Rule:RePhotons

From LifeWiki
Revision as of 20:50, 2 January 2020 by Dvgrn (talk | contribs) (Rule 'RePhotons' from auto-import project)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE RePhotons Uploaded by Heavpoot#5118 on Discord > remake of photons. ver 2

  1. i decided to remake this rule
  2. people didnt seem to like the delay so thats going to be
  3. completley gone i hope
  1. state documentation:
  2. 0: nothing
  3. 1: black (destroys photons)
  4. 2: down
  5. 3: up
  6. 4: left
  7. 5: right
  8. 6: "split" (from the original photons)
  9. 7: up and down (splits into both)
  10. 8: left and right (splits into both)
  11. 9: inactive void (same as 6)
  12. 10: active void (same as 1)

@TREE

num_states=11 num_neighbors=4 num_nodes=168 1 0 1 0 0 0 0 6 0 0 9 9 1 0 1 0 3 0 0 6 0 0 9 9 1 3 1 0 3 0 0 6 0 0 10 9 2 0 0 1 2 1 1 0 2 1 0 0 1 0 1 0 0 4 0 6 0 0 9 9 1 0 1 0 3 4 0 6 0 0 9 9 1 3 1 0 3 4 0 6 0 0 10 9 2 4 4 5 6 5 5 4 6 5 4 4 1 4 1 0 0 4 0 6 0 0 9 9 1 4 1 0 3 4 0 6 0 0 9 9 1 4 1 0 3 4 0 6 0 0 10 9 2 8 8 9 6 9 9 8 10 9 8 8 2 8 8 9 6 9 9 8 6 9 8 8 3 3 3 7 7 11 7 3 7 12 3 3 1 0 1 0 0 0 5 6 0 0 9 9 1 0 1 0 3 0 5 6 0 0 9 9 1 3 1 0 3 0 5 6 0 0 10 9 2 14 14 15 16 15 15 14 16 15 14 14 1 0 1 0 0 4 5 6 0 0 9 9 1 0 1 0 3 4 5 6 0 0 9 9 1 3 1 0 3 4 5 6 0 0 10 9 2 18 18 19 20 19 19 18 20 19 18 18 1 4 1 0 0 4 5 6 0 0 9 9 1 4 1 0 3 4 5 6 0 0 9 9 1 4 1 0 3 4 5 6 0 0 10 9 2 22 22 23 20 23 23 22 24 23 22 22 2 22 22 23 20 23 23 22 20 23 22 22 3 17 17 21 21 25 21 17 21 26 17 17 1 5 1 0 0 0 5 6 0 0 9 9 1 5 1 0 3 0 5 6 0 0 9 9 1 5 1 0 3 0 5 6 0 0 10 9 2 28 28 29 16 29 29 28 30 29 28 28 1 5 1 0 0 4 5 6 0 0 9 9 1 5 1 0 3 4 5 6 0 0 9 9 1 5 1 0 3 4 5 6 0 0 10 9 2 32 32 33 20 33 33 32 34 33 32 32 1 7 1 0 0 0 5 6 0 0 9 9 1 7 1 0 3 0 5 6 0 0 9 9 1 7 1 0 3 0 5 6 0 0 10 9 2 36 36 37 38 37 37 36 38 37 36 36 3 31 31 35 35 25 35 39 35 35 39 31 1 7 1 0 0 4 0 6 0 0 9 9 1 7 1 0 3 4 0 6 0 0 9 9 1 7 1 0 3 4 0 6 0 0 10 9 2 41 41 42 43 42 42 41 43 42 41 41 3 3 3 7 7 44 7 3 7 44 3 3 2 28 28 29 16 29 29 28 16 29 28 28 2 32 32 33 20 33 33 32 20 33 32 32 3 46 46 47 47 25 47 39 47 26 39 46 4 13 13 27 27 27 40 45 27 48 45 13 1 2 1 2 0 0 0 6 0 0 10 9 1 2 1 2 3 0 0 6 0 0 10 9 1 8 1 2 0 0 0 6 0 0 10 9 2 50 50 51 51 51 51 52 51 51 50 50 1 2 1 2 0 4 0 6 0 0 10 9 1 2 1 2 3 4 0 6 0 0 10 9 1 8 1 2 0 4 0 6 0 0 10 9 2 54 54 55 55 55 55 56 55 55 54 54 3 53 53 57 57 57 57 53 57 57 53 53 1 2 1 2 0 0 5 6 0 0 10 9 1 2 1 2 3 0 5 6 0 0 10 9 1 8 1 2 0 0 5 6 0 0 10 9 2 59 59 60 60 60 60 61 60 60 59 59 1 2 1 2 0 4 5 6 0 0 10 9 1 2 1 2 3 4 5 6 0 0 10 9 1 8 1 2 0 4 5 6 0 0 10 9 2 63 63 64 64 64 64 65 64 64 63 63 3 62 62 66 66 66 66 62 66 66 62 62 1 7 1 2 0 0 5 6 0 0 10 9 1 7 1 2 3 0 5 6 0 0 10 9 2 68 68 69 69 69 69 61 69 69 68 68 3 62 62 66 66 66 66 70 66 66 70 62 1 7 1 2 0 4 0 6 0 0 10 9 1 7 1 2 3 4 0 6 0 0 10 9 2 72 72 73 73 73 73 56 73 73 72 72 3 53 53 57 57 74 57 53 57 74 53 53 4 58 58 67 67 67 71 75 67 71 75 58 1 0 1 2 0 0 0 6 0 0 9 9 1 0 1 2 3 0 0 6 0 0 9 9 1 3 1 2 3 0 0 6 0 0 10 9 