Rule:GeminoidParticles

From LifeWiki
Revision as of 22:34, 19 December 2019 by Dvgrn (talk | contribs) (Rule 'GeminoidParticles' from auto-import project)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE GeminoidParticles

https://conwaylife.com/forums/viewtopic.php?p=11513#p11513

@TREE

num_states=9 num_neighbors=8 num_nodes=254 1 0 0 1 1 1 5 6 7 0 1 2 0 1 1 1 0 6 0 0 1 3 0 1 1 1 0 6 0 0 1 4 0 1 1 1 0 6 0 0 1 0 1 0 0 0 5 0 0 8 2 0 0 1 2 3 0 0 0 4 1 0 1 0 0 0 5 6 7 8 2 0 0 0 0 0 0 0 0 6 1 2 0 1 1 1 5 6 7 0 2 1 0 0 0 0 8 8 8 6 1 3 0 1 1 1 5 6 7 0 2 2 0 0 0 0 10 10 0 6 1 5 0 1 1 1 5 6 7 0 1 4 0 1 1 1 5 6 7 0 2 3 0 0 0 12 13 13 0 6 2 0 0 8 10 13 0 0 0 6 2 0 0 8 0 0 0 0 0 6 1 0 1 2 3 4 5 6 7 8 2 4 6 6 6 6 6 6 6 17 3 5 7 9 11 14 15 15 16 18 2 6 6 6 6 6 6 6 6 17 3 7 7 7 7 7 7 7 7 20 2 8 0 0 0 0 0 0 0 6 3 9 7 7 7 7 22 22 22 20 2 10 0 0 0 0 0 0 0 6 3 11 7 7 7 7 24 24 24 20 1 7 0 1 1 1 5 6 7 0 2 26 0 0 0 0 0 0 0 6 2 13 0 0 0 0 0 0 0 6 3 14 7 7 7 27 28 28 28 20 3 15 7 22 24 28 7 7 7 20 1 8 0 1 1 1 5 6 7 0 2 31 0 0 0 0 0 0 0 6 3 16 7 22 24 28 7 7 32 20 2 17 17 17 17 17 17 17 17 17 3 18 20 20 20 20 20 20 20 34 4 19 21 23 25 29 30 30 33 35 3 20 20 20 20 20 20 20 20 34 4 21 21 21 21 21 21 21 21 37 3 22 7 7 7 7 7 7 7 20 4 23 21 21 21 21 39 39 39 37 2 2 0 0 0 0 10 10 10 6 3 41 7 7 7 7 24 24 7 20 3 24 7 7 7 7 7 7 7 20 4 42 21 21 21 21 43 43 21 37 2 3 0 0 0 26 13 13 13 6 2 12 0 0 0 0 0 0 0 6 3 45 7 7 7 46 28 28 7 20 3 46 7 7 7 7 7 7 7 20 3 28 7 7 7 7 7 7 7 20 4 47 21 21 21 48 49 49 21 37 4 30 21 39 43 49 21 21 21 37 2 0 0 8 10 13 0 0 31 6 3 52 7 22 7 7 7 7 7 20 4 53 21 39 21 21 21 21 21 37 3 34 34 34 34 34 34 34 34 34 4 35 37 37 37 37 37 37 37 55 5 36 38 40 44 50 51 51 54 56 1 0 0 1 1 1 5 6 0 0 2 0 0 58 0 0 0 0 58 6 1 0 0 1 1 1 0 6 7 0 2 58 0 60 0 0 0 0 0 6 2 0 0 0 60 0 0 0 0 6 2 0 0 0 0 60 0 0 0 6 2 58 0 0 0 0 0 0 0 6 3 59 7 61 62 63 7 7 64 20 1 0 0 1 1 6 5 6 7 0 2 66 0 0 0 0 0 0 0 6 3 7 7 7 7 67 7 7 7 20 3 15 7 7 7 7 7 7 7 20 1 1 0 1 1 1 5 6 7 0 2 0 0 0 26 70 0 0 0 6 3 71 7 7 7 7 7 7 7 20 4 65 68 39 43 49 69 69 72 37 2 0 0 0 0 66 0 0 0 6 3 74 7 7 7 7 7 7 7 20 4 75 21 21 21 21 21 21 21 37 4 39 21 21 21 21 21 21 21 37 4 43 21 21 21 21 21 21 21 37 4 49 21 21 21 21 21 21 21 37 3 7 7 22 24 28 7 7 7 20 4 80 21 21 21 21 21 21 21 37 2 70 0 0 0 0 0 0 0 6 3 7 7 7 27 82 7 7 7 20 4 83 21 21 21 21 21 21 21 37 4 37 37 37 37 37 37 37 37 55 5 73 76 77 78 79 81 81 84 85 2 0 0 0 0 0 0 0 26 6 3 87 7 7 7 7 7 7 27 20 3 32 7 7 7 7 7 7 7 20 4 88 21 21 21 21 21 89 21 37 4 89 21 