Rule:Rule110in2d12

From LifeWiki
Revision as of 18:09, 20 December 2019 by Dvgrn (talk | contribs) (Rule 'rule110in2d12' from auto-import project)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE rule110in2d12

https://conwaylife.com/forums/viewtopic.php?p=37917#p37996

Embedding rule 110 elementary cellular automaton - it is Turing-complete Naszvadi Peter, 2016

State definitions from rule110in2d: empty cell: 0 ( or "." ) Wire type #1 top wire: 1 ( or "A" ) top wire sign tail: 2 ( or "B" ) top wire sign true: 3 ( or "C" ) top wire sign false: 4 ( or "D" ) Wire type #2 bottom wire: 5 ( or "E" ) bottom wire sign tail: 6 ( or "F" ) bottom wire sign true: 7 ( or "G" ) bottom wire sign false: 8 ( or "H" ) "Crossroads" (waits for colliding signs to create next generation signs) state true: 9 ( or "I" ) state false: 10 ( or "J" ) state generating true sign on connected cells with wire values: 11 ( or "K" ) state generating false sign on connected cells with wire values: 12 ( or "L" ) intermediary state with true value: 13 ( or "M" ) intermediary state with false value: 14 ( or "N" )

This 12 state version of rule110in2d has the following modifications Two tail states replaced by a single tail state: 2 state 6 remains for consistency but is unused in this ruletable intermediate crossroad states (13 and 14) removed

