Rule:HexNashGraph

From LifeWiki
Revision as of 20:44, 2 January 2020 by Dvgrn (talk | contribs) (Rule 'HexNashGraph' from auto-import project)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE HexNashGraph Uploaded by HactarCE#5314 on Discord > An 11-state implementation of the graph-based automaton by HexNash on /r/cellular_automata

        • COMPILED FROM NUTSHELL ****

by HactarCE

0: blank 1: wire 2: wire 0 3: wire 1 4: node 5: node 0 6: node 1 7: input 8: input 0 9: input 1 10: tail


@TREE

num_states=11 num_neighbors=4 num_nodes=153 1 0 1 2 3 4 5 6 7 8 9 1 1 0 2 2 3 4 5 6 8 8 9 1 1 0 3 2 3 4 5 6 9 8 9 1 1 0 1 10 10 4 5 6 7 8 9 1 1 0 2 2 3 4 5 6 7 7 7 1 1 0 3 2 3 4 5 6 7 7 7 1 1 0 1 2 3 4 4 4 7 8 9 1 1 0 1 2 3 5 5 6 7 8 9 1 1 0 1 2 3 6 5 6 7 8 9 1 2 0 0 1 2 3 4 5 6 7 8 3 1 0 2 2 3 4 5 6 7 8 9 1 1 0 2 10 10 4 5 6 8 8 9 1 1 0 2 2 3 4 4 4 8 8 9 1 1 0 2 2 3 5 5 6 8 8 9 1 1 0 2 2 3 6 5 6 8 8 9 1 2 1 1 10 10 11 1 1 12 13 14 11 1 0 3 2 3 4 5 6 7 8 9 1 1 0 3 10 10 4 5 6 9 8 9 1 1 0 3 2 3 4 4 4 9 8 9 1 1 0 3 2 3 5 5 6 9 8 9 1 1 0 3 2 3 6 5 6 9 8 9 1 2 2 2 10 16 17 2 2 18 19 20 17 1 0 2 10 10 4 5 6 7 7 7 1 1 0 3 10 10 4 5 6 7 7 7 1 1 0 1 10 10 4 4 4 7 8 9 1 1 0 1 10 10 5 5 6 7 8 9 1 1 0 1 10 10 6 5 6 7 8 9 1 2 3 3 11 17 3 22 23 24 25 26 3 1 0 2 2 3 4 4 4 7 7 7 1 1 0 2 2 3 5 5 6 7 7 7 1 1 0 2 2 3 6 5 6 7 7 7 1 2 4 4 1 2 22 4 4 28 29 30 22 1 0 3 2 3 4 4 4 7 7 7 1 1 0 3 2 3 5 5 6 7 7 7 1 1 0 3 2 3 6 5 6 7 7 7 1 2 5 5 1 2 23 4 5 32 33 34 23 2 6 6 12 18 24 28 32 6 6 6 24 2 7 7 13 19 25 29 33 6 7 8 25 2 8 8 14 20 26 30 34 6 8 7 26 3 9 9 15 21 27 31 35 36 37 38 27 1 0 2 10 10 4 5 6 7 8 9 1 1 0 2 2 3 4 4 4 7 8 9 1 1 0 2 2 3 5 5 6 7 8 9 1 1 0 2 2 3 6 5 6 7 8 9 1 2 10 10 10 10 40 10 10 41 42 43 40 1 0 2 10 10 4 4 4 8 8 9 1 1 0 2 10 10 5 5 6 8 8 9 1 1 0 2 10 10 6 5 6 8 8 9 1 2 11 11 40 40 11 11 11 45 46 47 11 2 12 12 41 41 45 12 12 12 12 12 45 2 13 13 42 42 46 13 13 12 13 14 46 2 14 14 43 43 47 14 14 12 14 13 47 3 15 15 44 44 48 15 15 49 50 51 48 1 0 3 10 10 4 5 6 7 8 9 1 1 0 3 2 3 4 4 4 7 8 9 1 1 0 3 2 3 5 5 6 7 8 9 1 1 0 3 2 3 6 5 6 7 8 9 1 2 16 16 10 16 53 16 16 54 55 56 53 1 0 3 10 10 4 4 4 9 8 9 1 1 0 3 10 10 5 5 6 9 8 9 1 1 0 3 10 10 6 5 6 9 8 9 1 2 17 17 40 53 17 17 17 58 59 60 17 2 18 18 41 54 58 18 18 18 18 18 58 2 19 19 42 55 59 19 19 18 19 20 59 2 20 20 43 56 60 20 20 18 20 19 60 3 21 21 44 57 61 21 21 62 63 64 61 1 0 2 10 10 4 4 4 7 7 7 1 1 0 2 10 10 5 5 6 7 7 7 1 1 0 2 10 10 6 5 6 7 7 7 1 2 22 22 11 17 22 22 22 66 67 68 22 1 0 3 10 10 4 4 4 7 7 7 1 1 0 3 10 10 5 5 6 7 7 7 1 1 0 3 10 10 6 5 6 7 7 7 1 2 23 23 11 17 23 22 23 70 71 72 23 2 24 24 45 58 24 66 70 24 24 24 24 2 25 25 46 59 25 67 71 24 25 26 25 2 26 26 47 60 26 68 72 24 26 25 26 3 27 27 48 61 27 69 73 