Rule:Rule110in2d12
@RULE rule110in2d12
https://conwaylife.com/forums/viewtopic.php?p=37917#p37996
Embedding rule 110 elementary cellular automaton - it is Turing-complete Naszvadi Peter, 2016
State definitions from rule110in2d: empty cell: 0 ( or "." ) Wire type #1 top wire: 1 ( or "A" ) top wire sign tail: 2 ( or "B" ) top wire sign true: 3 ( or "C" ) top wire sign false: 4 ( or "D" ) Wire type #2 bottom wire: 5 ( or "E" ) bottom wire sign tail: 6 ( or "F" ) bottom wire sign true: 7 ( or "G" ) bottom wire sign false: 8 ( or "H" ) "Crossroads" (waits for colliding signs to create next generation signs) state true: 9 ( or "I" ) state false: 10 ( or "J" ) state generating true sign on connected cells with wire values: 11 ( or "K" ) state generating false sign on connected cells with wire values: 12 ( or "L" ) intermediary state with true value: 13 ( or "M" ) intermediary state with false value: 14 ( or "N" )
This 12 state version of rule110in2d has the following modifications Two tail states replaced by a single tail state: 2 state 6 remains for consistency but is unused in this ruletable intermediate crossroad states (13 and 14) removed
@TREE
num_states=13 num_neighbors=4 num_nodes=168 1 0 1 2 2 2 5 6 2 2 9 10 9 10 1 0 1 1 2 2 5 6 2 2 9 10 9 10 1 0 3 1 2 2 5 6 2 2 11 12 9 10 1 0 4 1 2 2 5 6 2 2 11 12 9 10 1 0 1 5 2 2 5 6 2 2 9 10 9 10 1 0 1 5 2 2 7 6 2 2 11 11 9 10 1 0 1 5 2 2 8 6 2 2 11 12 9 10 1 0 3 2 2 2 7 6 2 2 9 10 9 10 1 0 4 2 2 2 8 6 2 2 9 10 9 10 2 0 1 0 2 3 4 0 5 6 0 0 7 8 1 0 1 1 2 2 7 6 2 2 11 11 9 10 1 0 1 1 2 2 8 6 2 2 11 12 9 10 2 1 1 1 2 3 1 1 10 11 1 1 7 8 1 0 3 1 2 2 5 6 2 2 9 10 9 10 1 0 4 1 2 2 5 6 2 2 9 10 9 10 1 0 1 5 2 2 7 6 2 2 9 10 9 10 1 0 1 5 2 2 8 6 2 2 9 10 9 10 2 0 1 0 13 14 4 0 15 16 0 0 7 8 1 0 3 1 2 2 7 6 2 2 12 11 9 10 1 0 3 1 2 2 8 6 2 2 11 12 9 10 1 0 3 1 2 2 7 6 2 2 11 12 9 10 1 0 4 1 2 2 8 6 2 2 11 12 9 10 2 2 2 13 2 2 2 2 18 19 2 2 20 21 1 0 4 1 2 2 7 6 2 2 11 11 9 10 2 3 3 14 2 3 3 3 23 21 3 3 20 21 2 4 1 4 2 3 4 4 5 6 4 4 7 8 1 0 3 5 2 2 7 6 2 2 11 11 9 10 1 0 4 5 2 2 8 6 2 2 11 11 9 10 2 5 10 15 18 23 5 5 5 5 5 5 26 27 1 0 3 5 2 2 7 6 2 2 11 12 9 10 1 0 4 5 2 2 8 6 2 2 11 12 9 10 2 6 11 16 19 21 6 6 5 6 6 6 29 30 2 7 7 7 20 20 7 7 26 29 7 7 7 8 2 8 8 8 21 21 8 8 27 30 8 8 8 8 3 9 12 17 22 24 25 9 28 31 9 9 32 33 1 0 1 1 2 2 7 6 