Rule:IPhotons

From LifeWiki
Revision as of 20:44, 2 January 2020 by Dvgrn (talk | contribs) (Rule 'IPhotons' from auto-import project)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE IPhotons Uploaded by Ian07#6028 on Discord > variant of RePhotons by Ian07 (photon collisions work a bit differently)

@TREE

num_states=9 num_neighbors=4 num_nodes=164 1 0 1 0 0 0 0 6 0 0 1 0 1 0 3 0 0 6 0 0 1 3 1 0 3 0 0 6 0 0 2 0 0 1 2 1 1 0 2 1 1 0 1 0 0 4 0 6 0 0 1 0 1 0 3 4 0 6 0 0 1 3 1 0 3 4 0 6 0 0 2 4 4 5 6 5 5 4 6 5 1 4 1 0 0 4 0 6 0 0 1 4 1 0 3 4 0 6 0 0 2 8 8 9 5 9 9 8 9 9 2 8 8 9 6 9 9 8 6 9 3 3 3 7 7 10 7 3 7 11 1 0 1 0 0 0 5 6 0 0 1 0 1 0 3 0 5 6 0 0 1 3 1 0 3 0 5 6 0 0 2 13 13 14 15 14 14 13 15 14 1 0 1 0 0 4 5 6 0 0 1 0 1 0 3 4 5 6 0 0 1 3 1 0 3 4 5 6 0 0 2 17 17 18 19 18 18 17 19 18 1 4 1 0 0 4 5 6 0 0 1 4 1 0 3 4 5 6 0 0 2 21 21 22 18 22 22 21 22 22 2 21 21 22 19 22 22 21 19 22 3 16 16 20 20 23 20 16 20 24 1 5 1 0 0 0 5 6 0 0 1 5 1 0 3 0 5 6 0 0 2 26 26 27 14 27 27 26 27 27 1 5 1 0 0 4 5 6 0 0 1 5 1 0 3 4 5 6 0 0 2 29 29 30 18 30 30 29 30 30 1 7 1 0 0 4 5 6 0 0 1 7 1 0 3 4 5 6 0 0 2 32 32 33 18 33 33 32 33 33 1 7 1 0 0 0 5 6 0 0 1 7 1 0 3 0 5 6 0 0 2 35 35 36 36 36 36 35 36 36 3 28 28 31 31 34 31 37 31 31 1 7 1 0 0 4 0 6 0 0 1 7 1 0 3 4 0 6 0 0 2 39 39 40 40 40 40 39 40 40 3 3 3 7 7 41 7 3 7 41 2 26 26 27 15 27 27 26 15 27 2 29 29 30 19 30 30 29 19 30 3 43 43 44 44 23 44 37 44 24 4 12 12 25 25 25 38 42 25 45 1 2 1 2 0 0 0 6 0 0 1 2 1 2 3 0 0 6 0 0 1 8 1 2 3 0 0 6 0 0 1 8 1 2 0 0 0 6 0 0 2 47 47 48 49 48 48 50 48 48 1 2 1 2 0 4 0 6 0 0 1 2 1 2 3 4 0 6 0 0 1 8 1 2 3 4 0 6 0 0 1 8 1 2 0 4 0 6 0 0 2 52 52 53 54 53 53 55 53 53 1 0 1 2 0 4 0 6 0 0 1 0 1 2 3 4 0 6 0 0 2 57 57 58 58 58 58 55 58 58 3 51 51 56 56 59 56 51 56 56 1 2 1 2 0 0 5 6 0 0 1 2 1 2 3 0 5 6 0 0 1 8 1 2 3 0 5 6 0 0 1 8 1 2 0 0 5 6 0 0 2 61 61 62 63 62 62 64 62 62 1 2 1 2 0 4 5 6 0 0 1 2 1 2 3 4 5 6 0 0 1 8 1 2 3 4 5 6 0 0 1 8 1 2 0 4 5 6 0 0 2 66 66 67 68 67 67 69 67 67 1 0 1 2 0 4 5 6 0 0 1 0 1 2 3 4 5 6 0 0 2 71 71 72 72 72 72 69 72 72 3 65 65 70 70 73 70 65 70 70 1 0 1 2 0 0 5 6 0 0 1 0 1 2 3 0 5 6 0 0 2 75 75 76 76 76 76 64 76 76 1 7 1 2 0 0 5 6 0 0 1 7 1 2 3 0 5 6 0 0 2 78 78 79 79 79 79 64 79 79 3 77 77 73 73 73 73 80 73 73 1 7 1 2 0 4 0 6 0 0 1 7 1 2 3 4 0 6 0 0 2 82 82 83 83 83 83 55 83 83 3 51 51 56 56 84 56 51 56 84 3 65 65 70 70 73 70 80 70 70 4 60 60 74 74 74 81 85 74 86 1 0 1 2 0 0 0 6 0 0 1 0 1 2 3 0 0 6 0 0 1 3 1 2 3 0 0 6 0 0 2 88 88 89 90 89 89 88 90 89 1 3 1 2 3 4 0 6 0 0 2 57 57 58 92 58 58 57 92 58 1 4 1 2 0 4 0 6 0 0 1 4 1 2 3 4 0 6 0 0 2 94 94 95 58 95 95 94 95 95 2 94 94 95 92 95 95 94 92 95 3 91 91 93 93 96 93 91 93 97 1 3 1 