@TREE

num_states=13 num_neighbors=4 num_nodes=168 1 0 1 2 2 2 5 6 2 2 9 10 9 10 1 0 1 1 2 2 5 6 2 2 9 10 9 10 1 0 3 1 2 2 5 6 2 2 11 12 9 10 1 0 4 1 2 2 5 6 2 2 11 12 9 10 1 0 1 5 2 2 5 6 2 2 9 10 9 10 1 0 1 5 2 2 7 6 2 2 11 11 9 10 1 0 1 5 2 2 8 6 2 2 11 12 9 10 1 0 3 2 2 2 7 6 2 2 9 10 9 10 1 0 4 2 2 2 8 6 2 2 9 10 9 10 2 0 1 0 2 3 4 0 5 6 0 0 7 8 1 0 1 1 2 2 7 6 2 2 11 11 9 10 1 0 1 1 2 2 8 6 2 2 11 12 9 10 2 1 1 1 2 3 1 1 10 11 1 1 7 8 1 0 3 1 2 2 5 6 2 2 9 10 9 10 1 0 4 1 2 2 5 6 2 2 9 10 9 10 1 0 1 5 2 2 7 6 2 2 9 10 9 10 1 0 1 5 2 2 8 6 2 2 9 10 9 10 2 0 1 0 13 14 4 0 15 16 0 0 7 8 1 0 3 1 2 2 7 6 2 2 12 11 9 10 1 0 3 1 2 2 8 6 2 2 11 12 9 10 1 0 3 1 2 2 7 6 2 2 11 12 9 10 1 0 4 1 2 2 8 6 2 2 11 12 9 10 2 2 2 13 2 2 2 2 18 19 2 2 20 21 1 0 4 1 2 2 7 6 2 2 11 11 9 10 2 3 3 14 2 3 3 3 23 21 3 3 20 21 2 4 1 4 2 3 4 4 5 6 4 4 7 8 1 0 3 5 2 2 7 6 2 2 11 11 9 10 1 0 4 5 2 2 8 6 2 2 11 11 9 10 2 5 10 15 18 23 5 5 5 5 5 5 26 27 1 0 3 5 2 2 7 6 2 2 11 12 9 10 1 0 4 5 2 2 8 6 2 2 11 12 9 10 2 6 11 16 19 21 6 6 5 6 6 6 29 30 2 7 7 7 20 20 7 7 26 29 7 7 7 8 2 8 8 8 21 21 8 8 27 30 8 8 8 8 3 9 12 17 22 24 25 9 28 31 9 9 32 33 1 0 1 1 2 2 7 6 2 2 9 10 9 10 1 0 1 1 2 2 8 6 2 2 9 10 9 10 2 1 1 1 13 14 1 1 35 36 1 1 7 8 1 0 3 2 2 2 7 6 2 2 11 12 9 10 1 0 4 2 2 2 8 6 2 2 11 12 9 10 2 2 2 13 2 2 2 2 18 19 2 2 38 39 2 3 3 14 2 3 3 3 23 21 3 3 38 39 1 0 3 2 2 2 7 6 2 2 11 11 9 10 1 0 4 2 2 2 8 6 2 2 11 11 9 10 2 10 10 35 18 23 10 10 10 10 10 10 42 43 2 11 11 36 19 21 11 11 10 11 11 11 38 39 2 7 7 7 38 38 7 7 42 38 7 7 7 8 2 8 8 8 39 39 8 8 43 39 8 8 8 8 3 12 12 37 40 41 12 12 44 45 12 12 46 47 1 0 3 1 2 2 7 6 2 2 9 10 9 10 1 0 3 1 2 2 8 6 2 2 9 10 9 10 1 0 4 1 2 2 8 6 2 2 9 10 9 10 2 13 13 13 13 13 13 13 49 50 13 13 49 51 1 0 4 1 2 2 7 6 2 2 9 10 9 10 2 14 14 14 13 14 14 14 53 51 14 14 49 51 2 4 1 4 13 14 4 4 15 16 4 4 7 8 1 0 3 5 2 2 7 6 2 2 9 10 9 10 1 0 4 5 2 2 8 6 2 2 9 10 9 10 2 15 35 15 49 53 15 15 15 15 15 15 56 57 2 16 36 16 50 51 16 16 15 16 16 16 56 57 2 7 7 7 49 49 7 7 56 56 7 7 7 8 2 8 8 8 51 51 8 8 57 57 8 8 8 8 3 17 37 17 52 54 55 17 58 59 17 17 60 61 1 0 4 1 2 2 8 6 2 2 12 11 9 10 2 18 18 49 18 18 18 18 18 18 18 18 18 63 2 19 19 50 19 19 19 19 18 19 19 19 20 21 2 20 38 49 20 20 20 20 18 20 20 20 20 21 2 21 39 51 21 21 21 21 63 21 21 21 21 21 3 22 40 52 22 22 22 22 64 65 22 22 66 67 1 0 3 1 2 2 7 6 2 2 11 11 9 10 1 0 4 1 2 2 8 6 2 2 11 11 9 10 2 23 23 53 18 23 23 23 23 23 23 23 69 70 2 21 21 51 19 21 21 21 23 21 21 21 20 21 2 20 38 49 20 20 20 20 69 20 20 20 20 21 2 21 39 51 21 21 21 21 70 21 21 21 21 21 3 24 41 54 22 24 24 24 71 72 24 24 73 74 2 5 10 15 18 23 5 5 5 5 5 5 42 43 2 6 11 16 19 21 6 6 5 6 6 6 38 39 2 7 7 7 20 20 7 7 42 38 7 7 7 8 2 8 8 8 21 21 8 8 43 39 8 8 8 8 3 25 12 55 22 24 25 25 76 77 25 25 78 79 2 26 42 56 18 69 42 26 26 26 26 26 26 27 2 27 43 57 63 70 43 27 27 27 27 27 27 27 3 28 44 58 64 71 76 28 28 28 28 28 81 82 2 29 38 56 20 20 38 29 26 29 29 29 29 30 2 30 39 57 21 21 39 30 27 30 30 30 30 30 3 31 45 59 65 72 77 31 28 31 31 31 84 85 3 32 46 60 66 73 78 32 81 84 32 32 32 33 3 33 47 61 67 74 79 33 82 85 33 33 33 33 4 34 48 62 68 75 80 34 83 86 34 34 87 88 2 13 13 13 13 13 13 13 49 50 13 13 7 8 2 14 14 14 13 14 14 14 53 51 14 14 7 8 2 35 