,0,0,0,1,0,1 0,Aa,1,0,0,0,0,1,0,1 0,1,1,0,0,Aa,0,0,0,1 0,1,Aa,0,0,1,0,0,0,1 0,Aa,1,0,0,1,0,0,0,1 1,0,Aa,0,Ab,0,0,0,0,1 1,Aa,0,Ab,0,0,0,0,0,1 1,Aa,0,0,Ab,0,0,0,0,1 1,Aa,Ab,0,0,0,0,0,0,1 1,Aa,0,0,0,Ab,0,0,0,1 1,0,Aa,0,0,0,Ab,0,0,1 1,0,Aa,0,Ab,0,Ac,0,0,1 1,Aa,0,Ab,0,Ac,0,0,0,1 1,Aa,0,Ab,0,0,Ac,0,0,1 1,Aa,Ab,Ac,0,0,0,0,0,1 1,Aa,Ab,0,0,0,0,0,Ac,1 1,Aa,Ab,0,Ac,0,0,0,0,1 1,Aa,0,0,Ab,0,Ac,0,0,1 1,Aa,Ab,0,0,0,Ac,0,0,1 1,Aa,Ab,0,0,0,0,Ac,0,1 1,Aa,Ab,0,0,Ac,0,0,0,1 0,0,2,0,2,0,Aa,0,0,1 0,0,2,0,Aa,0,2,0,0,1 0,0,Aa,0,2,0,2,0,0,1 0,2,0,2,0,Aa,0,0,0,1 0,2,0,Aa,0,2,0,0,0,1 0,Aa,0,2,0,2,0,0,0,1 0,2,0,2,0,0,Aa,0,0,1 0,2,0,Aa,0,0,2,0,0,1 0,Aa,0,2,0,0,2,0,0,1 0,2,2,Aa,0,0,0,0,0,1 0,2,Aa,2,0,0,0,0,0,1 0,Aa,2,2,0,0,0,0,0,1 0,2,2,0,0,0,0,0,Aa,1 0,2,Aa,0,0,0,0,0,2,1 0,Aa,2,0,0,0,0,0,2,1 0,2,2,0,Aa,0,0,0,0,1 0,2,Aa,0,2,0,0,0,0,1 0,Aa,2,0,2,0,0,0,0,1 0,2,0,0,2,0,Aa,0,0,1 0,2,0,0,Aa,0,2,0,0,1 0,Aa,0,0,2,0,2,0,0,1 0,2,2,0,0,0,Aa,0,0,1 0,2,Aa,0,0,0,2,0,0,1 0,Aa,2,0,0,0,2,0,0,1 0,2,2,0,0,0,0,Aa,0,1 0,2,Aa,0,0,0,0,2,0,1 0,Aa,2,0,0,0,0,2,0,1 0,2,2,0,0,Aa,0,0,0,1 0,2,Aa,0,0,2,0,0,0,1 0,Aa,2,0,0,2,0,0,0,1 2,0,Aa,0,Ab,0,0,0,0,1 2,Aa,0,Ab,0,0,0,0,0,1 2,Aa,0,0,Ab,0,0,0,0,1 2,Aa,Ab,0,0,0,0,0,0,1 2,Aa,0,0,0,Ab,0,0,0,1 2,0,Aa,0,0,0,Ab,0,0,1 2,0,Aa,0,Ab,0,Ac,0,0,1 2,Aa,0,Ab,0,Ac,0,0,0,1 2,Aa,0,Ab,0,0,Ac,0,0,1 2,Aa,Ab,Ac,0,0,0,0,0,1 2,Aa,Ab,0,0,0,0,0,Ac,1 2,Aa,Ab,0,Ac,0,0,0,0,1 2,Aa,0,0,Ab,0,Ac,0,0,1 2,Aa,Ab,0,0,0,Ac,0,0,1 2,Aa,Ab,0,0,0,0,Ac,0,1 2,Aa,Ab,0,0,Ac,0,0,0,1 0,0,3,0,3,0,Aa,0,0,1 0,0,3,0,Aa,0,3,0,0,1 0,0,Aa,0,3,0,3,0,0,1 0,3,0,3,0,Aa,0,0,0,1 0,3,0,Aa,0,3,0,0,0,1 0,Aa,0,3,0,3,0,0,0,1 0,3,0,3,0,0,Aa,0,0,1 0,3,0,Aa,0,0,3,0,0,1 0,Aa,0,3,0,0,3,0,0,1 0,3,3,Aa,0,0,0,0,0,1 0,3,Aa,3,0,0,0,0,0,1 0,Aa,3,3,0,0,0,0,0,1 0,3,3,0,0,0,0,0,Aa,1 0,3,Aa,0,0,0,0,0,3,1 0,Aa,3,0,0,0,0,0,3,1 0,3,3,0,Aa,0,0,0,0,1 0,3,Aa,0,3,0,0,0,0,1 0,Aa,3,0,3,0,0,0,0,1 0,3,0,0,3,0,Aa,0,0,1 0,3,0,0,Aa,0,3,0,0,1 0,Aa,0,0,3,0,3,0,0,1 0,3,3,0,0,0,Aa,0,0,1 0,3,Aa,0,0,0,3,0,0,1 0,Aa,3,0,0,0,3,0,0,1 0,3,3,0,0,0,0,Aa,0,1 0,3,Aa,0,0,0,0,3,0,1 0,Aa,3,0,0,0,0,3,0,1 0,3,3,0,0,Aa,0,0,0,1 0,3,Aa,0,0,3,0,0,0,1 0,Aa,3,0,0,3,0,0,0,1 3,0,Aa,0,Ab,0,0,0,0,1 3,Aa,0,Ab,0,0,0,0,0,1 3,Aa,0,0,Ab,0,0,0,0,1 3,Aa,Ab,0,0,0,0,0,0,1 3,Aa,0,0,0,Ab,0,0,0,1 3,0,Aa,0,0,0,Ab,0,0,1 3,0,Aa,0,Ab,0,Ac,0,0,1 3,Aa,0,Ab,0,Ac,0,0,0,1 3,Aa,0,Ab,0,0,Ac,0,0,1 3,Aa,Ab,Ac,0,0,0,0,0,1 3,Aa,Ab,0,0,0,0,0,Ac,1 3,Aa,Ab,0,Ac,0,0,0,0,1 3,Aa,0,0,Ab,0,Ac,0,0,1 3,Aa,Ab,0,0,0,Ac,0,0,1 3,Aa,Ab,0,0,0,0,Ac,0,1 3,Aa,Ab,0,0,Ac,0,0,0,1

  1. death

all,bll,cll,dll,ell,fll,gll,hll,ill,0