2 2 9 10 9 10 1 0 1 1 2 2 8 6 2 2 9 10 9 10 2 1 1 1 13 14 1 1 35 36 1 1 7 8 1 0 3 2 2 2 7 6 2 2 11 12 9 10 1 0 4 2 2 2 8 6 2 2 11 12 9 10 2 2 2 13 2 2 2 2 18 19 2 2 38 39 2 3 3 14 2 3 3 3 23 21 3 3 38 39 1 0 3 2 2 2 7 6 2 2 11 11 9 10 1 0 4 2 2 2 8 6 2 2 11 11 9 10 2 10 10 35 18 23 10 10 10 10 10 10 42 43 2 11 11 36 19 21 11 11 10 11 11 11 38 39 2 7 7 7 38 38 7 7 42 38 7 7 7 8 2 8 8 8 39 39 8 8 43 39 8 8 8 8 3 12 12 37 40 41 12 12 44 45 12 12 46 47 1 0 3 1 2 2 7 6 2 2 9 10 9 10 1 0 3 1 2 2 8 6 2 2 9 10 9 10 1 0 4 1 2 2 8 6 2 2 9 10 9 10 2 13 13 13 13 13 13 13 49 50 13 13 49 51 1 0 4 1 2 2 7 6 2 2 9 10 9 10 2 14 14 14 13 14 14 14 53 51 14 14 49 51 2 4 1 4 13 14 4 4 15 16 4 4 7 8 1 0 3 5 2 2 7 6 2 2 9 10 9 10 1 0 4 5 2 2 8 6 2 2 9 10 9 10 2 15 35 15 49 53 15 15 15 15 15 15 56 57 2 16 36 16 50 51 16 16 15 16 16 16 56 57 2 7 7 7 49 49 7 7 56 56 7 7 7 8 2 8 8 8 51 51 8 8 57 57 8 8 8 8 3 17 37 17 52 54 55 17 58 59 17 17 60 61 1 0 4 1 2 2 8 6 2 2 12 11 9 10 2 18 18 49 18 18 18 18 18 18 18 18 18 63 2 19 19 50 19 19 19 19 18 19 19 19 20 21 2 20 38 49 20 20 20 20 18 20 20 20 20 21 2 21 39 51 21 21 21 21 63 21 21 21 21 21 3 22 40 52 22 22 22 22 64 65 22 22 66 67 1 0 3 1 2 2 7 6 2 2 11 11 9 10 1 0 4 1 2 2 8 6 2 2 11 11 9 10 2 23 23 53 18 23 23 23 23 23 23 23 69 70 2 21 21 51 19 21 21 21 23 21 21 21 20 21 2 20 38 49 20 20 20 20 69 20 20 20 20 21 2 21 39 51 21 21 21 21 70 21 21 21 21 21 3 24 41 54 22 24 24 24 71 72 24 24 73 74 2 5 10 15 18 23 5 5 5 5 5 5 42 43 2 6 11 16 19 21 6 6 5 6 6 6 38 39 2 7 7 7 20 20 7 7 42 38 7 7 7 8 2 8 8 8 21 21 8 8 43 39 8 8 8 8 3 25 12 55 22 24 25 25 76 77 25 25 78 79 2 26 42 56 18 69 42 26 26 26 26 26 26 27 2 27 43 57 63 70 43 27 27 27 27 27 27 27 3 28 44 58 64 71 76 28 28 28 28 28 81 82 2 29 38 56 20 20 38 29 26 29 29 29 29 30 2 30 39 57 21 21 39 30 27 30 30 30 30 30 3 31 45 59 65 72 77 31 28 31 31 31 84 85 3 32 46 60 66 73 78 32 81 84 32 32 32 33 3 33 47 61 67 74 79 33 82 85 33 33 33 33 4 34 48 62 68 75 80 34 83 86 34 34 87 88 2 13 13 13 13 13 13 13 49 50 13 13 7 8 2 14 14 14 13 14 14 14 53 51 14 14 7 8 2 35 35 35 49 53 35 35 35 35 35 35 7 8 2 36 36 36 50 51 36 36 35 36 36 36 7 8 2 7 7 7 7 7 7 7 7 7 7 7 7 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 3 37 37 37 90 91 37 37 92 93 37 37 94 95 1 0 3 2 2 2 7 6 2 2 12 11 9 10 1 0 4 2 2 2 8 6 2 2 