Rule:Qsvn

From LifeWiki
Revision as of 16:43, 22 January 2020 by Muzik (talk | contribs) (Created page with "@RULE qsvn https://www.conwaylife.com/forums/viewtopic.php?f=11&t=397 @TABLE n_states:5 neighborhood:Moore symmetries:rotate4 var a={0,2} var b={0,2} var c={0,2} var d={0,2...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE qsvn

https://www.conwaylife.com/forums/viewtopic.php?f=11&t=397

@TABLE n_states:5 neighborhood:Moore symmetries:rotate4

var a={0,2} var b={0,2} var c={0,2} var d={0,2} var e={0,2} var f={0,2}

var g={0,1,4} var h={0,2,3}

var i={0,1,2} var j={0,3} var k={0,3} var l={0,3}

var m={1,4} var n={0,1,3,4} var o={0,2,4}

var p={0,1} var q={0,1} var r={0,1} var s={0,1}

var v={0,4} var w={0,2} var x={2,3} var y={4,3} var z={0,2,3,4}

    1. Normal pulse travel

0,2,a,b,c,d,e,f,1,2 0,2,a,b,c,d,e,1,1,2 0,2,a,b,c,d,1,1,i,2 0,2,a,b,c,d,1,4,1,2 0,2,j,k,l,d,1,1,i,2 0,2,j,k,l,d,1,4,1,2 0,2,a,b,c,1,1,1,i,2 0,2,a,b,1,1,1,1,i,2 2,0,a,b,c,d,e,f,1,0 2,0,a,b,c,d,e,1,1,0 2,0,a,b,c,d,1,1,i,0 2,0,a,b,c,d,1,4,1,0 2,0,j,k,l,d,1,1,i,0 2,0,j,k,l,d,1,4,1,0 2,0,a,b,c,1,1,1,i,0 2,0,a,b,1,1,1,1,i,0

    1. Construction
  1. extend straight ahead

0,1,0,2,a,b,c,0,0,3 0,1,2,2,0,0,0,0,0,1 3,1,0,0,0,0,0,0,0,1

  1. prepare to turn

3,1,2,0,a,b,c,0,0,0 2,0,3,1,1,0,a,0,0,1 0,3,1,2,0,0,o,b,c,3 1,1,2,2,0,3,0,0,0,3

  1. turn left

0,0,3,1,0,0,0,0,0,1 3,0,1,1,0,0,o,b,c,0

  1. turn right

0,3,2,3,0,0,0,0,0,3 3,1,0,2,3,0,0,0,0,2 3,0,3,2,0,0,0,0,0,0 2,3,0,3,1,0,0,0,0,0 0,0,1,2,3,0,0,0,0,1 0,0,2,3,0,0,0,0,0,2 2,1,0,0,0,3,0,0,0,1 3,2,0,0,0,0,0,0,0,0

  1. sitting blue

1,1,a,4,0,m,0,0,0,4 4,0,a,v,0,0,1,1,1,0

  1. fill in gap

0,0,0,1,0,3,1,1,p,1

  1. 101x

0,3,0,1,1,2,0,0,0,4 1,1,4,0,1,1,p,0,0,0 1,2,4,1,0,0,0,1,0,4 0,4,4,0,1,1,1,0,0,4 2,4,1,1,1,0,0,0,0,3 4,4,4,3,0,0,0,0,0,0 0,0,1,4,4,0,0,0,0,4 1,4,4,0,0,1,0,0,0,0 3,4,4,4,1,0,0,0,0,0

  1. 11xx

0,0,0,1,2,3,1,1,p,4 3,0,1,2,0,0,1,1,1,4

  1. 110x

4,4,1,1,1,0,0,0,0,1 4,1,0,0,0,0,1,1,1,3 1,4,1,1,1,0,0,0,0,3 0,4,4,0,1,2,0,0,0,3 0,1,0,0,3,3,0,0,0,1 1,1,3,3,0,1,0,0,0,2 3,3,1,1,1,0,0,0,0,1 4,1,0,3,0,0,p,1,1,0 1,0,0,0,3,4,1,1,1,0 3,4,1,0,1,a,0,0,0,0