35 35 49 53 35 35 35 35 35 35 7 8 2 36 36 36 50 51 36 36 35 36 36 36 7 8 2 7 7 7 7 7 7 7 7 7 7 7 7 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 3 37 37 37 90 91 37 37 92 93 37 37 94 95 1 0 3 2 2 2 7 6 2 2 12 11 9 10 1 0 4 2 2 2 8 6 2 2 12 11 9 10 2 18 18 49 18 18 18 18 18 18 18 18 97 98 2 19 19 50 19 19 19 19 18 19 19 19 38 39 2 38 38 7 38 38 38 38 97 38 38 38 38 39 2 39 39 8 39 39 39 39 98 39 39 39 39 39 3 40 40 90 40 40 40 40 99 100 40 40 101 102 2 23 23 53 18 23 23 23 23 23 23 23 42 43 2 21 21 51 19 21 21 21 23 21 21 21 38 39 2 38 38 7 38 38 38 38 42 38 38 38 38 39 2 39 39 8 39 39 39 39 43 39 39 39 39 39 3 41 41 91 40 41 41 41 104 105 41 41 106 107 2 42 42 7 97 42 42 42 42 42 42 42 42 43 2 43 43 8 98 43 43 43 43 43 43 43 43 43 3 44 44 92 99 104 44 44 44 44 44 44 109 110 3 45 45 93 100 105 45 45 44 45 45 45 106 107 3 46 46 94 101 106 46 46 109 106 46 46 46 47 3 47 47 95 102 107 47 47 110 107 47 47 47 47 4 48 48 96 103 108 48 48 111 112 48 48 113 114 2 49 49 49 49 49 49 49 49 49 49 49 49 51 2 50 50 50 50 50 50 50 49 50 50 50 49 51 2 49 7 49 49 49 49 49 49 49 49 49 49 51 2 51 8 51 51 51 51 51 51 51 51 51 51 51 3 52 90 52 52 52 52 52 116 117 52 52 118 119 2 53 53 53 49 53 53 53 53 53 53 53 49 51 2 51 51 51 50 51 51 51 53 51 51 51 49 51 3 54 91 54 52 54 54 54 121 122 54 54 118 119 2 15 35 15 49 53 15 15 15 15 15 15 7 8 2 16 36 16 50 51 16 16 15 16 16 16 7 8 2 7 7 7 49 49 7 7 7 7 7 7 7 8 2 8 8 8 51 51 8 8 8 8 8 8 8 8 3 55 37 55 52 54 55 55 124 125 55 55 126 127 2 56 7 56 49 49 7 56 56 56 56 56 56 57 2 57 8 57 51 51 8 57 57 57 57 57 57 57 3 58 92 58 116 121 124 58 58 58 58 58 129 130 3 59 93 59 117 122 125 59 58 59 59 59 129 130 3 60 94 60 118 118 126 60 129 129 60 60 60 61 3 61 95 61 119 119 127 61 130 130 61 61 61 61 4 62 96 62 120 123 128 62 131 132 62 62 133 134 2 18 97 49 18 18 18 18 18 18 18 18 18 63 2 63 98 51 63 63 63 63 63 63 63 63 63 63 3 64 99 116 64 64 64 64 64 64 64 64 136 137 3 65 100 117 65 65 65 65 64 65 65 65 66 67 3 66 101 118 66 66 66 66 136 66 66 66 66 67 3 67 102 119 67 67 67 67 137 67 67 67 67 67 4 68 103 120 68 68 68 68 138 139 68 68 140 141 2 69 42 49 18 69 69 69 69 69 69 69 69 70 2 70 43 51 63 70 70 70 70 70 70 70 70 70 3 71 104 121 64 71 71 71 71 71 71 71 143 144 3 72 105 122 65 72 72 72 71 72 72 72 73 74 3 73 106 118 66 73 73 73 143 73 73 73 73 74 3 74 107 119 67 74 74 74 144 74 74 74 74 74 4 75 108 123 68 75 75 75 145 146 75 75 147 148 2 42 42 7 18 69 42 42 42 42 42 42 42 43 2 43 43 8 63 70 43 43 43 43 43 43 43 43 3 76 44 124 64 71 76 76 76 76 76 76 150 151 2 38 38 7 20 20 38 38 42 38 38 38 38 39 2 39 39 8 21 21 39 39 43 39 39 39 39 39 3 77 45 125 65 72 77 77 76 77 77 77 153 154 3 78 46 126 66 73 78 78 150 153 78 78 78 79 3 79 47 127 67 74 79 79 151 154 79 79 79 79 4 80 48 128 68 75 80 80 152 155 80 80 156 157 3 81 109 129 136 143 150 81 81 81 81 81 81 82 3 82 110 130 137 144 151 82 82 82 82 82 82 82 4 83 111 131 138 145 152 83 83 83 83 83 159 160 3 84 106 129 66 73 153 84 81 84 84 84 84 85 3 85 107 130 67 74 154 85 82 85 85 85 85 85 4 86 112 132 139 146 155 86 83 86 86 86 162 163 4 87 113 133 140 147 156 87 159 162 87 87 87 88 4 88 114 134 141 148 157 88 160 163 88 88 88 88 5 89 115 135 142 149 158 89 161 164 89 89 165 166

