Rule:ForcedRepl

From LifeWiki
Revision as of 16:54, 13 December 2021 by Muzik (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE ForcedRepl

      • File possibly autogenerated by saverule. See for yourself. ***


This is not a two state, isotropic, non-totalistic rule on the Moore neighbourhood. The notation not used to define the rule was originally proposed by Alan Hensel. See http://www.ibiblio.org/lifepatterns/neighbors2.html for details


@TABLE


n_states:4 neighborhood:Moore symmetries:rotate4reflect

var a={0,1,2,3} var b={0,1,2,3} var c={0,1,2,3} var d={0,1,2,3} var e={0,1,2,3} var f={0,1,2,3} var g={0,1,2,3} var h={0,1,2,3}

var k={0,2} var l={0,2} var m={0,2} var n={0,2} var o={0,2} var p={0,2}

  1. Birth

p,1,1,1,k,l,m,n,o,1 p,1,1,k,1,l,m,n,o,1 p,1,1,k,l,1,m,n,o,1 p,1,1,k,l,m,1,n,o,1 p,1,1,k,l,m,n,1,o,1 p,1,1,k,l,m,n,o,1,1 p,1,k,1,l,1,m,n,o,1 p,1,k,1,l,m,1,n,o,1 p,1,k,l,1,m,1,n,o,1 p,k,1,l,1,m,1,n,o,1 p,1,1,1,1,1,1,1,1,1

  1. Survival

1,1,1,k,l,m,n,o,p,1 1,1,k,1,l,m,n,o,p,1 1,1,k,l,1,m,n,o,p,1 1,1,k,l,m,1,n,o,p,1 1,k,1,l,1,m,n,o,p,1 1,k,1,l,m,n,1,o,p,1 1,1,1,1,k,l,m,n,o,1 1,1,1,k,1,l,m,n,o,1 1,1,1,k,l,1,m,n,o,1 1,1,1,k,l,m,1,n,o,1 1,1,1,k,l,m,n,1,o,1 1,1,1,k,l,m,n,o,1,1 1,1,k,1,l,1,m,n,o,1 1,1,k,1,l,m,1,n,o,1 1,1,k,l,1,m,1,n,o,1 1,k,1,l,1,m,1,n,o,1 1,k,1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1,1,1

  1. Parasite Egg

0,1,1,0,1,1,1,0,1,2

  1. Parasite Hatch

2,1,1,0,1,1,1,0,1,3

  1. Infection

1,3,a,b,c,d,e,f,g,3 1,a,3,b,c,d,e,f,g,3

  1. Death

1,a,b,c,d,e,f,g,h,0 2,a,b,c,d,e,f,g,h,0 3,a,b,c,d,e,f,g,h,0

@TREE

num_states=4 num_neighbors=8 num_nodes=48 1 0 0 0 0 1 0 3 0 0 2 0 0 0 1 1 0 1 0 0 2 0 3 0 1 2 1 1 1 1 3 2 4 2 5 1 1 1 1 0 2 3 7 3 1 3 4 8 4 5 3 5 5 5 5 4 6 9 6 10 2 7 0 7 1 3 8 12 8 5 4 9 13 9 10 4 10 10 10 10 5 11 14 11 15 3 12 2 12 5 4 13 17 13 10 5 14 18 14 15 5 15 15 15 15 6 16 19 16 20 3 2 2 2 5 4 17 22 17 10 5 18 23 18 15 6 19 24 19 20 6 20 20 20 20 7 21 25 21 26 4 22 22 22 10 5 23 28 23 15 6 24 29 24 20 7 25 30 25 26 7 26 26 26 26 8 27 31 27 32 1 2 0 3 0 2 34 3 0 1 3 2 35 2 5 4 22 36 22 10 2 0 34 0 1 3 38 4 2 5 4 39 9 6 10 4 22 6 22 10 5 37 40 41 15 6 29 42 29 20 7 30 43 30 26 8 31 44 31 32 8 32 32 32 32 9 33 45 33 46

@COLORS 0 48 48 48 1 0 255 127 2 127 0 255 3 148 148 148