Rule:Rake^3
@RULE rake^3
- by toroidalet
- [1]
@TABLE
- States 1-3 stolen from a rule by BlinkerSpawn
n_states:7 neighborhood:Moore symmetries:none var c1={1,3} var c2=c1 var c3=c2 var c4=c3 var c5=c4 var c6=c5 var c7=c6 var c8=c7 var C1={0,1,3} var C2=C1 var C3=C2 var C4=C3 var C5=C4 var C6=C5 var C7=C6 var C8=C7 1,0,0,0,0,0,0,0,0,2 3,0,0,0,0,0,0,0,0,2 2,0,0,0,0,0,0,0,0,3 0,2,0,0,0,0,0,0,0,2 0,0,2,0,0,0,0,0,0,3 0,0,0,2,0,0,0,0,0,2 0,0,0,0,2,0,0,0,0,3 0,0,0,0,0,2,0,0,0,2 0,0,0,0,0,0,2,0,0,3 0,0,0,0,0,0,0,2,0,2 0,0,0,0,0,0,0,0,2,3 0,2,3,0,0,0,0,0,3,3 0,3,0,0,0,0,0,0,2,3 0,0,0,3,2,0,0,0,0,3 0,0,3,2,3,0,0,0,0,3 0,0,2,3,0,0,0,0,0,3 0,0,0,0,0,3,2,0,0,3 0,0,0,0,3,2,3,0,0,3 0,0,0,0,2,3,0,0,0,3 0,0,0,0,0,0,0,3,2,3 0,0,0,0,0,0,3,2,3,3 0,0,0,0,0,0,2,3,0,3 2,3,2,3,2,3,0,0,0,3 2,0,0,3,2,3,2,3,0,3 2,3,0,0,0,3,2,3,2,3 2,3,2,3,0,0,0,3,2,3 1,1,1,1,1,0,0,0,0,0 1,1,1,1,0,0,0,0,0,0 1,0,1,1,1,0,0,0,0,0 1,1,1,1,0,0,0,0,1,0 1,1,1,0,0,0,0,0,1,0 1,1,0,0,0,0,0,0,0,0 1,1,0,0,0,0,0,0,1,0 1,0,0,0,1,1,0,0,0,0 1,0,0,1,0,0,0,0,0,0 1,0,0,1,1,0,0,0,0,0 3,0,0,0,0,c1,c2,c3,c4,1 1,0,0,0,0,c1,c2,c3,c4,3 3,1,0,0,0,C1,C2,C3,C4,1 1,1,0,0,0,C1,C2,C3,C4,3 3,0,0,0,1,C1,C2,C3,C4,1 1,0,0,0,1,C1,C2,C3,C4,3 3,1,0,1,1,C1,C2,C3,C4,1 1,1,0,1,1,C1,C2,C3,C4,3 3,1,1,1,1,C1,C2,C3,C4,1 1,1,1,1,1,C1,C2,C3,C4,3 3,1,1,1,0,C1,C2,C3,C4,1 1,1,1,1,0,C1,C2,C3,C4,3 3,1,1,0,0,C1,C2,C3,C4,1 1,1,1,0,0,C1,C2,C3,C4,3 3,0,0,1,1,C1,C2,C3,C4,1 1,0,0,1,1,C1,C2,C3,C4,3 3,0,1,1,1,C1,C2,C3,C4,1 1,0,1,1,1,C1,C2,C3,C4,3 3,3,0,3,3,0,0,3,3,2 2,3,0,3,3,0,0,3,3,1 3,0,0,0,3,2,3,3,0,0 3,0,0,0,0,3,0,2,3,0 3,3,0,0,0,0,0,0,2,0 3,3,3,2,0,0,0,0,0,0 3,0,0,3,2,3,0,0,0,0 3,0,1,0,0,0,0,0,0,0
- states 4-5 (rake):
0,3,2,0,0,0,0,0,0,4 0,4,0,0,0,0,0,0,0,4 4,3,3,3,0,0,0,0,3,3 4,0,1,0,0,4,0,0,5,0 4,4,0,0,0,0,0,0,0,0 4,0,0,0,0,0,0,0,0,0 0,0,0,0,4,0,0,0,0,5 0,0,5,0,0,0,0,0,0,5 5,0,0,0,0,0,0,0,0,0 5,0,0,0,4,0,0,0,0,0
- state 6 (rake^3)
0,0,0,6,0,0,0,0,0,6 0,0,0,0,0,0,0,6,0,6 6,0,0,0,0,0,0,0,0,0 0,0,6,6,0,0,0,0,0,6 0,0,0,6,6,0,0,0,0,6 6,6,0,0,0,0,0,0,0,0 6,0,0,0,0,6,0,0,0,0 0,0,0,0,0,0,6,0,6,1 6,0,0,0,0,1,0,0,0,0