Rule:Repel
@RULE Repel Rule table emulating 'Repel' by SeanBP on the conwaylife.com forums http://conwaylife.com/forums/viewtopic.php?f=11&t=1751&start=0 Each generation of the CA requires two generations in Golly. All non-zero state cells in even generations should be state 1 All states other than 0 and 1 are auxillary states which indicate in which direction(s) a particle will move(split)
@TABLE n_states:38 neighborhood:Moore symmetries:none
var aux={2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37} var a1={0,1,aux} var a2={a1} var a3={a1} var a4={a1} var a5={a1} var a6={a1} var a7={a1} var a8={a1}
- Phase 1: Determine what will happen to cells
1,0,0,0,0,0,0,0,0,1 1,0,0,0,0,0,0,0,1,6 1,0,0,0,0,0,0,1,0,7 1,0,0,0,0,0,0,1,1,24 1,0,0,0,0,0,1,0,0,8 1,0,0,0,0,0,1,0,1,7 1,0,0,0,0,0,1,1,0,30 1,0,0,0,0,0,1,1,1,7 1,0,0,0,0,1,0,0,0,9 1,0,0,0,0,1,0,0,1,35 1,0,0,0,0,1,0,1,0,8 1,0,0,0,0,1,0,1,1,7 1,0,0,0,0,1,1,0,0,37 1,0,0,0,0,1,1,0,1,8 1,0,0,0,0,1,1,1,0,8 1,0,0,0,0,1,1,1,1,8 1,0,0,0,1,0,0,0,0,2 1,0,0,0,1,0,0,0,1,1 1,0,0,0,1,0,0,1,0,20 1,0,0,0,1,0,0,1,1,7 1,0,0,0,1,0,1,0,0,9 1,0,0,0,1,0,1,0,1,8 1,0,0,0,1,0,1,1,0,8 1,0,0,0,1,0,1,1,1,30 1,0,0,0,1,1,0,0,0,31 1,0,0,0,1,1,0,0,1,9 1,0,0,0,1,1,0,1,0,9 1,0,0,0,1,1,0,1,1,8 1,0,0,0,1,1,1,0,0,9 1,0,0,0,1,1,1,0,1,37 1,0,0,0,1,1,1,1,0,8 1,0,0,0,1,1,1,1,1,8 1,0,0,1,0,0,0,0,0,3 1,0,0,1,0,0,0,0,1,17 1,0,0,1,0,0,0,1,0,1 1,0,0,1,0,0,0,1,1,6 1,0,0,1,0,0,1,0,0,26 1,0,0,1,0,0,1,0,1,1 1,0,0,1,0,0,1,1,0,8 1,0,0,1,0,0,1,1,1,7 1,0,0,1,0,1,0,0,0,2 1,0,0,1,0,1,0,0,1,1 1,0,0,1,0,1,0,1,0,9 1,0,0,1,0,1,0,1,1,35 1,0,0,1,0,1,1,0,0,9 1,0,0,1,0,1,1,0,1,20 1,0,0,1,0,1,1,1,0,37 1,0,0,1,0,1,1,1,1,8 1,0,0,1,1,0,0,0,0,10 1,0,0,1,1,0,0,0,1,3 1,0,0,1,1,0,0,1,0,2 1,0,0,1,1,0,0,1,1,1 1,0,0,1,1,0,1,0,0,2 1,0,0,1,1,0,1,0,1,26 1,0,0,1,1,0,1,1,0,9 1,0,0,1,1,0,1,1,1,8 1,0,0,1,1,1,0,0,0,2 1,0,0,1,1,1,0,0,1,2 1,0,0,1,1,1,0,1,0,31 1,0,0,1,1,1,0,1,1,9 1,0,0,1,1,1,1,0,0,2 1,0,0,1,1,1,1,0,1,9 1,0,0,1,1,1,1,1,0,9 1,0,0,1,1,1,1,1,1,37 1,0,1,0,0,0,0,0,0,4 1,0,1,0,0,0,0,0,1,5 1,0,1,0,0,0,0,1,0,22 