Rule:PreblockCoexistence

From LifeWiki
Revision as of 15:40, 6 September 2022 by Ian07 (talk | contribs) (added @TREE)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE PreblockCoexistence

https://conwaylife.com/forums/viewtopic.php?p=149968#p149968

@TABLE

n_states: 4 neighborhood: Moore symmetries: permute

  1. 1: block (B3/S023)
  2. 2: preblock
  3. 3: dot (B3/S)
  1. Dots only affect the count for corner cells, not the others.

var a={0,3} var b=a var c=a var d=a

  1. Preblocks don't affect the count for corner cells.

var f={0,2} var g=f var h=f var i=f var j=f

  1. Preblocks and blocks treat birth/survival counts the same way (birth = to state 1/2, death = to state 0/3)

var l={1,2}

var n={0,1,2,3} var o=n var p=n var q=n var r=n var s=n var t=n var u=n

  1. S2/3

1,1,1,1,0,0,0,0,0,1 1,1,1,1,3,a,b,c,d,2 1,1,1,f,a,0,0,0,0,1 1,1,1,f,3,3,a,b,c,2 1,1,1,3,3,3,3,3,3,2 1,1,2,f,3,a,0,0,0,1 1,1,2,f,0,0,0,0,0,2 1,1,2,f,3,3,3,a,b,2 1,1,2,3,3,3,3,3,3,2 1,2,2,f,0,0,0,0,0,1 1,2,2,f,3,3,a,0,0,1 1,2,2,f,3,0,0,0,0,2 1,2,2,f,3,3,3,3,a,2 1,2,2,3,3,3,3,3,3,2

2,1,1,1,0,0,0,0,0,1 2,1,1,1,3,a,b,c,d,2 2,1,1,f,3,0,0,0,0,1 2,1,1,f,0,0,0,0,0,2 2,1,1,f,3,3,a,b,c,2 2,1,1,3,3,3,3,3,3,2 2,1,2,f,3,3,0,0,0,1 2,1,2,f,a,0,0,0,0,2 2,1,2,f,3,3,3,a,b,2 2,1,2,3,3,3,3,3,3,2 2,2,2,f,a,a,a,0,0,1 2,2,2,f,3,a,0,0,0,2 2,2,2,f,3,3,3,3,a,2 2,2,2,3,3,3,3,3,3,2

  1. S0

1,0,0,0,0,0,0,0,0,1 1,3,3,a,0,0,0,0,0,1 1,a,b,0,0,0,0,0,0,2 1,3,3,3,3,a,b,c,d,2

2,a,a,a,0,0,0,0,0,1 2,3,a,0,0,0,0,0,0,2 2,3,3,3,3,a,b,c,d,2

  1. S7

2,1,1,1,1,1,1,l,a,2 2,1,1,1,1,l,2,2,a,2 2,1,1,l,2,2,2,2,0,l 2,1,1,1,2,2,2,2,3,2 2,1,1,2,2,2,2,2,3,1 2,1,2,2,2,2,2,2,a,2 2,2,2,2,2,2,2,2,0,1 2,2,2,2,2,2,2,2,3,2

  1. B3

0,1,1,1,0,0,0,0,0,1 0,1,1,1,3,a,b,c,d,2 0,1,1,2,3,0,0,0,0,1 0,1,1,2,0,0,0,0,0,2 0,1,1,2,3,3,a,b,c,2 0,1,2,2,3,3,0,0,0,1 0,1,2,2,a,0,0,0,0,2 0,1,2,2,3,3,3,a,b,2 0,2,2,2,3,3,3,0,0,1 0,2,2,2,a,b,0,0,0,2 0,2,2,2,3,3,3,3,a,2

0,1,1,1,2,f,g,h,i,3 0,1,1,3,f,g,h,i,j,3 0,1,3,3,f,g,h,i,j,3 0,3,3,3,f,g,h,i,j,3

3,1,1,l,a,b,c,d,0,2 3,1,1,l,3,3,3,3,3,2 3,2,2,l,a,b,c,d,0,2 3,2,2,l,3,3,3,3,3,2

  1. D1

1,1,3,a,0,0,0,0,0,3 1,1,0,0,0,0,0,0,0,0 1,1,3,3,3,a,b,c,d,0 1,2,0,0,0,0,0,0,0,3 1,2,3,0,0,0,0,0,0,0 1,2,3,3,a,0,0,0,0,3 1,2,3,3,3,3,a,b,c,0

2,1,3,3,0,0,0,0,0,3 2,1,a,0,0,0,0,0,0,0 2,1,3,3,3,a,b,c,d,0 2,2,a,a,a,0,0,0,0,3 2,2,3,a,0,0,0,0,0,0 2,2,3,3,3,3,a,b,c,0