21 21 21 21 21 21 37 5 90 38 38 38 38 38 91 38 85 4 21 21 21 21 21 21 89 21 37 5 93 38 38 38 38 38 91 38 85 4 21 21 21 21 49 21 89 21 37 5 95 38 38 38 79 38 91 38 85 5 51 38 77 78 79 38 38 38 85 2 0 0 0 0 0 0 0 0 17 3 98 7 7 7 7 7 7 7 20 4 30 99 39 43 49 21 21 21 37 2 17 6 6 6 6 6 6 6 17 3 7 7 7 7 7 7 7 7 101 4 102 21 21 21 21 21 21 21 37 5 100 103 77 78 79 38 38 38 85 1 0 0 1 1 4 5 6 7 0 2 105 0 0 0 0 0 0 0 6 3 106 7 7 7 7 7 7 7 20 4 21 107 39 43 49 21 21 21 37 4 107 21 21 21 21 21 21 21 37 5 108 109 77 78 79 38 38 38 85 4 55 55 55 55 55 55 55 55 55 5 111 111 111 111 111 111 111 111 111 6 57 86 92 94 96 97 104 110 112 3 59 7 22 24 28 15 15 71 20 3 61 7 7 7 7 7 7 7 20 3 62 7 7 7 7 7 7 7 20 3 63 67 7 7 7 7 7 7 20 3 64 7 7 7 7 7 7 7 20 4 114 21 115 116 117 21 21 118 37 4 21 21 39 43 49 21 21 21 37 3 27 7 7 7 7 7 7 7 20 3 82 7 7 7 7 7 7 7 20 4 21 21 21 121 122 21 21 21 37 5 119 76 77 78 79 120 120 123 85 5 38 38 38 38 38 38 38 38 85 6 124 125 125 125 125 125 125 125 112 3 87 7 7 7 7 7 32 7 20 4 127 21 21 21 21 21 21 121 37 5 128 38 38 38 38 38 91 38 85 6 129 125 125 125 125 125 125 125 112 3 7 7 7 7 7 7 32 7 20 4 131 21 21 21 21 21 21 21 37 5 132 38 38 38 38 38 91 38 85 6 133 125 125 125 125 125 125 125 112 3 7 7 7 7 28 7 32 7 20 4 135 21 21 21 21 21 21 21 37 5 136 38 38 38 79 38 91 38 85 6 137 125 125 125 125 125 125 125 112 6 97 125 125 125 125 125 125 125 112 3 15 98 22 24 28 7 7 7 20 4 140 21 39 43 49 21 21 21 37 3 101 20 20 20 20 20 20 20 34 4 21 21 21 21 21 21 21 21 142 5 141 143 77 78 79 38 38 38 85 6 144 125 125 125 125 125 125 125 112 3 7 106 22 24 28 7 7 7 20 4 146 21 21 21 21 21 21 21 37 5 147 109 77 78 79 38 38 38 85 6 148 125 125 125 125 125 125 125 112 6 112 112 112 112 112 112 112 112 112 7 113 126 130 134 138 139 145 149 150 2 58 0 0 0 0 8 8 0 6 2 0 0 0 0 0 10 10 26 6 2 0 0 0 0 0 13 13 70 6 3 15 7 152 153 154 7 7 64 20 4 155 68 39 43 49 21 21 21 37 2 60 0 0 0 0 0 0 0 6 3 64 7 157 7 7 7 7 7 20 4 158 21 21 21 21 39 39 21 37 3 7 7 7 157 7 7 7 7 20 4 160 21 21 21 21 43 43 121 37 2 0 66 0 0 0 0 0 0 6 3 162 7 7 7 157 7 7 7 20 4 163 21 21 21 21 49 49 122 37 4 118 21 21 21 21 21 21 21 37 5 156 38 159 161 164 38 38 165 85 6 166 125 125 125 125 125 125 125 112 6 125 125 125 125 125 125 125 125 112 7 167 168 168 168 168 168 168 168 150 2 0 0 0 0 0 0 31 0 6 3 170 7 7 7 7 7 7 27 20 4 171 21 21 21 21 21 89 21 37 4 121 21 21 21 21 21 21 21 37 5 172 38 38 38 38 38 38 173 85 6 174 125 125 125 125 125 125 125 112 7 175 168 168 168 168 168 168 168 