2 77 77 78 79 78 78 77 79 78 77 77 1 0 1 2 0 4 0 6 0 0 9 9 1 0 1 2 3 4 0 6 0 0 9 9 1 3 1 2 3 4 0 6 0 0 10 9 2 81 81 82 83 82 82 81 83 82 81 81 1 4 1 2 0 4 0 6 0 0 9 9 1 4 1 2 3 4 0 6 0 0 9 9 1 4 1 2 3 4 0 6 0 0 10 9 2 85 85 86 83 86 86 85 87 86 85 85 2 85 85 86 83 86 86 85 83 86 85 85 3 80 80 84 84 88 84 80 84 89 80 80 1 0 1 2 0 0 5 6 0 0 9 9 1 0 1 2 3 0 5 6 0 0 9 9 1 3 1 2 3 0 5 6 0 0 10 9 2 91 91 92 93 92 92 91 93 92 91 91 1 0 1 2 0 4 5 6 0 0 9 9 1 0 1 2 3 4 5 6 0 0 9 9 1 3 1 2 3 4 5 6 0 0 10 9 2 95 95 96 97 96 96 95 97 96 95 95 1 4 1 2 0 4 5 6 0 0 9 9 1 4 1 2 3 4 5 6 0 0 9 9 1 4 1 2 3 4 5 6 0 0 10 9 2 99 99 100 97 100 100 99 101 100 99 99 2 99 99 100 97 100 100 99 97 100 99 99 3 94 94 98 98 102 98 94 98 103 94 94 1 5 1 2 0 0 5 6 0 0 9 9 1 5 1 2 3 0 5 6 0 0 9 9 1 5 1 2 3 0 5 6 0 0 10 9 2 105 105 106 93 106 106 105 107 106 105 105 1 5 1 2 0 4 5 6 0 0 9 9 1 5 1 2 3 4 5 6 0 0 9 9 1 5 1 2 3 4 5 6 0 0 10 9 2 109 109 110 97 110 110 109 111 110 109 109 1 7 1 2 0 0 5 6 0 0 9 9 1 7 1 2 3 0 5 6 0 0 9 9 2 113 113 114 69 114 114 113 69 114 113 113 3 108 108 112 112 102 112 115 112 112 115 108 1 7 1 2 0 4 0 6 0 0 9 9 1 7 1 2 3 4 0 6 0 0 9 9 2 117 117 118 73 118 118 117 73 118 117 117 3 80 80 84 84 119 84 80 84 119 80 80 2 105 105 106 93 106 106 105 93 106 105 105 2 109 109 110 97 110 110 109 97 110 109 109 3 121 121 122 122 102 122 115 122 103 115 121 4 90 90 104 104 104 116 120 104 123 120 90 1 8 1 0 3 0 0 6 0 0 10 9 2 0 0 1 125 1 1 0 125 1 0 0 1 8 1 0 3 4 0 6 0 0 10 9 2 4 4 5 127 5 5 4 127 5 4 4 2 8 8 9 127 9 9 8 127 9 8 8 3 126 126 128 128 129 128 126 128 129 126 126 1 8 1 0 3 0 5 6 0 0 10 9 2 14 14 15 131 15 15 14 131 15 14 14 1 8 1 0 3 4 5 6 0 0 10 9 2 18 18 19 133 19 19 18 133 19 18 18 2 22 22 23 133 23 23 22 133 23 22 22 3 132 132 134 134 135 134 132 134 135 132 132 2 28 28 29 131 29 29 28 131 29 28 28 2 32 32 33 133 33 33 32 133 33 32 32 2 36 36 37 131 37 37 36 38 37 36 36 3 137 137 138 138 135 138 139 138 138 139 137 2 41 41 42 127 42 42 41 43 42 41 41 2 41 41 42 127 42 42 41 127 42 41 41 3 126 126 128 128 141 128 126 128 142 126 126 2 36 36 37 131 37 37 36 131 37 36 36 3 137 137 138 138 135 138 144 138 135 144 137 4 130 130 136 136 136 140 143 136 145 143 130 2 50 50 51 79 51 51 52 51 51 50 50 2 54 54 55 83 55 55 56 55 55 54 54 1 4 1 2 0 4 0 6 0 0 10 9 2 149 149 87 83 87 87 56 87 87 149 149 3 147 147 148 148 150 148 147 148 148 147 147 2 59 59 60 93 60 60 61 60 60 59 59 2 63 63 64 97 64 64 65 64 64 63 63 1 4 1 2 0 4 5 6 0 0 10 9 2 154 154 101 97 101 101 65 101 101 154 154 3 152 152 153 153 155 153 152 153 153 152 152 1 5 1 2 0 0 5 6 0 0 10 9 2 157 157 107 93 107 107 61 107 107 157 157 1 5 1 2 0 4 5 6 0 0 10 9 2 159 159 111 97 111 111 65 111 111 159 159 2 68 68 69 69 69 69 68 69 69 68 68 3 158 158 160 160 155 160 161 160 160 161 158 2 72 72 73 73 73 73 72 73 73 72 72 3 147 147 148 148 163 148 147 148 74 147 147 3 152 152 153 153 155 153 70 153 153 70 152 4 151 151 156 156 156 162 164 156 165 164 151 5 49 49 76 124 124 124 146 166 124 49 49