12 11 9 10 2 18 18 49 18 18 18 18 18 18 18 18 97 98 2 19 19 50 19 19 19 19 18 19 19 19 38 39 2 38 38 7 38 38 38 38 97 38 38 38 38 39 2 39 39 8 39 39 39 39 98 39 39 39 39 39 3 40 40 90 40 40 40 40 99 100 40 40 101 102 2 23 23 53 18 23 23 23 23 23 23 23 42 43 2 21 21 51 19 21 21 21 23 21 21 21 38 39 2 38 38 7 38 38 38 38 42 38 38 38 38 39 2 39 39 8 39 39 39 39 43 39 39 39 39 39 3 41 41 91 40 41 41 41 104 105 41 41 106 107 2 42 42 7 97 42 42 42 42 42 42 42 42 43 2 43 43 8 98 43 43 43 43 43 43 43 43 43 3 44 44 92 99 104 44 44 44 44 44 44 109 110 3 45 45 93 100 105 45 45 44 45 45 45 106 107 3 46 46 94 101 106 46 46 109 106 46 46 46 47 3 47 47 95 102 107 47 47 110 107 47 47 47 47 4 48 48 96 103 108 48 48 111 112 48 48 113 114 2 49 49 49 49 49 49 49 49 49 49 49 49 51 2 50 50 50 50 50 50 50 49 50 50 50 49 51 2 49 7 49 49 49 49 49 49 49 49 49 49 51 2 51 8 51 51 51 51 51 51 51 51 51 51 51 3 52 90 52 52 52 52 52 116 117 52 52 118 119 2 53 53 53 49 53 53 53 53 53 53 53 49 51 2 51 51 51 50 51 51 51 53 51 51 51 49 51 3 54 91 54 52 54 54 54 121 122 54 54 118 119 2 15 35 15 49 53 15 15 15 15 15 15 7 8 2 16 36 16 50 51 16 16 15 16 16 16 7 8 2 7 7 7 49 49 7 7 7 7 7 7 7 8 2 8 8 8 51 51 8 8 8 8 8 8 8 8 3 55 37 55 52 54 55 55 124 125 55 55 126 127 2 56 7 56 49 49 7 56 56 56 56 56 56 57 2 57 8 57 51 51 8 57 57 57 57 57 57 57 3 58 92 58 116 121 124 58 58 58 58 58 129 130 3 59 93 59 117 122 125 59 58 59 59 59 129 130 3 60 94 60 118 118 126 60 129 129 60 60 60 61 3 61 95 61 119 119 127 61 130 130 61 61 61 61 4 62 96 62 120 123 128 62 131 132 62 62 133 134 2 18 97 49 18 18 18 18 18 18 18 18 18 63 2 63 98 51 63 63 63 63 63 63 63 63 63 63 3 64 99 116 64 64 64 64 64 64 64 64 136 137 3 65 100 117 65 65 65 65 64 65 65 65 66 67 3 66 101 118 66 66 66 66 136 66 66 66 66 67 3 67 102 119 67 67 67 67 137 67 67 67 67 67 4 68 103 120 68 68 68 68 138 139 68 68 140 141 2 69 42 49 18 69 69 69 69 69 69 69 69 70 2 70 43 51 63 70 70 70 70 70 70 70 70 70 3 71 104 121 64 71 71 71 71 71 71 71 143 144 3 72 105 122 65 72 72 72 71 72 72 72 73 74 3 73 106 118 66 73 73 73 143 73 73 73 73 74 3 74 107 119 67 74 74 74 144 74 74 74 74 74 4 75 108 123 68 75 75 75 145 146 75 75 147 148 2 42 42 7 18 69 42 42 42 42 42 42 42 43 2 43 43 8 63 70 43 43 43 43 43 43 43 43 3 76 44 124 64 71 76 76 76 76 76 76 150 151 2 38 38 7 20 20 38 