150 3 170 7 7 7 7 7 7 7 20 4 177 21 21 21 21 21 89 21 37 5 178 38 38 38 38 38 38 38 85 6 179 125 125 125 125 125 125 125 112 7 180 168 168 168 168 168 168 168 150 2 0 0 0 0 13 0 31 0 6 3 182 7 7 7 7 7 7 7 20 4 183 21 21 21 49 21 89 21 37 5 184 38 38 38 38 38 38 38 85 6 185 125 125 125 125 125 125 125 112 7 186 168 168 168 168 168 168 168 150 7 139 168 168 168 168 168 168 168 150 2 6 17 6 6 6 6 6 6 17 3 15 7 22 24 28 7 7 7 189 4 190 21 39 43 49 21 21 21 37 4 37 142 37 37 37 37 37 37 55 5 191 38 77 78 79 38 38 38 192 6 193 125 125 125 125 125 125 125 112 7 194 168 168 168 168 168 168 168 150 2 0 105 8 10 13 0 0 0 6 3 196 7 7 7 7 7 7 7 20 4 197 107 39 43 49 21 21 21 37 5 198 38 38 38 38 38 38 38 85 6 199 125 125 125 125 125 125 125 112 7 200 168 168 168 168 168 168 168 150 7 150 150 150 150 150 150 150 150 150 8 151 169 176 181 187 188 195 201 202 3 152 7 7 7 7 7 7 7 20 3 153 7 7 7 7 7 7 7 20 3 154 67 7 7 7 7 7 7 20 4 30 21 204 205 206 21 21 118 37 3 64 7 7 7 7 22 22 7 20 3 157 7 7 7 7 7 7 7 20 4 208 21 209 21 21 21 21 21 37 3 7 7 7 7 7 24 24 27 20 4 211 21 21 209 21 21 21 21 37 3 162 7 7 7 7 28 28 82 20 4 213 21 21 21 209 21 21 21 37 5 207 38 210 212 214 38 38 165 85 6 215 125 125 125 125 125 125 125 112 7 216 168 168 168 168 168 168 168 150 7 168 168 168 168 168 168 168 168 150 8 217 218 218 218 218 218 218 218 202 3 170 7 7 7 7 7 32 7 20 4 220 21 21 21 21 21 21 121 37 5 221 38 38 38 38 38 38 173 85 6 222 125 125 125 125 125 125 125 112 7 223 168 168 168 168 168 168 168 150 8 224 218 218 218 218 218 218 218 202 4 220 21 21 21 21 21 21 21 37 5 226 38 38 38 38 38 38 38 85 6 227 125 125 125 125 125 125 125 112 7 228 168 168 168 168 168 168 168 150 8 229 218 218 218 218 218 218 218 202 3 182 7 7 7 28 7 32 7 20 4 231 21 21 21 21 21 21 21 37 5 232 38 38 38 38 38 38 38 85 6 233 125 125 125 125 125 125 125 112 7 234 168 168 168 168 168 168 168 150 8 235 218 218 218 218 218 218 218 202 8 188 218 218 218 218 218 218 218 202 3 189 20 20 20 20 20 20 20 34 4 30 21 39 43 49 21 21 21 238 3 20 101 20 20 20 20 20 20 34 4 240 37 37 37 37 37 37 37 55 5 239 38 77 78 79 38 38 38 241 6 242 125 125 125 125 125 125 125 112 7 243 168 168 168 168 168 168 168 150 8 244 218 218 218 218 218 218 218 202 3 196 106 22 24 28 7 7 7 20 4 246 21 21 21 21 21 21 21 37 5 247 38 38 38 38 38 38 38 85 6 248 125 125 125 125 125 125 125 112 7 249 168 168 168 168 168 168 168 150 8 250 218 218 218 218 218 218 218 202 8 202 202 202 202 202 202 202 202 202 9 203 219 225 230 236 237 245 251 252