1,0,1,0,0,0,0,1,1,6 1,0,1,0,0,0,1,0,0,1 1,0,1,0,0,0,1,0,1,6 1,0,1,0,0,0,1,1,0,7 1,0,1,0,0,0,1,1,1,24 1,0,1,0,0,1,0,0,0,33 1,0,1,0,0,1,0,0,1,1 1,0,1,0,0,1,0,1,0,1 1,0,1,0,0,1,0,1,1,28 1,0,1,0,0,1,1,0,0,9 1,0,1,0,0,1,1,0,1,35 1,0,1,0,0,1,1,1,0,8 1,0,1,0,0,1,1,1,1,7 1,0,1,0,1,0,0,0,0,3 1,0,1,0,1,0,0,0,1,4 1,0,1,0,1,0,0,1,0,1 1,0,1,0,1,0,0,1,1,22 1,0,1,0,1,0,1,0,0,2 1,0,1,0,1,0,1,0,1,1 1,0,1,0,1,0,1,1,0,20 1,0,1,0,1,0,1,1,1,7 1,0,1,0,1,1,0,0,0,2 1,0,1,0,1,1,0,0,1,33 1,0,1,0,1,1,0,1,0,26 1,0,1,0,1,1,0,1,1,1 1,0,1,0,1,1,1,0,0,31 1,0,1,0,1,1,1,0,1,9 1,0,1,0,1,1,1,1,0,9 1,0,1,0,1,1,1,1,1,8 1,0,1,1,0,0,0,0,0,12 1,0,1,1,0,0,0,0,1,4 1,0,1,1,0,0,0,1,0,4 1,0,1,1,0,0,0,1,1,5 1,0,1,1,0,0,1,0,0,3 1,0,1,1,0,0,1,0,1,17 1,0,1,1,0,0,1,1,0,1 1,0,1,1,0,0,1,1,1,6 1,0,1,1,0,1,0,0,0,3 1,0,1,1,0,1,0,0,1,13 1,0,1,1,0,1,0,1,0,33 1,0,1,1,0,1,0,1,1,1 1,0,1,1,0,1,1,0,0,2 1,0,1,1,0,1,1,0,1,1 1,0,1,1,0,1,1,1,0,9 1,0,1,1,0,1,1,1,1,35 1,0,1,1,1,0,0,0,0,3 1,0,1,1,1,0,0,0,1,12 1,0,1,1,1,0,0,1,0,3 1,0,1,1,1,0,0,1,1,4 1,0,1,1,1,0,1,0,0,10 1,0,1,1,1,0,1,0,1,3 1,0,1,1,1,0,1,1,0,2 1,0,1,1,1,0,1,1,1,1 1,0,1,1,1,1,0,0,0,2 1,0,1,1,1,1,0,0,1,3 1,0,1,1,1,1,0,1,0,2 1,0,1,1,1,1,0,1,1,33 1,0,1,1,1,1,1,0,0,2 1,0,1,1,1,1,1,0,1,2 1,0,1,1,1,1,1,1,0,31 1,0,1,1,1,1,1,1,1,9 1,1,0,0,0,0,0,0,0,5 1,1,0,0,0,0,0,0,1,19 1,1,0,0,0,0,0,1,0,6 1,1,0,0,0,0,0,1,1,6 1,1,0,0,0,0,1,0,0,28 1,1,0,0,0,0,1,0,1,6 1,1,0,0,0,0,1,1,0,7 1,1,0,0,0,0,1,1,1,6 1,1,0,0,0,1,0,0,0,1 1,1,0,0,0,1,0,0,1,6 1,1,0,0,0,1,0,1,0,7 1,1,0,0,0,1,0,1,1,24 1,1,0,0,0,1,1,0,0,8 1,1,0,0,0,1,1,0,1,7 1,1,0,0,0,1,1,1,0,30 1,1,0,0,0,1,1,1,1,7 1,1,0,0,1,0,0,0,0,13 1,1,0,0,1,0,0,0,1,5 1,1,0,0,1,0,0,1,0,1 1,1,0,0,1,0,0,1,1,6 1,1,0,0,1,0,1,0,0,1 1,1,0,0,1,0,1,0,1,28 1,1,0,0,1,0,1,1,0,35 1,1,0,0,1,0,1,1,1,7 1,1,0,0,1,1,0,0,0,2 1,1,0,0,1,1,0,0,1,1 1,1,0,0,1,1,0,1,0,20 1,1,0,0,1,1,0,1,1,7 1,1,0,0,1,1,1,0,0,9 1,1,0,0,1,1,1,0,1,8 1,1,0,0,1,1,1,1,0,8 1,1,0,0,1,1,1,1,1,30 1,1,0,1,0,0,0,0,0,4 1,1,0,1,0,0,0,0,1,5 1,1,0,1,0,0,0,1,0,5 1,1,0,1,0,0,0,1,1,19 1,1,0,1,0,0,1,0,0,1 1,1,0,1,0,0,1,0,1,22 1,1,0,1,0,0,1,1,0,28 