Rule:Greenstone
@RULE Greenstone
0:empty, untouched 1:wire state #1 2:wire state #2 3:wire state #1, toppled 4:special wire, untoppled 5:special wire, untoppled + ws #2 6:special wire, untoppled + toppled state 7:special wire, toppling 8:special wire, toppling + ws #2 9:special wire, toppling + toppled state 10:ws #2 toppled state 11:ws #2 with extra block 12:double toppled state 13:AND wire (special #1), untoppled 14:special wire toppled state for color consistency
@TABLE n_states:15 neighborhood:vonNeumann symmetries:permute
var all_0 = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14} var all_1 = all_0 var all_2 = all_0 var all_3 = all_0
var wire1_toppler = {3,6,9,10,12,14} var wire2_toppler = {3} var wiresp_toppler = {7,8,9,10} var wirebo_toppler = {3,7,8,9,10}
1,wire1_toppler,all_1,all_2,all_3,3 2,3,all_1,all_2,all_3,10
4,wirebo_toppler,all_1,all_2,all_3,7
5,wire2_toppler,wiresp_toppler,all_2,all_3,9 5,wire2_toppler,all_1,all_2,all_3,6 5,wiresp_toppler,all_1,all_2,all_3,8
6,wiresp_toppler,all_1,all_2,all_3,8
7,all_0,all_1,all_2,all_3,14 8,wire2_toppler,all_1,all_2,all_3,12 8,all_0,all_1,all_2,all_3,11 9,all_0,all_1,all_2,all_3,12
11,wire2_toppler,all_1,all_2,all_3,12
13,12,all_1,all_2,all_3,3
@COLORS 0 0 0 0 1 255 0 0 2 255 128 0 3 180 0 0 4 0 255 255 5 255 200 255 6 255 90 255 7 0 200 200 8 200 190 200 9 200 40 200 10 200 90 0 11 0 255 0 12 0 128 0 13 255 0 255 14 0 100 100