74 75 76 27 2 28 28 12 18 66 28 28 28 28 28 66 2 29 29 13 19 67 29 29 28 29 30 67 2 30 30 14 20 68 30 30 28 30 29 68 3 31 31 15 21 69 31 31 78 79 80 69 2 32 32 12 18 70 28 32 32 32 32 70 2 33 33 13 19 71 29 33 32 33 34 71 2 34 34 14 20 72 30 34 32 34 33 72 3 35 35 15 21 73 31 35 82 83 84 73 3 36 36 49 62 74 78 82 36 36 36 74 3 37 37 50 63 75 79 83 36 37 38 75 2 7 7 13 19 25 29 33 6 7 7 25 3 38 38 51 64 76 80 84 36 38 88 76 4 39 39 52 65 77 81 85 86 87 89 77 1 0 2 10 10 4 4 4 7 8 9 1 1 0 2 10 10 5 5 6 7 8 9 1 1 0 2 10 10 6 5 6 7 8 9 1 2 40 40 40 40 40 40 40 91 92 93 40 2 41 41 41 41 91 41 41 41 41 41 91 2 42 42 42 42 92 42 42 41 42 43 92 2 43 43 43 43 93 43 43 41 43 42 93 3 44 44 44 44 94 44 44 95 96 97 94 2 45 45 91 91 45 45 45 45 45 45 45 2 46 46 92 92 46 46 46 45 46 47 46 2 47 47 93 93 47 47 47 45 47 46 47 3 48 48 94 94 48 48 48 99 100 101 48 3 49 49 95 95 99 49 49 49 49 49 99 3 50 50 96 96 100 50 50 49 50 51 100 2 13 13 42 42 46 13 13 12 13 13 46 3 51 51 97 97 101 51 51 49 51 105 101 4 52 52 98 98 102 52 52 103 104 106 102 1 0 3 10 10 4 4 4 7 8 9 1 1 0 3 10 10 5 5 6 7 8 9 1 1 0 3 10 10 6 5 6 7 8 9 1 2 53 53 40 53 53 53 53 108 109 110 53 2 54 54 41 54 108 54 54 54 54 54 108 2 55 55 42 55 109 55 55 54 55 56 109 2 56 56 43 56 110 56 56 54 56 55 110 3 57 57 44 57 111 57 57 112 113 114 111 2 58 58 91 108 58 58 58 58 58 58 58 2 59 59 92 109 59 59 59 58 59 60 59 2 60 60 93 110 60 60 60 58 60 59 60 3 61 61 94 111 61 61 61 116 117 118 61 3 62 62 95 112 116 62 62 62 62 62 116 3 63 63 96 113 117 63 63 62 63 64 117 2 19 19 42 55 59 19 19 18 19 19 59 3 64 64 97 114 118 64 64 62 64 122 118 4 65 65 98 115 119 65 65 120 121 123 119 2 66 66 45 58 66 66 66 66 66 66 66 2 67 67 46 59 67 67 67 66 67 68 67 2 68 68 47 60 68 68 68 66 68 67 68 3 69 69 48 61 69 69 69 125 126 127 69 2 70 70 45 58 70 66 70 70 70 70 70 2 71 71 46 59 71 67 71 70 71 72 71 2 72 72 47 60 72 68 72 70 72 71 72 3 73 73 48 61 73 69 73 129 130 131 73 3 74 74 99 116 74 125 129 74 74 74 74 3 75 75 100 117 75 126 130 74 75 76 75 2 25 25 46 59 25 67 71 24 25 25 25 3 76 76 101 118 76 127 131 74 76 135 76 4 77 77 102 119 77 128 132 133 134 136 77 3 78 78 49 62 125 78 78 78 78 78 125 3 79 79 50 63 126 79 79 78 79 80 126 2 29 29 13 19 67 29 29 28 29 29 67 3 80 80 51 64 127 80 80 78 80 140 127 4 81 81 52 65 128 81 81 138 139 141 128 3 82 82 49 62 129 78 82 82 82 82 129 3 83 83 50 63 130 79 83 82 83 84 130 2 33 33 13 19 71 29 33 32 33 33 71 3 84 84 51 64 131 80 84 82 84 145 131 4 85 85 52 65 132 81 85 143 144 146 132 4 86 86 103 120 133 138 143 86 86 86 133 4 87 87 104 121 134 139 144 86 87 89 134 3 88 88 105 122 135 140 145 36 88 88 135 4 89 89 106 123 136 141 146 86 89 150 136 5 90 90 107 124 137 142 147 148 149 151 137