1,1,0,1,0,0,1,1,1,6 1,1,0,1,0,1,0,0,0,3 1,1,0,1,0,1,0,0,1,17 1,1,0,1,0,1,0,1,0,1 1,1,0,1,0,1,0,1,1,6 1,1,0,1,0,1,1,0,0,26 1,1,0,1,0,1,1,0,1,1 1,1,0,1,0,1,1,1,0,8 1,1,0,1,0,1,1,1,1,7 1,1,0,1,1,0,0,0,0,3 1,1,0,1,1,0,0,0,1,4 1,1,0,1,1,0,0,1,0,13 1,1,0,1,1,0,0,1,1,5 1,1,0,1,1,0,1,0,0,33 1,1,0,1,1,0,1,0,1,1 1,1,0,1,1,0,1,1,0,1 1,1,0,1,1,0,1,1,1,28 1,1,0,1,1,1,0,0,0,10 1,1,0,1,1,1,0,0,1,3 1,1,0,1,1,1,0,1,0,2 1,1,0,1,1,1,0,1,1,1 1,1,0,1,1,1,1,0,0,2 1,1,0,1,1,1,1,0,1,26 1,1,0,1,1,1,1,1,0,9 1,1,0,1,1,1,1,1,1,8 1,1,1,0,0,0,0,0,0,15 1,1,1,0,0,0,0,0,1,5 1,1,1,0,0,0,0,1,0,5 1,1,1,0,0,0,0,1,1,6 1,1,1,0,0,0,1,0,0,5 1,1,1,0,0,0,1,0,1,19 1,1,1,0,0,0,1,1,0,6 1,1,1,0,0,0,1,1,1,6 1,1,1,0,0,1,0,0,0,4 1,1,1,0,0,1,0,0,1,5 1,1,1,0,0,1,0,1,0,22 1,1,1,0,0,1,0,1,1,6 1,1,1,0,0,1,1,0,0,1 1,1,1,0,0,1,1,0,1,6 1,1,1,0,0,1,1,1,0,7 1,1,1,0,0,1,1,1,1,24 1,1,1,0,1,0,0,0,0,4 1,1,1,0,1,0,0,0,1,15 1,1,1,0,1,0,0,1,0,17 1,1,1,0,1,0,0,1,1,5 1,1,1,0,1,0,1,0,0,13 1,1,1,0,1,0,1,0,1,5 1,1,1,0,1,0,1,1,0,1 1,1,1,0,1,0,1,1,1,6 1,1,1,0,1,1,0,0,0,3 1,1,1,0,1,1,0,0,1,4 1,1,1,0,1,1,0,1,0,1 1,1,1,0,1,1,0,1,1,22 1,1,1,0,1,1,1,0,0,2 1,1,1,0,1,1,1,0,1,1 1,1,1,0,1,1,1,1,0,20 1,1,1,0,1,1,1,1,1,7 1,1,1,1,0,0,0,0,0,4 1,1,1,1,0,0,0,0,1,4 1,1,1,1,0,0,0,1,0,15 1,1,1,1,0,0,0,1,1,5 1,1,1,1,0,0,1,0,0,4 1,1,1,1,0,0,1,0,1,5 1,1,1,1,0,0,1,1,0,5 1,1,1,1,0,0,1,1,1,19 1,1,1,1,0,1,0,0,0,12 1,1,1,1,0,1,0,0,1,4 1,1,1,1,0,1,0,1,0,4 1,1,1,1,0,1,0,1,1,5 1,1,1,1,0,1,1,0,0,3 1,1,1,1,0,1,1,0,1,17 1,1,1,1,0,1,1,1,0,1 1,1,1,1,0,1,1,1,1,6 1,1,1,1,1,0,0,0,0,4 1,1,1,1,1,0,0,0,1,4 1,1,1,1,1,0,0,1,0,4 1,1,1,1,1,0,0,1,1,15 1,1,1,1,1,0,1,0,0,3 1,1,1,1,1,0,1,0,1,4 1,1,1,1,1,0,1,1,0,13 1,1,1,1,1,0,1,1,1,5 1,1,1,1,1,1,0,0,0,3 1,1,1,1,1,1,0,0,1,12 1,1,1,1,1,1,0,1,0,3 1,1,1,1,1,1,0,1,1,4 1,1,1,1,1,1,1,0,0,10 1,1,1,1,1,1,1,0,1,3 1,1,1,1,1,1,1,1,0,2 1,1,1,1,1,1,1,1,1,1
- Phase 2: Move cells to new locations
