Rule:Generations-with-B03-S012-23states-plus-NEWOFF

From LifeWiki
Revision as of 22:34, 19 December 2019 by Dvgrn (talk | contribs) (Rule 'Generations-with-B03-S012-23states-plus-NEWOFF' from auto-import project)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE Generations-with-B03-S012-23states-plus-NEWOFF

https://conwaylife.com/forums/viewtopic.php?p=37323#p42019

Rule table simulation of B0 Generations rule, for test purposes Start by building a block of state-23 cells to simulate OFF cells (because using actual OFF cells has bad effects in Golly,

  rapidly increasing population even with a bounded grid)

@TREE

num_states=24 num_neighbors=8 num_nodes=34 1 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 2 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23 2 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 6 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 7 11 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 8 12 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 3 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 4 11 15 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 5 12 16 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 6 13 17 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 3 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 4 15 19 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 5 16 20 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 6 17 21 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 7 18 22 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 4 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 5 20 24 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 21 25 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 7 22 26 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 8 23 27 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 5 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 6 25 29 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 7 26 30 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 8 27 31 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 9 28 32 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28

@TABLE

n_states:24 neighborhood:Moore symmetries:permute

var a={23,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var b={23,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var c={23,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var d={23,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var e={23,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var f={23,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var g={23,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var h={23,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22}

var m={23,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var n={23,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var o={23,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var p={23,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var q={23,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var r={23,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var s={23,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} var t={23,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22}

  1. NEWOFF cell turns ON if 0 or 3 ON neighbors

23,a,b,c,d,e,f,g,h,1 23,1,1,1,a,b,c,d,e,1

  1. ON cells remain ON if 0, 1, or 2 neighbors

1,a,b,c,d,e,f,g,h,1 1,1,a,b,c,d,e,f,g,1 1,1,1,a,b,c,d,e,f,1

  1. otherwise ON cells become slowly-dying NEWOFF cells

1,m,n,o,p,q,r,s,t,2 2,m,n,o,p,q,r,s,t,3 3,m,n,o,p,q,r,s,t,4 4,m,n,o,p,q,r,s,t,5 5,m,n,o,p,q,r,s,t,6 6,m,n,o,p,q,r,s,t,7 7,m,n,o,p,q,r,s,t,8 8,m,n,o,p,q,r,s,t,9 9,m,n,o,p,q,r,s,t,10 10,m,n,o,p,q,r,s,t,11 11,m,n,o,p,q,r,s,t,12 12,m,n,o,p,q,r,s,t,13 13,m,n,o,p,q,r,s,t,14 14,m,n,o,p,q,r,s,t,15 15,m,n,o,p,q,r,s,t,16 16,m,n,o,p,q,r,s,t,17 17,m,n,o,p,q,r,s,t,18 18,m,n,o,p,q,r,s,t,19 19,m,n,o,p,q,r,s,t,20 20,m,n,o,p,q,r,s,t,21 21,m,n,o,p,q,r,s,t,22 22,m,n,o,p,q,r,s,t,23

@COLORS

23 96 96 96