Rule:Linepuffers c 3
@RULE linepuffers_c_3 @TABLE n_states:9 neighborhood:Moore symmetries:rotate4reflect
var a={0,1,2,3,4,5,6,7,8} var b=a var c=b var d=c var e=d var f=e var g=f var h=g var i=h
var A={1,2,3,4,5,6,7,8} var B=A var C=B var D=C var E=D var F=E var G=F var H=G var I=H
0,1,1,1,0,0,0,0,0,1 0,1,1,0,1,0,0,0,0,1 0,1,1,0,0,1,0,0,0,1 0,1,1,0,0,0,1,0,0,1 0,1,1,0,0,0,0,1,0,1 0,1,1,0,0,0,0,0,1,1 0,1,0,1,0,1,0,0,0,1 0,1,0,1,0,0,1,0,0,1 0,1,0,0,1,0,1,0,0,1 0,0,1,0,1,0,1,0,0,1 1,0,0,0,0,0,0,0,0,0 1,1,0,0,0,0,0,0,0,0 1,0,1,0,0,0,0,0,0,0 1,1,1,1,1,0,0,0,0,0 1,1,1,1,0,1,0,0,0,0 1,1,1,1,0,0,1,0,0,0 1,1,1,0,1,1,0,0,0,0 1,1,1,0,1,0,1,0,0,0 1,1,1,0,1,0,0,1,0,0 1,1,1,0,1,0,0,0,1,0 1,1,1,0,0,1,1,0,0,0 1,1,1,0,0,1,0,1,0,0 1,1,1,0,0,1,0,0,1,0 1,1,1,0,0,0,1,1,0,0 1,1,0,1,0,1,0,1,0,0 1,0,1,0,1,0,1,0,1,0 1,0,0,0,1,1,1,1,1,0 1,0,0,1,0,1,1,1,1,0 1,0,0,1,1,0,1,1,1,0 1,0,0,1,1,1,0,1,1,0 1,0,0,1,1,1,1,0,1,0 1,0,0,1,1,1,1,1,0,0 1,0,1,0,1,0,1,1,1,0 1,0,1,0,1,1,0,1,1,0 1,0,1,1,0,1,0,1,1,0 1,1,0,1,0,1,0,1,1,0 1,0,0,1,1,1,1,1,1,0 1,0,1,0,1,1,1,1,1,0 1,0,1,1,0,1,1,1,1,0 1,0,1,1,1,0,1,1,1,0 1,1,0,1,0,1,1,1,1,0 1,1,0,1,1,1,0,1,1,0 1,0,1,1,1,1,1,1,1,0 1,1,0,1,1,1,1,1,1,0 1,1,1,1,1,1,1,1,1,0
2,a,b,c,d,e,f,g,h,0 3,a,b,c,d,e,f,g,h,0 4,a,b,c,d,e,f,g,h,0
0,2,2,0,2,2,0,0,0,3 0,2,2,0,2,2,2,0,2,3 0,2,2,0,0,0,0,0,0,3 0,2,2,0,0,0,0,0,2,3
0,3,3,0,3,3,0,0,0,4 0,3,3,0,3,3,3,0,3,4
0,4,4,0,0,0,0,0,0,2 0,4,4,0,0,0,0,0,4,2
5,0,0,0,0,0,0,8,0,0 0,0,0,0,5,8,0,0,0,8 0,5,0,0,1,0,0,0,8,6 8,0,0,5,0,0,0,0,0,0
8,0,0,6,0,0,0,0,0,0 6,0,0,0,1,0,0,8,0,0 0,0,0,0,0,6,8,0,8,7 0,8,0,0,6,8,0,0,0,7
7,a,b,c,d,e,f,g,h,0 0,0,0,0,0,7,7,8,0,5
0,6,0,1,0,1,0,0,8,1 0,0,0,0,1,1,1,0,7,1
1,A,B,C,D,e,f,g,h,0 1,A,B,C,d,E,f,g,h,0 1,A,B,C,d,e,F,g,h,0 1,A,B,c,D,E,f,g,h,0 1,A,B,c,D,e,F,g,h,0 1,A,B,c,D,e,f,G,h,0 1,A,B,c,D,e,f,g,H,0 1,A,B,c,d,E,F,g,h,0 1,A,B,c,d,E,f,1,h,0 1,A,B,c,d,E,f,0,H,0 1,A,B,c,d,e,F,G,h,0 1,A,b,C,d,E,f,G,h,0 1,a,B,c,D,e,F,g,H,0
1,A,0,0,0,0,0,0,0,0 1,0,B,0,0,0,0,0,0,0
@COLORS 0 0 0 0 1 255 255 255 2 0 0 127 3 0 127 0 4 127 0 0 5 0 0 255 6 0 255 0 7 255 0 0 8 255 127 0