Rule:FiLife
@RULE FiLife
@TABLE
n_states:11 neighborhood:Moore symmetries:permute
var a1={0,1,2,3,4,5,6,7,8,9,10} var a2=a1 var a3=a1 var a4=a1 var a5=a1 var a6=a1 var a7=a1 var a8=a1
var b0 = {10,9,8,7,6,5,4,3,2,1} var c0 = {10,9,8,7,6,5,4,3,2,1} var b1 = {10,9,8,7,6,5,4,3,2} var c1 = {10,9,8,7,6,5,4,3,2} var b2 = {10,9,8,7,6,5,4,3} var c2 = {10,9,8,7,6,5,4,3} var b3 = {10,9,8,7,6,5,4} var c3 = {10,9,8,7,6,5,4} var b4 = {10,9,8,7,6,5} var c4 = {10,9,8,7,6,5} var b5 = {10,9,8,7,6} var c5 = {10,9,8,7,6} var b6 = {10,9,8,7} var c6 = {10,9,8,7} var b7 = {10,9,8} var c7 = {10,9,8} var b8 = {10,9} var c8 = {10,9} var b9 = {10} var c9 = {10}
0,b0,b0,b0,b0,c0,c0,c0,c0,0 0,b0,b0,b0,b0,b0,b0,b0,a1,0 0,b0,b0,b0,b0,c0,c0,c0,a1,c0 0,b0,b0,b0,b0,a1,a2,a3,a4,0 0,b0,b0,b0,c0,c0,c0,a1,a2,c0 0,b0,b0,b0,a1,a2,a3,a4,a5,b0 0,1,1,1,1,a1,a2,a3,a4,0 0,1,1,1,a1,a2,a3,a4,a5,1
1,b1,b1,b1,b1,c1,c1,c1,c1,0 1,b1,b1,b1,b1,b1,b1,b1,a1,0 1,b1,b1,b1,b1,c1,c1,c1,a1,c1 1,b1,b1,b1,b1,1,1,1,1,0 1,b1,b1,b1,b1,1,1,1,a1,2 1,b1,b1,b1,b1,1,1,a1,a2,1 1,b1,b1,b1,b1,a1,a2,a3,a4,0 1,b1,b1,b1,c1,c1,c1,a1,a2,c1 1,b1,b1,b1,a1,a2,a3,a4,a5,b1 1,1,1,1,1,a1,a2,a3,a4,0 1,1,1,1,a1,a2,a3,a4,a5,2 1,1,1,a1,a2,a3,a4,a5,a6,1 1,a1,a2,a3,a4,a5,a6,a7,a8,0
2,b2,b2,b2,b2,c2,c2,c2,c2,1 2,b2,b2,b2,b2,b2,b2,b2,a1,1 2,b2,b2,b2,b2,c2,c2,c2,a1,c2 2,b2,b2,b2,b2,2,2,2,2,1 2,b2,b2,b2,b2,2,2,2,a1,3 2,b2,b2,b2,b2,2,2,a1,a2,2 2,b2,b2,b2,b2,a1,a2,a3,a4,1 2,b2,b2,b2,c2,c2,c2,a1,a2,c2 2,b2,b2,b2,a1,a2,a3,a4,a5,b2 2,2,2,2,2,a1,a2,a3,a4,1 2,2,2,2,a1,a2,a3,a4,a5,3 2,2,2,a1,a2,a3,a4,a5,a6,2 2,a1,a2,a3,a4,a5,a6,a7,a8,1
3,b3,b3,b3,b3,c3,c3,c3,c3,2 3,b3,b3,b3,b3,b3,b3,b3,a1,2 3,b3,b3,b3,b3,c3,c3,c3,a1,c3 3,b3,b3,b3,b3,3,3,3,3,2 3,b3,b3,b3,b3,3,3,3,a1,4 3,b3,b3,b3,b3,3,3,a1,a2,3 3,b3,b3,b3,b3,a1,a2,a3,a4,2 3,b3,b3,b3,c3,c3,c3,a1,a2,c3 3,b3,b3,b3,a1,a2,a3,a4,a5,b3 3,3,3,3,3,a1,a2,a3,a4,2 3,3,3,3,a1,a2,a3,a4,a5,4 3,3,3,a1,a2,a3,a4,a5,a6,3 3,a1,a2,a3,a4,a5,a6,a7,a8,2
4,b4,b4,b4,b4,c4,c4,c4,c4,3 4,b4,b4,b4,b4,b4,b4,b4,a1,3 4,b4,b4,b4,b4,c4,c4,c4,a1,c4 4,b4,b4,b4,b4,4,4,4,4,3 4,b4,b4,b4,b4,4,4,4,a1,5 4,b4,b4,b4,b4,4,4,a1,a2,4 4,b4,b4,b4,b4,a1,a2,a3,a4,3 4,b4,b4,b4,c4,c4,c4,a1,a2,c4 4,b4,b4,b4,a1,a2,a3,a4,a5,b4 4,4,4,4,4,a1,a2,a3,a4,3 4,4,4,4,a1,a2,a3,a4,a5,5 4,4,4,a1,a2,a3,a4,a5,a6,4 4,a1,a2,a3,a4,a5,a6,a7,a8,3