0,a1,a2,a3,2,a5,a6,a7,a8,1 0,a1,a2,3,a4,a5,a6,a7,a8,1 0,a1,4,a3,a4,a5,a6,a7,a8,1 0,5,a2,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,a7,6,1 0,a1,a2,a3,a4,a5,a6,7,a8,1 0,a1,a2,a3,a4,a5,8,a7,a8,1 0,a1,a2,a3,a4,9,a6,a7,a8,1 0,a1,a2,10,a4,a5,a6,a7,a8,1 0,a1,a2,a3,10,a5,a6,a7,a8,1 0,a1,11,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,11,a5,a6,a7,a8,1 0,a1,12,a3,a4,a5,a6,a7,a8,1 0,a1,a2,12,a4,a5,a6,a7,a8,1 0,13,a2,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,13,a5,a6,a7,a8,1 0,14,a2,a3,a4,a5,a6,a7,a8,1 0,a1,a2,14,a4,a5,a6,a7,a8,1 0,15,a2,a3,a4,a5,a6,a7,a8,1 0,a1,15,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,16,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,a7,16,1 0,a1,a2,17,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,a7,17,1 0,a1,18,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,a7,18,1 0,19,a2,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,a7,19,1 0,a1,a2,a3,20,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,20,a8,1 0,a1,a2,21,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,21,a8,1 0,a1,22,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,22,a8,1 0,23,a2,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,23,a8,1 0,a1,a2,a3,a4,a5,a6,24,a8,1 0,a1,a2,a3,a4,a5,a6,a7,24,1 0,a1,a2,a3,25,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,25,a7,a8,1 0,a1,a2,26,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,26,a7,a8,1 0,a1,27,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,27,a7,a8,1 0,28,a2,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,a5,28,a7,a8,1 0,a1,a2,a3,a4,a5,29,a7,a8,1 0,a1,a2,a3,a4,a5,a6,a7,29,1 0,a1,a2,a3,a4,a5,30,a7,a8,1 0,a1,a2,a3,a4,a5,a6,30,a8,1 0,a1,a2,a3,31,a5,a6,a7,a8,1 0,a1,a2,a3,a4,31,a6,a7,a8,1 0,a1,a2,32,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,32,a6,a7,a8,1 0,a1,33,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,33,a6,a7,a8,1 0,34,a2,a3,a4,a5,a6,a7,a8,1 0,a1,a2,a3,a4,34,a6,a7,a8,1 0,a1,a2,a3,a4,35,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,a7,35,1 0,a1,a2,a3,a4,36,a6,a7,a8,1 0,a1,a2,a3,a4,a5,a6,36,a8,1 0,a1,a2,a3,a4,37,a6,a7,a8,1 0,a1,a2,a3,a4,a5,37,a7,a8,1
- Moving cells leave a vacuum
aux,a1,a2,a3,a4,a5,a6,a7,a8,0
@COLORS 1 255 0 128