@TABLE n_states:9 neighborhood:Moore symmetries:rotate4reflect

  1. 0 is ground, nothingness
  2. 1,tail
  3. 2, pusher
  4. 3, puller
  5. 4, reflect
  6. 5, destroyable reflector and blocker
  7. 6, stable reflector and blocker
  8. 7, dynamic block that pushed-pulled-reflected
  9. 8, death helper

var particle = {2,3,4} var static = {5,6,7} var ref = {5,6}

var any1 = {0,1,2,3,4,5,6,7} var any2 = {0,1,2,3,4,5,6,7} var any3 = {0,1,2,3,4,5,6,7} var any4 = {0,1,2,3,4,5,6,7} var any5 = {0,1,2,3,4,5,6,7} var any6 = {0,1,2,3,4,5,6,7} var any7 = {0,1,2,3,4,5,6,7} var any8 = {0,1,2,3,4,5,6,7}

0,particle,0,0,1,0,0,0,0,particle

  1. reflect

0,ref,0,particle,1,0,0,0,0,particle 0,particle,ref,0,0,0,0,0,0,particle 0,particle,0,ref,0,0,0,0,0,particle

5,particle,1,particle,0,0,0,0,0,0

  1. dynamic block

0,0,7,0,0,2,0,0,0,2 0,7,0,2,0,0,0,0,0,2 0,7,2,0,0,0,0,0,0,7 7,2,1,0,0,0,0,0,0,0

0,7,0,3,1,0,0,0,0,7 7,7,1,0,0,0,0,0,0,0

4,1,0,0,7,0,0,0,0,4 0,7,0,4,1,0,0,0,0,1

  1. interactions

0,4,0,4,0,0,0,0,0,5 0,4,0,0,0,0,4,0,0,4 4,4,1,0,0,1,0,0,0,6 0,4,0,0,0,4,0,0,0,7

  1. death

6,8,0,0,0,0,0,0,0,0 7,8,0,0,0,0,0,0,0,0

8,any1,any2,any3,any4,any5,any6,any7,any8,0 particle,1,0,8,6,0,0,0,0,particle 0,6,0,0,particle,0,0,0,0,8 particle,8,any2,any3,any4,any5,any6,any7,any8,0

5, particle,0,0,0,0,0,0,0,0 7, particle,0,0,0,0,0,0,0,0

0,7,0,0,0,7,0,0,0,8

  1. move rules

1,any1,any2,any3,any4,any5,any6,any7,any8,0

particle,any1,any2,any3,any4,any5,any6,any7,any8,1 0,particle,0,0,0,0,0,0,0,particle 0,particle,0,0,static,0,0,0,0,particle 0,static,0,0,0,particle,0,0,0,particle

@COLORS 0 0 0 0 1 255 255 255 2 0 95 191 3 255 216 25 4 226 22 56 5 57 229 22 6 255 101 25 8 120 120 120