2 3 0 5 6 0 0 2 75 75 76 99 76 76 75 99 76 1 3 1 2 3 4 5 6 0 0 2 71 71 72 101 72 72 71 101 72 1 4 1 2 0 4 5 6 0 0 1 4 1 2 3 4 5 6 0 0 2 103 103 104 72 104 104 103 104 104 2 103 103 104 101 104 104 103 101 104 3 100 100 102 102 105 102 100 102 106 1 5 1 2 0 0 5 6 0 0 1 5 1 2 3 0 5 6 0 0 2 108 108 109 76 109 109 108 109 109 1 5 1 2 0 4 5 6 0 0 1 5 1 2 3 4 5 6 0 0 2 111 111 112 72 112 112 111 112 112 1 7 1 2 0 4 5 6 0 0 1 7 1 2 3 4 5 6 0 0 2 114 114 115 72 115 115 114 115 115 2 78 78 79 79 79 79 78 79 79 3 110 110 113 113 116 113 117 113 113 2 82 82 83 83 83 83 82 83 83 3 91 91 93 93 119 93 91 93 119 2 108 108 109 99 109 109 108 99 109 2 111 111 112 101 112 112 111 101 112 3 121 121 122 122 105 122 117 122 106 4 98 98 107 107 107 118 120 107 123 1 8 1 0 3 0 0 6 0 0 2 0 0 1 125 1 1 0 125 1 1 8 1 0 3 4 0 6 0 0 2 4 4 5 127 5 5 4 127 5 2 8 8 9 127 9 9 8 127 9 3 126 126 128 128 129 128 126 128 129 1 8 1 0 3 0 5 6 0 0 2 13 13 14 131 14 14 13 131 14 1 8 1 0 3 4 5 6 0 0 2 17 17 18 133 18 18 17 133 18 2 21 21 22 133 22 22 21 133 22 3 132 132 134 134 135 134 132 134 135 2 26 26 27 131 27 27 26 131 27 2 29 29 30 133 30 30 29 133 30 2 32 32 33 133 33 33 32 133 33 2 35 35 36 131 36 36 35 36 36 3 137 137 138 138 139 138 140 138 138 2 39 39 40 127 40 40 39 40 40 2 39 39 40 127 40 40 39 127 40 3 126 126 128 128 142 128 126 128 143 2 35 35 36 131 36 36 35 131 36 3 137 137 138 138 135 138 145 138 135 4 130 130 136 136 136 141 144 136 146 2 47 47 48 90 48 48 50 48 48 2 52 52 53 92 53 53 55 53 53 2 94 94 95 58 95 95 55 95 95 3 148 148 149 149 150 149 148 149 149 2 61 61 62 99 62 62 64 62 62 2 66 66 67 101 67 67 69 67 67 2 103 103 104 72 104 104 69 104 104 3 152 152 153 153 154 153 152 153 153 2 108 108 109 76 109 109 64 109 109 2 111 111 112 72 112 112 69 112 112 2 114 114 115 72 115 115 69 115 115 3 156 156 157 157 158 157 117 157 157 3 148 148 149 149 119 149 148 149 84 3 152 152 153 153 154 153 80 153 153 4 151 151 155 155 155 159 160 155 161 5 46 46 87 124 124 124 147 162 124

@TABLE

n_states: 9

neighborhood: vonNeumann

symmetries: none


var a={0,1,2,3,4,5,6,7,8} var b=a

var c=a

var d=a


var np={0,1,6}

0,2,b,6,d,8

0,6,b,3,d,8

0,a,4,b,6,7

0,a,6,b,5,7


0,7,b,6,d,8

0,6,b,7,d,8

0,a,8,b,6,7

0,a,6,b,8,7


0,2,4,a,b,0 0,2,a,b,5,0 0,a,4,3,b,0 0,a,b,3,5,0 0,2,a,3,c,8

0,2,a,b,c,2

0,a,b,3,c,3

0,a,4,c,5,7 0,a,4,c,d,4

0,a,b,c,5,5

  1. photons being split

0,7,a,b,c,2

0,a,b,7,c,3

0,a,8,b,c,4

0,a,b,c,8,5


  1. photons dissapearing

2,np,b,c,d,0

3,a,b,np,d,0

4,a,np,c,d,0

5,a,b,c,np,0

7,a,b,c,d,0

8,a,b,c,d,0


@COLORS

0 48 48 48

1 0 0 0

2 255 0 0

3 0 255 0

4 0 0 255

5 255 0 255

6 255 128 0

7 255 255 255

8 255 255 255