  1. D4+

1,1,1,2,n,f,g,h,i,3 1,1,3,n,f,g,h,i,j,3 1,1,3,2,2,2,2,2,2,3 1,3,3,n,f,g,h,i,j,3 1,1,3,2,2,2,2,2,2,3 1,2,2,2,f,g,h,i,j,3 1,n,o,p,q,r,s,t,u,0

2,1,1,1,f,g,h,i,j,3 2,1,1,3,f,g,h,i,j,3 2,1,3,3,f,g,h,i,j,3 2,3,3,3,f,g,h,i,j,3 2,2,2,2,f,g,h,i,j,3 2,n,o,p,q,r,s,t,u,0

3,n,o,p,q,r,s,t,u,0

@TREE

num_states=4 num_neighbors=8 num_nodes=171 1 0 1 1 0 1 0 0 0 0 1 0 3 3 0 1 0 2 2 0 2 0 1 2 3 1 0 1 2 0 1 0 3 0 0 2 1 5 3 6 2 2 3 0 1 2 3 6 1 5 3 4 7 8 9 1 1 1 1 2 1 2 1 2 2 1 3 1 1 0 2 5 11 12 13 1 2 2 2 2 2 3 12 15 5 1 3 3 3 0 2 6 13 5 17 3 7 14 16 18 1 2 1 1 2 2 0 15 20 3 3 8 16 21 7 2 5 17 6 13 3 9 18 7 23 4 10 19 22 24 2 11 1 17 15 2 12 17 6 11 2 13 15 11 3 3 14 26 27 28 2 15 6 1 12 3 16 27 30 14 2 17 3 13 1 3 18 28 14 32 4 19 29 31 33 2 20 1 2 15 3 21 30 35 16 4 22 31 36 19 2 13 1 17 3 3 23 32 18 38 4 24 33 19 39 5 25 34 37 40 2 1 1 1 1 2 17 1 17 1 2 15 1 1 15 3 26 42 43 44 2 6 17 6 17 3 27 43 46 26 2 3 15 15 3 3 28 44 26 48 4 29 45 47 49 2 1 6 1 6 3 30 46 51 27 4 31 47 52 29 2 1 3 3 1 3 32 48 28 54 4 33 49 29 55 5 34 50 53 56 2 2 1 2 1 3 35 51 58 30 4 36 52 59 31 5 37 53 60 34 2 3 1 1 3 3 38 54 32 62 4 39 55 33 63 5 40 56 34 64 6 41 57 61 65 3 42 42 42 42 3 43 42 43 42 3 44 42 42 44 4 45 67 68 69 3 46 43 46 43 4 47 68 71 45 3 48 44 44 48 4 49 69 45 73 5 50 70 72 74 3 51 46 51 46 4 52 71 76 47 5 53 72 77 50 3 54 48 48 54 4 55 73 49 79 5 56 74 50 80 6 57 75 78 81 3 58 51 58 51 4 59 76 83 52 5 60 77 84 53 6 61 78 85 57 3 62 54 54 62 4 63 79 55 87 5 64 80 56 88 6 65 81 57 89 7 66 82 86 90 1 0 0 2 0 2 1 92 92 1 3 42 93 93 42 4 67 94 94 67 1 3 3 1 0 2 17 92 96 1 3 43 93 97 42 4 68 94 98 67 4 69 67 67 69 5 70 95 99 100 1 0 3 2 0 2 6 96 102 17 3 46 97 103 43 4 71 98 104 68 5 72 99 105 70 4 73 69 69 73 5 74 100 70 107 6 75 101 106 108 2 1 102 92 6 3 51 103 110 46 4 76 104 111 71 5 77 105 112 72 6 78 106 113 75 4 79 73 73 79 5 80 107 74 115 6 81 108 75 116 7 82 109 114 117 1 0 3 1 0 2 2 92 119 1 3 58 110 120 51 4 83 111 121 76 5 84 112 122 77 6 85 113 123 78 7 86 114 124 82 4 87 79 79 87 5 88 115 80 126 6 89 116 81 127 7 90 117 82 128 8 91 118 125 129 2 92 1 1 92 3 93 131 131 93 4 94 132 132 94 5 95 133 133 95 2 96 1 17 92 3 97 131 135 93 4 98 132 136 94 5 99 133 137 95 5 100 95 95 100 6 101 134 138 139 2 102 17 6 96 3 103 135 141 97 4 104 136 142 98 5 105 137 143 99 6 106 138 144 101 5 107 100 100 107 6 108 139 101 146 7 109 140 145 147 2 92 6 1 102 3 110 141 149 103 4 111 142 150 104 5 112 143 151 105 6 113 144 152 106 7 114 145 153 109 5 115 107 107 115 6 116 146 108 155 7 117 147 109 156 8 118 148 154 157 2 119 1 2 92 3 120 149 159 110 4 121 150 160 111 5 122 151 161 112 6 123 152 162 113 7 124 153 163 114 8 125 154 164 118 5 126 115 115 126 6 127 155 116 166 7 128 156 117 167 8 129 157 118 168 9 130 158 165 169