  1. XO + &!

0,0,0,0,1,1,1,4,2,4 1,1,2,2,3,0,0,0,0,3 3,1,a,2,4,4,0,0,0,4 4,3,2,4,1,1,p,0,0,0 4,4,3,2,0,0,1,1,1,0 2,4,4,3,1,0,0,0,0,0 2,2,3,1,1,0,0,0,0,0 2,0,0,4,1,0,0,0,4,0 0,0,4,2,0,4,1,1,1,3 3,0,4,1,1,0,4,0,0,0 1,1,0,3,0,4,0,0,0,0

  1. delete

2,1,1,3,0,1,0,0,0,0 3,0,0,0,1,2,1,1,1,0 1,2,3,0,0,1,0,0,0,0 0,0,1,1,1,0,1,4,3,2 0,1,4,0,1,1,0,0,0,1 0,0,1,1,1,0,4,3,a,3 2,3,1,2,0,0,j,0,0,0 3,1,2,2,0,0,0,0,0,0 2,2,3,1,1,2,a,0,0,3 0,0,2,2,3,1,1,1,1,2 2,0,0,2,2,0,0,3,1,0 3,0,1,1,0,0,3,2,2,0 0,0,3,1,0,0,1,1,4,3 2,3,2,3,1,1,4,0,0,0 1,4,0,2,3,1,0,0,0,0 0,0,0,0,1,2,0,0,3,2

  1. fill in gap

0,1,2,0,0,1,p,0,q,1 3,1,0,2,0,1,p,0,q,1 2,0,0,0,0,0,1,3,1,0 3,1,0,2,1,1,1,0,0,1 2,0,0,0,1,1,1,3,1,0 0,1,0,0,1,2,3,0,0,1 0,2,0,0,1,1,1,0,1,3 0,3,0,0,1,1,1,1,1,2 0,0,3,0,2,0,1,1,1,3 3,0,0,0,1,1,1,0,1,0 3,0,0,1,3,0,1,1,1,0

  1. delete

0,0,3,1,0,0,p,1,q,3 3,1,0,0,1,1,g,0,0,2 0,0,0,0,p,1,1,3,1,3 0,0,0,0,3,1,1,1,1,2 1,3,0,0,0,1,1,0,0,3 1,p,0,2,3,q,0,0,a,0 1,1,2,3,0,n,0,0,0,0 2,1,p,0,0,j,a,3,q,0 2,1,p,2,a,j,b,3,1,3 3,p,1,2,j,a,h,0,n,0 3,1,1,2,0,j,a,0,n,0 0,0,3,1,2,0,0,0,0,3 1,1,1,0,2,3,0,0,0,3 0,2,3,1,1,1,1,0,0,2 2,3,1,0,0,0,p,0,0,0 3,1,0,2,0,0,0,0,0,0 2,0,0,1,1,1,1,1,1,0 0,2,1,1,1,0,0,0,1,2 0,2,3,1,1,1,1,1,1,2 2,3,1,0,1,1,1,0,0,0 1,1,1,2,3,1,0,0,0,0 2,3,1,1,1,1,1,0,0,0 1,1,0,2,3,1,0,0,1,0 2,2,0,0,1,1,1,3,1,3 0,2,3,2,a,0,1,1,1,3 1,1,1,0,0,1,2,3,0,0 2,3,2,3,1,1,1,1,1,0 3,1,2,3,1,1,1,0,0,0 1,1,0,2,3,3,0,0,0,0 3,3,1,2,0,2,1,1,1,0 2,2,0,0,2,3,3,1,1,3 2,0,0,0,2,3,3,1,1,0 2,0,3,3,1,1,1,p,q,0 2,0,3,3,1,1,1,2,0,3 0,0,2,3,1,1,1,1,1,2 2,3,0,0,1,1,1,0,0,0 0,2,0,0,1,0,0,0,1,2 1,0,3,0,1,1,0,0,0,2 0,3,2,0,1,1,1,1,0,3 3,0,0,0,1,2,0,0,1,0 0,0,p,3,q,0,1,0,1,3 3,0,0,0,1,3,1,0,1,2 3,3,0,1,0,0,1,1,0,2 1,3,3,0,0,1,1,0,0,3 0,1,0,2,2,1,0,0,0,1 0,2,a,b,1,1,1,0,1,2 2,0,a,b,1,1,1,0,1,0 3,1,0,0,2,a,b,0,0,0 2,3,1,1,1,2,3,0,0,3

