Rule:RePhotons
@RULE RePhotons Uploaded by Heavpoot#5118 on Discord > remake of photons. ver 2
- i decided to remake this rule
- people didnt seem to like the delay so thats going to be
- completley gone i hope
- state documentation:
- 0: nothing
- 1: black (destroys photons)
- 2: down
- 3: up
- 4: left
- 5: right
- 6: "split" (from the original photons)
- 7: up and down (splits into both)
- 8: left and right (splits into both)
- 9: inactive void (same as 6)
- 10: active void (same as 1)
@TREE
num_states=11 num_neighbors=4 num_nodes=168 1 0 1 0 0 0 0 6 0 0 9 9 1 0 1 0 3 0 0 6 0 0 9 9 1 3 1 0 3 0 0 6 0 0 10 9 2 0 0 1 2 1 1 0 2 1 0 0 1 0 1 0 0 4 0 6 0 0 9 9 1 0 1 0 3 4 0 6 0 0 9 9 1 3 1 0 3 4 0 6 0 0 10 9 2 4 4 5 6 5 5 4 6 5 4 4 1 4 1 0 0 4 0 6 0 0 9 9 1 4 1 0 3 4 0 6 0 0 9 9 1 4 1 0 3 4 0 6 0 0 10 9 2 8 8 9 6 9 9 8 10 9 8 8 2 8 8 9 6 9 9 8 6 9 8 8 3 3 3 7 7 11 7 3 7 12 3 3 1 0 1 0 0 0 5 6 0 0 9 9 1 0 1 0 3 0 5 6 0 0 9 9 1 3 1 0 3 0 5 6 0 0 10 9 2 14 14 15 16 15 15 14 16 15 14 14 1 0 1 0 0 4 5 6 0 0 9 9 1 0 1 0 3 4 5 6 0 0 9 9 1 3 1 0 3 4 5 6 0 0 10 9 2 18 18 19 20 19 19 18 20 19 18 18 1 4 1 0 0 4 5 6 0 0 9 9 1 4 1 0 3 4 5 6 0 0 9 9 1 4 1 0 3 4 5 6 0 0 10 9 2 22 22 23 20 23 23 22 24 23 22 22 2 22 22 23 20 23 23 22 20 23 22 22 3 17 17 21 21 25 21 17 21 26 17 17 1 5 1 0 0 0 5 6 0 0 9 9 1 5 1 0 3 0 5 6 0 0 9 9 1 5 1 0 3 0 5 6 0 0 10 9 2 28 28 29 16 29 29 28 30 29 28 28 1 5 1 0 0 4 5 6 0 0 9 9 1 5 1 0 3 4 5 6 0 0 9 9 1 5 1 0 3 4 5 6 0 0 10 9 2 32 32 33 20 33 33 32 34 33 32 32 1 7 1 0 0 0 5 6 0 0 9 9 1 7 1 0 3 0 5 6 0 0 9 9 1 7 1 0 3 0 5 6 0 0 10 9 2 36 36 37 38 37 37 36 38 37 36 36 3 31 31 35 35 25 35 39 35 35 39 31 1 7 1 0 0 4 0 6 0 0 9 9 1 7 1 0 3 4 0 6 0 0 9 9 1 7 1 0 3 4 0 6 0 0 10 9 2 41 41 42 43 42 42 41 43 42 41 41 3 3 3 7 7 44 7 3 7 44 3 3 2 28 28 29 16 29 29 28 16 29 28 28 2 32 32 33 20 33 33 32 20 33 32 32 3 46 46 47 47 25 47 39 47 26 39 46 4 13 13 27 27 27 40 45 27 48 45 13 1 2 1 2 0 0 0 6 0 0 10 9 1 2 1 2 3 0 0 6 0 0 10 9 1 8 1 2 0 0 0 6 0 0 10 9 2 50 50 51 51 51 51 52 51 51 50 50 1 2 1 2 0 4 0 6 0 0 10 9 1 2 1 2 3 4 0 6 0 0 10 9 1 8 1 2 0 4 0 6 0 0 10 9 2 54 54 55 55 55 55 56 55 55 54 54 3 53 53 57 57 57 57 53 57 57 53 53 1 2 1 2 0 0 5 6 0 0 