Rule:Rewiresible
@RULE rewiresible
@TABLE
n_states:9 neighborhood:Moore symmetries:permute
var a1={0,1,2,3,4,5,6,7,8} var a2=a1 var a3=a1 var a4=a1 var a5=a1 var a6=a1 var a7=a1 var a8=a1 var a9=a1
var back1={3,4,5} var back2={6,7,8} var back0={0,1,2}
var front1={1,4,7} var front2={2,5,8} var front0={0,3,6}
- 0 always 0
1,a2,a3,a4,a5,a6,a7,a8,a9,3
2,a2,a3,a4,a5,a6,a7,a8,a9,6
3,front2,a3,a4,a5,a6,a7,a8,a9,2 3,a2,a3,a4,a5,a6,a7,a8,a9,1
4,front2,a3,a4,a5,a6,a7,a8,a9,5 4,a2,a3,a4,a5,a6,a7,a8,a9,4
5,front2,a3,a4,a5,a6,a7,a8,a9,8 5,a2,a3,a4,a5,a6,a7,a8,a9,7
6,front2,a3,a4,a5,a6,a7,a8,a9,1 6,a2,a3,a4,a5,a6,a7,a8,a9,2
7,front2,a3,a4,a5,a6,a7,a8,a9,4 7,a2,a3,a4,a5,a6,a7,a8,a9,5
8,front2,a3,a4,a5,a6,a7,a8,a9,7 8,a2,a3,a4,a5,a6,a7,a8,a9,8
@COLORS
0 10 10 10 1 130 130 10 2 10 10 190 3 130 10 10 4 250 130 10 5 130 10 190 6 10 60 60 7 130 190 60 8 10 60 250