@TABLE

  1. Format: C,N,E,S,W,C'

n_states:13 neighborhood:vonNeumann symmetries:permute var a={0,1,2,3,4,5,6,7,8,9,10,11,12} var b={0,1,2,3,4,5,6,7,8,9,10,11,12} var c={0,1,2,3,4,5,6,7,8,9,10,11,12} var d={0,1,2,3,4,5,6,7,8,9,10,11,12} var e={0,1,2,3,4,5,6,7,8,9,10,11} var f={0,1,2,3,4,5,6,7,8,9,10,11} var g={0,1,2,3,4,5,6,7,8,9,10,11} var h={0,1,2,3,4,5,6,7,8,9,10} var i={0,1,2,3,4,5,6,7,8,9,10} var j={0,1,2,3,4,5,6,7,8,9,10} var k={0,1,2,4,5,6,7,8,9,10} var l={0,1,2,4,5,6,7,8,9,10} var m={0,1,2,4,5,6,7,8,9,10}

var n={0,1,2,3,4,5,6,8,9,10,11,12} var o={0,1,2,3,4,5,6,8,9,10,11,12} var p={0,1,2,3,4,5,6,8,9,10,11,12}

var q={0,1,2,4,5,6,7,8,9,10,11,12}

var r={0,1,2,3,4,5,6,8,9,10} var s={0,1,2,3,4,5,6,8,9,10} var t={0,1,2,3,4,5,6,8,9,10}

var u={0,1,2,4,5,6,7,8,9,10,11,12} var v={0,1,2,4,5,6,7,8,9,10,11,12}

var w={0,1,2,5,6,9,10,11,12} var x={0,1,2,5,6,9,10,11,12} var y={0,1,2,5,6,9,10,11,12} var z={0,1,2,5,6,9,10,11,12}

  1. Top wire

1,12,a,b,c,4 1,11,e,f,g,3 1,3,h,i,j,3 1,4,k,l,m,4 1,a,b,c,d,1 3,a,b,c,d,2 4,a,b,c,d,2 2,1,11,a,b,2 2,1,12,a,b,2 2,1,a,b,c,1 2,3,a,b,c,1 2,4,a,b,c,1

  1. Bottom wire

5,12,a,b,c,8 5,11,e,f,g,7 5,7,h,i,j,7 5,8,r,s,t,8 5,a,b,c,d,5 7,a,b,c,d,2 8,a,b,c,d,2 2,5,11,a,b,2 2,5,12,a,b,2 2,5,a,b,c,5 2,7,a,b,c,5 2,8,a,b,c,5

  1. Crossroads

9,2,a,b,c,9 9,7,3,a,b,12 9,4,n,o,p,11 9,4,q,u,v,11 9,3,n,o,p,11 9,7,q,u,v,11 9,8,n,o,p,11 9,8,q,u,v,11 9,w,x,y,z,9 10,2,a,b,c,10 10,7,a,b,c,11 10,8,n,o,p,12 10,3,n,o,p,12 10,4,n,o,p,12 10,w,x,y,z,10 11,a,b,c,d,9 12,a,b,c,d,10

@COLORS

1 255 255 255 2 192 192 192 3 64 255 64 4 255 64 64 5 250 250 250 6 188 188 188 7 60 250 60 8 250 60 60 9 0 128 0 10 128 0 0 11 64 192 192 12 192 64 192