10 9 1 2 1 2 3 0 5 6 0 0 10 9 1 8 1 2 0 0 5 6 0 0 10 9 2 59 59 60 60 60 60 61 60 60 59 59 1 2 1 2 0 4 5 6 0 0 10 9 1 2 1 2 3 4 5 6 0 0 10 9 1 8 1 2 0 4 5 6 0 0 10 9 2 63 63 64 64 64 64 65 64 64 63 63 3 62 62 66 66 66 66 62 66 66 62 62 1 7 1 2 0 0 5 6 0 0 10 9 1 7 1 2 3 0 5 6 0 0 10 9 2 68 68 69 69 69 69 61 69 69 68 68 3 62 62 66 66 66 66 70 66 66 70 62 1 7 1 2 0 4 0 6 0 0 10 9 1 7 1 2 3 4 0 6 0 0 10 9 2 72 72 73 73 73 73 56 73 73 72 72 3 53 53 57 57 74 57 53 57 74 53 53 4 58 58 67 67 67 71 75 67 71 75 58 1 0 1 2 0 0 0 6 0 0 9 9 1 0 1 2 3 0 0 6 0 0 9 9 1 3 1 2 3 0 0 6 0 0 10 9 2 77 77 78 79 78 78 77 79 78 77 77 1 0 1 2 0 4 0 6 0 0 9 9 1 0 1 2 3 4 0 6 0 0 9 9 1 3 1 2 3 4 0 6 0 0 10 9 2 81 81 82 83 82 82 81 83 82 81 81 1 4 1 2 0 4 0 6 0 0 9 9 1 4 1 2 3 4 0 6 0 0 9 9 1 4 1 2 3 4 0 6 0 0 10 9 2 85 85 86 83 86 86 85 87 86 85 85 2 85 85 86 83 86 86 85 83 86 85 85 3 80 80 84 84 88 84 80 84 89 80 80 1 0 1 2 0 0 5 6 0 0 9 9 1 0 1 2 3 0 5 6 0 0 9 9 1 3 1 2 3 0 5 6 0 0 10 9 2 91 91 92 93 92 92 91 93 92 91 91 1 0 1 2 0 4 5 6 0 0 9 9 1 0 1 2 3 4 5 6 0 0 9 9 1 3 1 2 3 4 5 6 0 0 10 9 2 95 95 96 97 96 96 95 97 96 95 95 1 4 1 2 0 4 5 6 0 0 9 9 1 4 1 2 3 4 5 6 0 0 9 9 1 4 1 2 3 4 5 6 0 0 10 9 2 99 99 100 97 100 100 99 101 100 99 99 2 99 99 100 97 100 100 99 97 100 99 99 3 94 94 98 98 102 98 94 98 103 94 94 1 5 1 2 0 0 5 6 0 0 9 9 1 5 1 2 3 0 5 6 0 0 9 9 1 5 1 2 3 0 5 6 0 0 10 9 2 105 105 106 93 106 106 105 107 106 105 105 1 5 1 2 0 4 5 6 0 0 9 9 1 5 1 2 3 4 5 6 0 0 9 9 1 5 1 2 3 4 5 6 0 0 10 9 2 109 109 110 97 110 110 109 111 110 109 109 1 7 1 2 0 0 5 6 0 0 9 9 1 7 1 2 3 0 5 6 0 0 9 9 2 113 113 114 69 114 114 113 69 114 113 113 3 108 108 112 112 102 112 115 112 112 115 108 1 7 1 2 0 4 0 6 0 0 9 9 1 7 1 2 3 4 0 6 0 0 9 9 2 117 117 118 73 118 118 117 73 118 117 117 3 80 80 84 84 119 84 80 84 119 80 80 2 105 105 106 93 106 106 105 93 106 105 105 2 109 109 110 97 110 110 109 97 110 109 109 3 121 121 122 122 102 122 115 122 103 115 121 4 90 90 104 104 104 116 120 104 123 120 90 1 8 1 0 3 0 0 6 0 0 10 9 2 0 0 1 125 1 1 0 125 1 0 0 1 8 1 0 3 4 0 6 0 0 10 9 2 4 4 5 127 5 5 4 127 5 4 4 2 8 8 9 127 9 9 8 127 9 8 8 3 126 126 128 128 129 128 126 128 129 126 126 1 8 1 0 3 0 5 6 0 0 