  1. blue

0,0,3,1,1,2,a,b,c,4 1,3,0,0,0,1,2,0,0,3 3,1,0,4,0,1,0,0,0,4 4,0,1,3,1,0,a,b,c,0 1,3,4,0,0,0,0,0,0,3 3,p,0,4,0,0,0,0,0,0 1,0,4,3,0,0,0,0,0,0 0,0,0,0,3,1,0,0,4,4 0,0,0,0,1,4,0,4,1,3 0,4,0,4,0,0,0,0,0,4 1,0,0,1,1,0,3,4,0,3 3,0,0,0,1,4,4,4,1,0 0,0,0,3,4,1,1,1,1,2 1,1,0,0,0,1,0,4,3,0 1,1,4,3,0,0,0,0,0,0 2,0,0,0,4,3,1,1,1,0 3,1,1,2,0,4,0,0,0,0 0,2,0,0,4,0,0,0,1,2 2,0,0,0,4,0,0,0,1,0 0,2,0,0,4,0,0,1,1,3 4,0,3,0,4,4,0,0,0,3 3,1,1,0,0,0,4,0,0,0 3,0,0,0,4,4,0,0,0,0 4,3,0,4,0,0,0,0,0,0 4,4,3,0,0,1,0,0,0,1 0,0,0,0,4,1,1,3,1,3 0,2,0,0,1,2,4,0,1,4 0,0,2,0,1,1,1,1,2,3 0,4,3,1,0,0,0,4,0,1 4,3,1,0,4,0,1,0,0,0 3,4,0,0,1,1,1,1,0,2 0,0,0,0,1,1,1,3,4,3 1,1,0,0,3,2,0,0,2,0 2,0,0,3,0,0,1,0,0,0 3,0,0,0,4,0,0,2,0,0

    1. Structures
  1. Crossover - boring bits

0,2,a,b,c,d,4,1,1,2 2,0,a,b,c,d,4,1,1,0 0,2,4,a,b,c,p,1,1,2 0,0,4,2,b,c,p,1,1,2 2,0,4,0,b,c,p,1,1,0 0,2,a,b,4,c,1,1,1,2 2,0,a,b,4,c,1,1,1,0 0,2,a,b,c,d,p,1,4,2 2,0,a,b,c,d,p,1,4,0

  1. Crossover - entrances

0,2,a,b,c,z,e,4,1,2 2,0,a,b,c,z,e,4,1,0 0,2,a,4,b,z,d,1,1,2 2,0,a,4,b,z,d,1,1,0

  1. Crossover - quadstate

z,0,a,b,4,c,1,0,4,0 z,2,a,b,4,c,1,0,4,2 z,0,a,b,4,c,1,2,4,4 z,2,a,b,4,c,1,2,4,3

  1. Crossover - exits

0,x,a,4,b,c,1,1,d,2 2,v,a,4,b,c,1,1,d,0 0,y,a,b,c,d,1,4,e,2 2,w,a,b,c,d,1,4,e,0

  1. Crossover - combo

0,x,a,4,b,z,c,1,d,2 2,v,a,4,b,z,c,1,d,0

  1. Splitter

0,2,a,b,4,c,4,d,1,2 2,0,a,b,4,c,4,d,1,0 0,2,a,4,b,c,p,4,d,2 2,0,0,4,b,c,p,4,d,0 0,2,4,a,b,c,p,1,4,2 2,0,4,a,b,c,p,1,4,0

  1. OR gate

0,2,a,4,b,c,1,1,1,2 2,0,a,4,b,c,1,1,1,0

  1. AND NOT gate

0,0,a,b,4,1,1,2,4,2 2,c,a,b,4,1,1,0,4,0 2,2,a,b,4,1,1,2,4,0

  1. phase flip

0,a,2,b,c,4,4,4,d,2 2,a,0,b,c,4,4,4,d,0 0,2,4,a,4,1,1,b,c,2 2,0,4,a,4,1,1,b,c,0 0,2,a,4,b,c,1,4,1,2 2,0,a,4,b,c,1,4,1,0

@COLORS 1 255 255 255 2 255 0 0 3 255 255 0 4 0 255 255