38 42 38 38 38 38 39 2 39 39 8 21 21 39 39 43 39 39 39 39 39 3 77 45 125 65 72 77 77 76 77 77 77 153 154 3 78 46 126 66 73 78 78 150 153 78 78 78 79 3 79 47 127 67 74 79 79 151 154 79 79 79 79 4 80 48 128 68 75 80 80 152 155 80 80 156 157 3 81 109 129 136 143 150 81 81 81 81 81 81 82 3 82 110 130 137 144 151 82 82 82 82 82 82 82 4 83 111 131 138 145 152 83 83 83 83 83 159 160 3 84 106 129 66 73 153 84 81 84 84 84 84 85 3 85 107 130 67 74 154 85 82 85 85 85 85 85 4 86 112 132 139 146 155 86 83 86 86 86 162 163 4 87 113 133 140 147 156 87 159 162 87 87 87 88 4 88 114 134 141 148 157 88 160 163 88 88 88 88 5 89 115 135 142 149 158 89 161 164 89 89 165 166
@TABLE
- Format: C,N,E,S,W,C'
n_states:13 neighborhood:vonNeumann symmetries:permute var a={0,1,2,3,4,5,6,7,8,9,10,11,12} var b={0,1,2,3,4,5,6,7,8,9,10,11,12} var c={0,1,2,3,4,5,6,7,8,9,10,11,12} var d={0,1,2,3,4,5,6,7,8,9,10,11,12} var e={0,1,2,3,4,5,6,7,8,9,10,11} var f={0,1,2,3,4,5,6,7,8,9,10,11} var g={0,1,2,3,4,5,6,7,8,9,10,11} var h={0,1,2,3,4,5,6,7,8,9,10} var i={0,1,2,3,4,5,6,7,8,9,10} var j={0,1,2,3,4,5,6,7,8,9,10} var k={0,1,2,4,5,6,7,8,9,10} var l={0,1,2,4,5,6,7,8,9,10} var m={0,1,2,4,5,6,7,8,9,10}
var n={0,1,2,3,4,5,6,8,9,10,11,12} var o={0,1,2,3,4,5,6,8,9,10,11,12} var p={0,1,2,3,4,5,6,8,9,10,11,12}
var q={0,1,2,4,5,6,7,8,9,10,11,12}
var r={0,1,2,3,4,5,6,8,9,10} var s={0,1,2,3,4,5,6,8,9,10} var t={0,1,2,3,4,5,6,8,9,10}
var u={0,1,2,4,5,6,7,8,9,10,11,12} var v={0,1,2,4,5,6,7,8,9,10,11,12}
var w={0,1,2,5,6,9,10,11,12} var x={0,1,2,5,6,9,10,11,12} var y={0,1,2,5,6,9,10,11,12} var z={0,1,2,5,6,9,10,11,12}
- Top wire
1,12,a,b,c,4 1,11,e,f,g,3 1,3,h,i,j,3 1,4,k,l,m,4 1,a,b,c,d,1 3,a,b,c,d,2 4,a,b,c,d,2 2,1,11,a,b,2 2,1,12,a,b,2 2,1,a,b,c,1 2,3,a,b,c,1 2,4,a,b,c,1
- Bottom wire
5,12,a,b,c,8 5,11,e,f,g,7 5,7,h,i,j,7 5,8,r,s,t,8 5,a,b,c,d,5 7,a,b,c,d,2 8,a,b,c,d,2 2,5,11,a,b,2 2,5,12,a,b,2 2,5,a,b,c,5 2,7,a,b,c,5 2,8,a,b,c,5
- Crossroads
9,2,a,b,c,9 9,7,3,a,b,12 9,4,n,o,p,11 9,4,q,u,v,11 9,3,n,o,p,11 9,7,q,u,v,11 9,8,n,o,p,11 9,8,q,u,v,11 9,w,x,y,z,9 10,2,a,b,c,10 10,7,a,b,c,11 10,8,n,o,p,12 10,3,n,o,p,12 10,4,n,o,p,12 10,w,x,y,z,10 11,a,b,c,d,9 12,a,b,c,d,10
@COLORS
1 255 255 255 2 192 192 192 3 64 255 64 4 255 64 64 5 250 250 250 6 188 188 188 7 60 250 60 8 250 60 60 9 0 128 0 10 128 0 0 11 64 192 192 12 192 64 192