10 9 2 14 14 15 131 15 15 14 131 15 14 14 1 8 1 0 3 4 5 6 0 0 10 9 2 18 18 19 133 19 19 18 133 19 18 18 2 22 22 23 133 23 23 22 133 23 22 22 3 132 132 134 134 135 134 132 134 135 132 132 2 28 28 29 131 29 29 28 131 29 28 28 2 32 32 33 133 33 33 32 133 33 32 32 2 36 36 37 131 37 37 36 38 37 36 36 3 137 137 138 138 135 138 139 138 138 139 137 2 41 41 42 127 42 42 41 43 42 41 41 2 41 41 42 127 42 42 41 127 42 41 41 3 126 126 128 128 141 128 126 128 142 126 126 2 36 36 37 131 37 37 36 131 37 36 36 3 137 137 138 138 135 138 144 138 135 144 137 4 130 130 136 136 136 140 143 136 145 143 130 2 50 50 51 79 51 51 52 51 51 50 50 2 54 54 55 83 55 55 56 55 55 54 54 1 4 1 2 0 4 0 6 0 0 10 9 2 149 149 87 83 87 87 56 87 87 149 149 3 147 147 148 148 150 148 147 148 148 147 147 2 59 59 60 93 60 60 61 60 60 59 59 2 63 63 64 97 64 64 65 64 64 63 63 1 4 1 2 0 4 5 6 0 0 10 9 2 154 154 101 97 101 101 65 101 101 154 154 3 152 152 153 153 155 153 152 153 153 152 152 1 5 1 2 0 0 5 6 0 0 10 9 2 157 157 107 93 107 107 61 107 107 157 157 1 5 1 2 0 4 5 6 0 0 10 9 2 159 159 111 97 111 111 65 111 111 159 159 2 68 68 69 69 69 69 68 69 69 68 68 3 158 158 160 160 155 160 161 160 160 161 158 2 72 72 73 73 73 73 72 73 73 72 72 3 147 147 148 148 163 148 147 148 74 147 147 3 152 152 153 153 155 153 70 153 153 70 152 4 151 151 156 156 156 162 164 156 165 164 151 5 49 49 76 124 124 124 146 166 124 49 49
@TABLE n_states: 11 neighborhood: vonNeumann symmetries: none
var a={0,1,2,3,4,5,6,7,8,9,10} # contains all states var b=a var c=a var d=a
var e6={6,9} #anything that behaves the same as 6
var np={0,1,6,9,10} # anything that isnt a photon
- photons being created
0,2,b,6,d,8 0,6,b,3,d,8 0,a,4,b,e6,7 0,a,e6,b,5,7
0,7,b,6,d,8 0,6,b,7,d,8 0,a,8,b,e6,7 0,a,e6,b,8,7
0,2,a,b,c,2 0,a,b,3,c,3 0,a,4,c,d,4 0,a,b,c,5,5
- photons being split
0,7,a,b,c,2 0,a,b,7,c,3 0,a,8,b,c,4 0,a,b,c,8,5
- photons dissapearing
2,np,b,c,d,0 3,a,b,np,d,0 4,a,np,c,d,0 5,a,b,c,np,0 7,a,b,c,d,0 8,a,b,c,d,0
- void being powered
10,a,b,c,d,9
9,2,a,b,c,10 9,a,b,3,c,10
9,7,a,b,c,10 9,a,b,7,c,10
@COLORS 0 48 48 48 1 0 0 0 2 255 0 0 3 0 255 0 4 0 0 255 5 255 0 255 6 255 128 0 7 255 255 255 8 255 255 255 9 128 128 128 10 200 200 200