5,b5,b5,b5,b5,c5,c5,c5,c5,4 5,b5,b5,b5,b5,b5,b5,b5,a1,4 5,b5,b5,b5,b5,c5,c5,c5,a1,c5 5,b5,b5,b5,b5,5,5,5,5,4 5,b5,b5,b5,b5,5,5,5,a1,6 5,b5,b5,b5,b5,5,5,a1,a2,5 5,b5,b5,b5,b5,a1,a2,a3,a4,4 5,b5,b5,b5,c5,c5,c5,a1,a2,c5 5,b5,b5,b5,a1,a2,a3,a4,a5,b5 5,5,5,5,5,a1,a2,a3,a4,4 5,5,5,5,a1,a2,a3,a4,a5,6 5,5,5,a1,a2,a3,a4,a5,a6,5 5,a1,a2,a3,a4,a5,a6,a7,a8,4
6,b6,b6,b6,b6,c6,c6,c6,c6,5 6,b6,b6,b6,b6,b6,b6,b6,a1,5 6,b6,b6,b6,b6,c6,c6,c6,a1,c6 6,b6,b6,b6,b6,6,6,6,6,5 6,b6,b6,b6,b6,6,6,6,a1,7 6,b6,b6,b6,b6,6,6,a1,a2,6 6,b6,b6,b6,b6,a1,a2,a3,a4,5 6,b6,b6,b6,c6,c6,c6,a1,a2,c6 6,b6,b6,b6,a1,a2,a3,a4,a5,b6 6,6,6,6,6,a1,a2,a3,a4,5 6,6,6,6,a1,a2,a3,a4,a5,7 6,6,6,a1,a2,a3,a4,a5,a6,6 6,a1,a2,a3,a4,a5,a6,a7,a8,5
7,b7,b7,b7,b7,c7,c7,c7,c7,6 7,b7,b7,b7,b7,b7,b7,b7,a1,6 7,b7,b7,b7,b7,c7,c7,c7,a1,c7 7,b7,b7,b7,b7,7,7,7,7,6 7,b7,b7,b7,b7,7,7,7,a1,8 7,b7,b7,b7,b7,7,7,a1,a2,7 7,b7,b7,b7,b7,a1,a2,a3,a4,6 7,b7,b7,b7,c7,c7,c7,a1,a2,c7 7,b7,b7,b7,a1,a2,a3,a4,a5,b7 7,7,7,7,7,a1,a2,a3,a4,6 7,7,7,7,a1,a2,a3,a4,a5,8 7,7,7,a1,a2,a3,a4,a5,a6,7 7,a1,a2,a3,a4,a5,a6,a7,a8,6
8,b8,b8,b8,b8,c8,c8,c8,c8,7 8,b8,b8,b8,b8,b8,b8,b8,a1,7 8,b8,b8,b8,b8,c8,c8,c8,a1,c8 8,b8,b8,b8,b8,8,8,8,8,7 8,b8,b8,b8,b8,8,8,8,a1,9 8,b8,b8,b8,b8,8,8,a1,a2,8 8,b8,b8,b8,b8,a1,a2,a3,a4,7 8,b8,b8,b8,c8,c8,c8,a1,a2,c8 8,b8,b8,b8,a1,a2,a3,a4,a5,b8 8,8,8,8,8,a1,a2,a3,a4,7 8,8,8,8,a1,a2,a3,a4,a5,9 8,8,8,a1,a2,a3,a4,a5,a6,8 8,a1,a2,a3,a4,a5,a6,a7,a8,7
9,b9,b9,b9,b9,c9,c9,c9,c9,8 9,b9,b9,b9,b9,b9,b9,b9,a1,8 9,b9,b9,b9,b9,c9,c9,c9,a1,c9 9,b9,b9,b9,b9,9,9,9,9,8 9,b9,b9,b9,b9,9,9,9,a1,10 9,b9,b9,b9,b9,9,9,a1,a2,9 9,b9,b9,b9,b9,a1,a2,a3,a4,8 9,b9,b9,b9,c9,c9,c9,a1,a2,c9 9,b9,b9,b9,a1,a2,a3,a4,a5,b9 9,9,9,9,9,a1,a2,a3,a4,8 9,9,9,9,a1,a2,a3,a4,a5,10 9,9,9,a1,a2,a3,a4,a5,a6,9 9,a1,a2,a3,a4,a5,a6,a7,a8,8
10,10,10,10,10,a1,a2,a3,a4,9 10,10,10,a1,a2,a3,a4,a5,a6,10 10,a1,a2,a3,a4,a5,a6,a7,a8,9
@COLORS
1 0 255 0 2 0 240 63 3 0 224 127 4 0 192 150 5 0 160 160 6 0 150 192 7 0 127 224 8 0 63 240 9 0 0 255 10 255 127 255