@TABLE n_states: 11 neighborhood: vonNeumann symmetries: none

var a={0,1,2,3,4,5,6,7,8,9,10} # contains all states var b=a var c=a var d=a

var e6={6,9} #anything that behaves the same as 6

var np={0,1,6,9,10} # anything that isnt a photon

  1. photons being created

0,2,b,6,d,8 0,6,b,3,d,8 0,a,4,b,e6,7 0,a,e6,b,5,7

0,7,b,6,d,8 0,6,b,7,d,8 0,a,8,b,e6,7 0,a,e6,b,8,7

0,2,a,b,c,2 0,a,b,3,c,3 0,a,4,c,d,4 0,a,b,c,5,5

  1. photons being split

0,7,a,b,c,2 0,a,b,7,c,3 0,a,8,b,c,4 0,a,b,c,8,5

  1. photons dissapearing

2,np,b,c,d,0 3,a,b,np,d,0 4,a,np,c,d,0 5,a,b,c,np,0 7,a,b,c,d,0 8,a,b,c,d,0

  1. void being powered

10,a,b,c,d,9

9,2,a,b,c,10 9,a,b,3,c,10

9,7,a,b,c,10 9,a,b,7,c,10

@COLORS 0 48 48 48 1 0 0 0 2 255 0 0 3 0 255 0 4 0 0 255 5 255 0 255 6 255 128 0 7 255 255 255 8 255 255 255 9 128 128 128 10 200 200 200