Rule:Limpl
@RULE Limpl Uploaded by None on Discord > Bx/S(x-1)x for all x (thank dui)
@TREE
num_states=19 num_neighbors=8 num_nodes=45 1 0 1 2 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 18 1 0 1 10 3 4 5 6 7 8 9 10 11 4 5 6 7 8 9 18 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 2 11 4 5 6 7 8 9 2 11 12 5 6 7 8 9 18 2 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 1 0 1 2 3 12 5 6 7 8 9 2 3 12 13 6 7 8 9 18 2 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 3 4 4 4 4 4 4 4 4 4 4 7 7 7 7 7 7 7 7 7 4 5 5 5 5 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8 1 0 1 2 3 4 13 6 7 8 9 2 3 4 13 14 7 8 9 18 2 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 10 10 3 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 4 8 8 8 8 8 8 8 8 8 8 12 12 12 12 12 12 12 12 12 5 9 9 9 9 9 9 9 9 9 9 13 13 13 13 13 13 13 13 13 1 0 1 2 3 4 5 14 7 8 9 2 3 4 5 14 15 8 9 18 2 10 10 10 10 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 3 11 11 11 11 11 11 11 11 11 11 16 16 16 16 16 16 16 16 16 4 12 12 12 12 12 12 12 12 12 12 17 17 17 17 17 17 17 17 17 5 13 13 13 13 13 13 13 13 13 13 18 18 18 18 18 18 18 18 18 6 14 14 14 14 14 14 14 14 14 14 19 19 19 19 19 19 19 19 19 1 0 1 2 3 4 5 6 15 8 9 2 3 4 5 6 15 16 9 18 2 15 15 15 15 15 15 15 15 15 15 21 21 21 21 21 21 21 21 21 3 16 16 16 16 16 16 16 16 16 16 22 22 22 22 22 22 22 22 22 4 17 17 17 17 17 17 17 17 17 17 23 23 23 23 23 23 23 23 23 5 18 18 18 18 18 18 18 18 18 18 24 24 24 24 24 24 24 24 24 6 19 19 19 19 19 19 19 19 19 19 25 25 25 25 25 25 25 25 25 7 20 20 20 20 20 20 20 20 20 20 26 26 26 26 26 26 26 26 26 1 0 1 2 3 4 5 6 7 16 9 2 3 4 5 6 7 16 17 18 2 21 21 21 21 21 21 21 21 21 21 28 28 28 28 28 28 28 28 28 3 22 22 22 22 22 22 22 22 22 22 29 29 29 29 29 29 29 29 29 4 23 23 23 23 23 23 23 23 23 23 30 30 30 30 30 30 30 30 30 5 24 24 24 24 24 24 24 24 24 24 31 31 31 31 31 31 31 31 31 6 25 25 25 25 25 25 25 25 25 25 32 32 32 32 32 32 32 32 32 7 26 26 26 26 26 26 26 26 26 26 33 33 33 33 33 33 33 33 33 8 27 27 27 27 27 27 27 27 27 27 34 34 34 34 34 34 34 34 34 1 0 1 2 3 4 5 6 7 8 17 2 3 4 5 6 7 8 17 18 2 28 28 28 28 28 28 28 28 28 28 36 36 36 36 36 36 36 36 36 3 29 29 29 29 29 29 29 29 29 29 37 37 37 37 37 37 37 37 37 4 30 30 30 30 30 30 30 30 30 30 38 38 38 38 38 38 38 38 38 5 31 31 31 31 31 31 31 31 31 31 39 39 39 39 39 39 39 39 39 6 32 32 32 32 32 32 32 32 32 32 40 40 40 40 40 40 40 40 40 7 33 33 33 33 33 33 33 33 33 33 41 41 41 41 41 41 41 41 41 8 34 34 34 34 34 34 34 34 34 34 42 42 42 42 42 42 42 42 42 9 35 35 35 35 35 35 35 35 35 35 43 43 43 43 43 43 43 43 43
@TABLE
n_states:19 neighborhood:Moore symmetries:permute
var on = {10,11,12,13,14,15,16,17,18} var ona = on var onb = on var onc = on var ond = on var one = on var onf = on var ong = on var off = {0,1,2,3,4,5,6,7,8,9} var offa = off var offb = off var offc = off var offd = off var offe = off var offf = off var offg = off var any = {on,off} var any2 = any var any3 = any var any4 = any var any5 = any var any6 = any var any7 = any var any8 = any
2,on,offa,offb,offc,offd,offe,offf,offg,10 10,off,offa,offb,offc,offd,offe,offf,offg,10 10,on,offa,offb,offc,offd,offe,offf,offg,10 10,any,any2,any3,any4,any5,any6,any7,any8,2
3,on,ona,offb,offc,offd,offe,offf,offg,11 11,on,offa,offb,offc,offd,offe,offf,offg,11 11,on,ona,offb,offc,offd,offe,offf,offg,11 11,any,any2,any3,any4,any5,any6,any7,any8,3
4,on,ona,onb,offc,offd,offe,offf,offg,12 12,on,ona,offb,offc,offd,offe,offf,offg,12 12,on,ona,onb,offc,offd,offe,offf,offg,12 12,any,any2,any3,any4,any5,any6,any7,any8,4
5,on,ona,onb,onc,offd,offe,offf,offg,13 13,on,ona,onb,offc,offd,offe,offf,offg,13 13,on,ona,onb,onc,offd,offe,offf,offg,13 13,any,any2,any3,any4,any5,any6,any7,any8,5
6,on,ona,onb,onc,ond,offe,offf,offg,14 14,on,ona,onb,onc,offd,offe,offf,offg,14 14,on,ona,onb,onc,ond,offe,offf,offg,14 14,any,any2,any3,any4,any5,any6,any7,any8,6
7,on,ona,onb,onc,ond,one,offf,offg,15 15,on,ona,onb,onc,ond,offe,offf,offg,15 15,on,ona,onb,onc,ond,one,offf,offg,15 15,any,any2,any3,any4,any5,any6,any7,any8,7
8,on,ona,onb,onc,ond,one,onf,offg,16 16,on,ona,onb,onc,ond,one,offf,offg,16 16,on,ona,onb,onc,ond,one,onf,offg,16 16,any,any2,any3,any4,any5,any6,any7,any8,8
9,on,ona,onb,onc,ond,one,onf,ong,17 17,on,ona,onb,onc,ond,one,onf,offg,17 17,on,ona,onb,onc,ond,one,onf,ong,17 17,any,any2,any3,any4,any5,any6,any7,any8,9
@COLORS
0 128 128 128 1 0 0 0
2 110 0 0 3 110 80 0 4 30 110 0 5 0 110 50 6 0 110 110 7 0 50 110 8 30 0 110 9 110 0 80
10 255 145 145 11 255 225 145 12 175 255 145 13 145 255 195 14 145 255 255 15 145 195 255 16 175 255 145 17 255 145 225
18 255 255 255