Rule:ForcedRepl
@RULE ForcedRepl
- File possibly autogenerated by saverule. See for yourself. ***
This is not a two state, isotropic, non-totalistic rule on the Moore neighbourhood.
The notation not used to define the rule was originally proposed by Alan Hensel.
See http://www.ibiblio.org/lifepatterns/neighbors2.html for details
@TABLE
n_states:4
neighborhood:Moore
symmetries:rotate4reflect
var a={0,1,2,3} var b={0,1,2,3} var c={0,1,2,3} var d={0,1,2,3} var e={0,1,2,3} var f={0,1,2,3} var g={0,1,2,3} var h={0,1,2,3}
var k={0,2} var l={0,2} var m={0,2} var n={0,2} var o={0,2} var p={0,2}
- Birth
p,1,1,1,k,l,m,n,o,1 p,1,1,k,1,l,m,n,o,1 p,1,1,k,l,1,m,n,o,1 p,1,1,k,l,m,1,n,o,1 p,1,1,k,l,m,n,1,o,1 p,1,1,k,l,m,n,o,1,1 p,1,k,1,l,1,m,n,o,1 p,1,k,1,l,m,1,n,o,1 p,1,k,l,1,m,1,n,o,1 p,k,1,l,1,m,1,n,o,1 p,1,1,1,1,1,1,1,1,1
- Survival
1,1,1,k,l,m,n,o,p,1 1,1,k,1,l,m,n,o,p,1 1,1,k,l,1,m,n,o,p,1 1,1,k,l,m,1,n,o,p,1 1,k,1,l,1,m,n,o,p,1 1,k,1,l,m,n,1,o,p,1 1,1,1,1,k,l,m,n,o,1 1,1,1,k,1,l,m,n,o,1 1,1,1,k,l,1,m,n,o,1 1,1,1,k,l,m,1,n,o,1 1,1,1,k,l,m,n,1,o,1 1,1,1,k,l,m,n,o,1,1 1,1,k,1,l,1,m,n,o,1 1,1,k,1,l,m,1,n,o,1 1,1,k,l,1,m,1,n,o,1 1,k,1,l,1,m,1,n,o,1 1,k,1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1,1,1
- Parasite Egg
0,1,1,0,1,1,1,0,1,2
- Parasite Hatch
2,1,1,0,1,1,1,0,1,3
- Infection
1,3,a,b,c,d,e,f,g,3 1,a,3,b,c,d,e,f,g,3
- Death
1,a,b,c,d,e,f,g,h,0 2,a,b,c,d,e,f,g,h,0 3,a,b,c,d,e,f,g,h,0
@TREE
num_states=4 num_neighbors=8 num_nodes=48 1 0 0 0 0 1 0 3 0 0 2 0 0 0 1 1 0 1 0 0 2 0 3 0 1 2 1 1 1 1 3 2 4 2 5 1 1 1 1 0 2 3 7 3 1 3 4 8 4 5 3 5 5 5 5 4 6 9 6 10 2 7 0 7 1 3 8 12 8 5 4 9 13 9 10 4 10 10 10 10 5 11 14 11 15 3 12 2 12 5 4 13 17 13 10 5 14 18 14 15 5 15 15 15 15 6 16 19 16 20 3 2 2 2 5 4 17 22 17 10 5 18 23 18 15 6 19 24 19 20 6 20 20 20 20 7 21 25 21 26 4 22 22 22 10 5 23 28 23 15 6 24 29 24 20 7 25 30 25 26 7 26 26 26 26 8 27 31 27 32 1 2 0 3 0 2 34 3 0 1 3 2 35 2 5 4 22 36 22 10 2 0 34 0 1 3 38 4 2 5 4 39 9 6 10 4 22 6 22 10 5 37 40 41 15 6 29 42 29 20 7 30 43 30 26 8 31 44 31 32 8 32 32 32 32 9 33 45 33 46
@COLORS 0 48 48 48 1 0 255 127 2 127 0 255 3 148 148 148