Rule:Interaction-test

From LifeWiki
Revision as of 01:43, 10 April 2024 by Dvgrn (talk | contribs) (See octohash review work at https://conwaylife.com/forums/viewtopic.php?p=182208#p182208)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE Interaction-test

State 1 and state 3 patterns each follow B3/S23 as long as they don't interact. If there is an interaction, state 3 patterns gradually become state 1 (with some help from state 2 if there is no direct contact).

@TABLE n_states:4 neighborhood:Moore symmetries:permute

var a = {1,3} var b = {a} var c = {a} var d = {a} var e = {a} var f = {a} var g = {a} var h = {a} var i = {a}

var o1 = {0,2} var o2 = {o1} var o3 = {o1} var o4 = {o1} var o5 = {o1} var o6 = {o1} var o7 = {o1} var o8 = {o1} var o9 = {o1}

var any1 = {0,1,2,3} var any2 = {any1} var any3 = {any1} var any4 = {any1} var any5 = {any1} var any6 = {any1} var any7 = {any1} var any8 = {any1} var any9 = {any1}

  1. surviving live cells become state 1, except if only state 3 and state 0 cells are involved

3,3,3,0,0,0,0,0,0,3 3,3,3,3,0,0,0,0,0,3

a,b,c,o1,o2,o3,o4,o5,o6,1 a,b,c,d,o1,o2,o3,o4,o5,1

  1. underpopulated or overpopulated live cells die

a,o1,o2,o3,o4,o5,o6,o7,o8,0 a,b,o1,o2,o3,o4,o5,o6,o7,0

a,b,c,d,e,o1,o2,o3,o4,0 a,b,c,d,e,f,o1,o2,o3,0 a,b,c,d,e,f,g,o1,o2,0 a,b,c,d,e,f,g,h,o1,0 a,b,c,d,e,f,g,h,i,0

  1. dead cells with three living neighbours become state 1 except when only state 3 and state 0 cells are involved

0,3,3,3,0,0,0,0,0,3 o1,a,b,c,o2,o3,o4,o5,o6,1

  1. overpopulated dead cells become state 2 only when the middle cell is state 0
  2. and some state 1 and state 3 cells are involved

0,1,3,d,e,o1,o2,o3,o4,2 0,1,3,d,e,f,o1,o2,o3,2 0,1,3,d,e,f,g,o1,o2,2 0,1,3,d,e,f,g,h,o1,2 0,1,3,d,e,f,g,h,i,2

o1,a,b,c,d,o1,o2,o3,o4,0 o1,a,b,c,d,e,o1,o2,o3,0 o1,a,b,c,d,e,f,o1,o2,0 o1,a,b,c,d,e,f,g,o1,0 o1,a,b,c,d,e,f,g,h,0

  1. otherwise, state 2 cells die

2,any1,any2,any3,any4,any5,any6,any7,any8,0

@TREE

num_states=4 num_neighbors=8 num_nodes=90 1 0 0 0 0 2 0 0 0 0 1 0 1 0 1 2 0 2 0 2 1 0 1 0 3 2 0 2 0 4 3 1 3 1 5 1 1 1 1 1 2 2 7 2 7 3 3 8 3 8 3 1 3 1 3 1 3 1 1 3 2 4 7 2 11 3 5 8 3 12 4 6 9 10 13 1 2 0 0 0 2 7 0 7 15 2 7 15 7 15 3 8 16 8 17 3 8 17 8 17 4 9 18 9 19 4 10 9 10 9 2 11 15 7 0 3 12 17 8 22 4 13 19 9 23 5 14 20 21 24 2 0 0 0 15 2 15 15 15 15 3 16 26 16 27 3 17 27 17 27 4 18 28 18 29 4 19 29 19 29 5 20 30 20 31 2 7 15 7 0 3 8 17 8 33 4 9 19 9 34 5 21 20 21 35 2 0 15 0 0 3 22 27 33 37 4 23 29 34 38 5 24 31 35 39 6 25 32 36 40 3 26 26 26 27 3 27 27 27 27 4 28 42 28 43 4 29 43 29 43 5 30 44 30 45 5 31 45 31 45 6 32 46 32 47 3 33 27 33 37 4 34 29 34 49 5 35 31 35 50 6 36 32 36 51 3 37 27 37 37 4 38 43 49 53 5 39 45 50 54 6 40 47 51 55 7 41 48 52 56 4 42 42 42 43 4 43 43 43 43 5 44 58 44 59 5 45 59 45 59 6 46 60 46 61 6 47 61 47 61 7 48 62 48 63 4 49 43 49 53 5 50 45 50 65 6 51 47 51 66 7 52 48 52 67 4 53 43 53 53 5 54 59 65 69 6 55 61 66 70 7 56 63 67 71 8 57 64 68 72 5 58 58 58 59 5 59 59 59 59 6 60 74 60 75 6 61 75 61 75 7 62 76 62 77 7 63 77 63 77 8 64 78 64 79 5 65 59 65 69 6 66 61 66 81 7 67 63 67 82 8 68 64 68 83 5 69 59 69 69 6 70 75 81 85 7 71 77 82 86 8 72 79 83 87 9 73 80 84 88

@COLORS 1 0 255 0 2 0 0 128 3 216 255 216