@TABLE neighborhood: vonNeumann symmetries: permute n_states: 11

var any.0 = {0,1,2,3,4,5,6,7,8,9,10} var any.1 = any.0 var any.2 = any.0 var any.3 = any.0 var wN.0 = {2,3} var nN.0 = {5,6} var iN.0 = {8,9} var n_.0 = {4,5,6} var _a0.0 = {10,4} var _b0.0 = {0,1,4,5,6,7,8,9,10} var _b0.1 = _b0.0 var _b0.2 = _b0.0 var _c0.0 = {0,1,2,3,4,5,6,10} var _c0.1 = _c0.0 var _c0.2 = _c0.0 var _c0.3 = _c0.0 var _d0.0 = {0,1,2,3,4,5,6,8,9,10} var _d0.1 = _d0.0 var _d0.2 = _d0.0 var _e0.0 = {0,1,2,3,4,5,6,8,10} var _e0.1 = _e0.0 var _e0.2 = _e0.0

1, wN.0, any.0, any.1, any.2, wN.0 1, 5, any.0, any.1, any.2, 2 1, 6, any.0, any.1, any.2, 3 wN.0, _a0.0, any.0, any.1, any.2, 10 10, any.0, any.1, any.2, any.3, 1 7, 2, _b0.0, _b0.1, _b0.2, 8 7, 3, _b0.0, _b0.1, _b0.2, 9 iN.0, nN.0, _b0.0, _b0.1, _b0.2, 7 n_.0, _c0.0, _c0.1, _c0.2, _c0.3, n_.0 nN.0, 7, any.0, any.1, any.2, 4 4, 9, 9, _d0.0, _d0.1, 5 4, 9, _e0.0, _e0.1, _e0.2, 6 4, 8, _d0.0, _d0.1, _d0.2, 5

@COLORS 0 0 0 0 1 153 153 153 2 102 102 102 3 255 255 255 4 0 153 153 5 0 102 102 6 0 255 255 7 153 0 153 8 102 0 102 9 255 0 255 10 51 51 51