Rule:PCF3v2
@RULE PCF3v2 @TABLE n_states:3 neighborhood:Moore symmetries:rotate4reflect var a = {0,1,2} var a1 = a var a2 = a var a3 = a var a4 = a var a5 = a var a6 = a var a7 = a var a8 = a
- Vacuum (p1), 1/81
- Dot (p2), 8/81
1, 0,0,0,0,0,0,0,0, 2 2, 0,0,0,0,0,0,0,0, 1
- Domino (p2), 8/81
1, 1,0,0,0,0,0,0,0, 2 2, 2,0,0,0,0,0,0,0, 1
- Heterodomino (p2), 8/81
1, 2,0,0,0,0,0,0,0, 2 2, 1,0,0,0,0,0,0,0, 1
- Block (p2), 2/81
1, 1,1,1,0,0,0,0,0, 2 2, 2,2,2,0,0,0,0,0, 1
- Heteroblock (p2), 4/81
1, 2,2,1,0,0,0,0,0, 2 2, 1,1,2,0,0,0,0,0, 1
- Duoplet (p6), 6/81
1, 0,1,0,0,0,0,0,0, 2 0, 2,0,2,0,0,0,0,0, 1 2, 0,2,0,0,0,0,0,0, 2 1, 2,1,2,0,0,0,0,0, 1
- Cyclic triomino (p8), 16/81
2, 1,1,0,0,0,0,0,0, 1 1, 1,2,0,0,0,0,0,0, 2 1, 1,0,2,0,0,0,0,0, 2 0, 1,2,2,0,0,0,0,0, 2 1, 2,2,0,0,0,0,0,0, 1 2, 1,0,2,0,0,0,0,0, 1
- Tetradeca (p14), 28/81
0, 1,0,2,0,0,0,0,0, 1 1, 0,2,0,0,0,0,0,0, 1 1, 1,1,0,0,0,0,0,0, 1 1, 1,0,1,0,0,0,0,0, 2 1, 2,1,0,0,0,0,0,0, 2 2, 1,0,1,0,0,0,0,0, 1 2, 1,2,0,0,0,0,0,0, 2 1, 2,0,2,0,0,0,0,0, 2 0, 2,2,2,0,0,0,0,0, 2 2, 2,2,0,0,0,0,0,0, 1 2, 2,0,2,0,0,0,0,0, 1 2, 1,1,1,0,0,0,0,0, 1 1, 1,1,2,0,0,0,0,0, 2 1, 1,2,1,0,0,0,0,0, 2 1, 2,2,2,0,0,0,0,0, 1 2, 2,1,2,0,0,0,0,0, 2
- B2i (p4)
0, 1,0,0,0,1,0,0,0, 1 1, 2,0,0,0,2,0,0,0, 1 1, 1,0,0,0,1,0,0,0, 0
- B2k (p8, p2)
0, 1,0,0,1,0,0,0,0, 2 0, 1,2,0,1,2,0,0,0, 2 0, 1,0,0,2,0,0,0,0, 1
- B2n (two p3s)
0, 0,1,0,0,0,1,0,0, 2 0, 0,1,0,0,0,2,0,0, 2
- Checkerboards (SLs)
1, 0,1,0,1,0,0,0,0, 1 1, 0,1,0,1,0,1,0,0, 1 1, 0,1,0,1,0,1,0,1, 1
- BB-increasing
0, 0,1,0,2,0,0,0,0, 1 0, 0,2,2,2,0,0,0,0, 2 a, a1,a2,a3,a4,a5,a6,a7,a8, 0