Rule:SDSR-Loop

From LifeWiki
Revision as of 19:27, 15 March 2020 by Ian07 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE SDSR-Loop

  1. SDSR Loop
  2. Hiroki Sayama. "Introduction of Structural Dissolution into
  3. Langton's Self-Reproducing Loop." Artificial Life VI: Proceedings
  4. of the Sixth International Conference on Artificial Life, C. Adami,
  5. R. K. Belew, H. Kitano, and C. E. Taylor, eds., pp.114-122,
  6. Los Angeles, California, 1998, MIT Press.
  7. transition rules from: http://necsi.org/postdocs/sayama/sdsr/java/loops.java
  8. credits: "Self-Replicating Loops & Ant, Programmed by Eli Bachmutsky, Copyleft Feb.1999"
  9. Note that the transition table given in the above link is incomplete (it's the original
  10. Langton's Loops one), and is patched by the function set_undefined_rule(). The table
  11. below has these changes incorporated, and was produced automatically by a bottom-up
  12. merging procedure from the full 9^5 rule table. Tim Hutton <tim.hutton@gmail.com>
  13. states: 9
  14. rules: 142
  15. variables: 123
  16. format: CNESWC'
  17. Variables are bound within each transition.
  18. For example, if a={1,2} then 4,a,0->a represents
  19. two transitions: 4,1,0->1 and 4,2,0->2

@TABLE n_states:9 neighborhood:vonNeumann symmetries:rotate4 var a={0,1,2} var b={0,1} var c={0,1} var d={0,1} var e={2,3} var f={0,1,2,3,4,5,6,7} var g={0,1,2,3,4,6,7} var h={4,6,7} var i={6,7} var j={0,1,2,3,4,5,6,7,8} var k={0,1,2,3,4,5,6,7,8} var l={2,3,4,5,6,7} var m={0,1,2,3,5} var n={0,1,8} var o={1,4,6,7} var p={0,1,3,5} var q={1,2,4,6,7} var r={3,5} var s={2,3,4,5,6} var t={0,3,5} var u={1,3,5} var v={0,5} var w={2,3,5} var x={0,2} var y={1,4,7} var z={0,3,5} var A={0,3,5} var B={0,2,3,4,5} var C={0,2,4,6,7} var D={0,1,2,4,6,7} var E={0,1,2,4,6,7} var F={1,3,4,6,7} var G={0,1,2,3,4,5} var H={0,1,2,3,4} var I={1,2,4} var J={0,3,5,6} var K={0,1,3,4,5,6} var L={1,2,4,6} var M={0,3} var N={0,2,3,5} var O={1,3,4,5,6,7} var P={0,1,3,4} var Q={1,2} var R={2,4,6,7} var S={0,1,2,3,4,5,6} var T={0,1,3,4,5,6,7} var U={1,5} var V={0,1,3,4,5} var W={1,3,5} var X={1,3,5} var Y={0,3,4,5,6} var Z={0,6} var aa={0,6} var ab={1,3} var ac={2,5} var ad={2,3,5} var ae={0,7} var af={2,7} var ag={1,4,6,7,8} var ah={1,3,5} var ai={1,2,3,4,5} var aj={1,4,5,6,7} var ak={1,2,3,5} var al={1,2,3,5} var am={4,7} var an={0,5,6} var ao={0,5,6} var ap={0,5,6} var aq={0,5,6} var ar={0,3} var as={0,3} var at={3,7} var au={2,3,5,8} var av={0,1,2,3,4,5,6,7,8} var aw={0,1,4,5,6,7} var ax={0,1,4,5,6,7} var ay={1,4,6,7} var az={0,1,2,3,4,5,6,7} var aA={2,8} var aB={4,5,6,7} var aC={4,5,6} var aD={0,1,5} var aE={0,1,5} var aF={1,4,5,6,7} var aG={0,1,2,4,5,6,7} var aH={5,6,7} var aI={0,2,3,4,5,6,7} var aJ={0,4,6,7} var aK={2,3,5,7} var aL={1,2,3,4,6,7} var aM={1,2,3,4,5,6,7} var aN={3,4,6,7,8} var aO={1,3,4,5,6,7} var aP={2,4,6,7} var aQ={4,5} var aR={0,1,3,4,6,7} var aS={4,6,7,8} var aT={1,2,4,6,7} var aU={4,6,8} var aV={1,2,3,4,5,6,7} var aW={1,2,3,4,5,6,7} var aX={1,2,3,4,5,6,7} var aY={0,3,7} var aZ={0,1,2,3} var ba={0,3,4,5,6,7} var bb={5,8} var bc={0,1,7} var bd={0,1,3,7} var be={1,2,7} var bf={1,3,6,7} var bg={0,1,2,3,7} var bh={3,6} var bi={5,6} var bj={2,3,4,5,6,7} var bk={2,3,4,5,6,7} var bl={2,3,4,5,6,7} var bm={6,8} var bn={6,7,8} var bo={3,4,6,7} var bp={1,6} var bq={0,1,4,6,7} var br={0,1,2,3,4,5,6,7} var bs={0,1,2,3,4,5,6,7} 0,0,0,a,1,2 0,0,0,0,6,3 0,b,c,d,7,1 0,0,0,1,e,2 0,f,g,1,h,1 0,0,0,2,i,2 b,j,k,l,8,8 0,m,f,h,1,1 0,0,0,5,2,5 0,0,0,i,2,2 b,f,n,8,l,8 0,m,1,f,o,1 0,0,1,0,2,2 0,p,1,q,r,1 0,m,1,s,2,1 b,c,l,d,8,8 0,t,2,1,u,1 0,v,2,1,2,5 0,0,2,w,1,1 0,0,2,3,2,2 0,0,r,1,q,1 0,0,r,2,1,1 0,0,5,2,2,2 x,1,q,3,f,1 0,1,7,2,5,5 0,2,5,2,7,1 y,t,z,A,B,8 1,C,D,E,7,7 F,A,t,f,r,8 1,G,H,I,4,4 1,J,K,L,6,6 1,M,p,N,w,8 O,A,t,3,f,8 1,m,P,4,Q,4 F,0,A,5,R,8 1,S,K,6,L,6 1,f,T,7,q,7 U,M,u,m,w,8 1,p,I,A,4,4 1,A,L,V,6,6 u,A,W,w,X,8 1,p,q,f,7,7 1,p,L,7,Y,7 1,Z,2,aa,2,6 1,A,w,U,W,8 ab,N,w,ac,ad,8 1,0,2,2,6,3 1,ae,af,3,2,7 1,B,2,6,W,6 1,0,2,6,4,4 ag,0,2,7,1,0 O,A,r,v,D,8 1,b,s,L,7,7 1,p,5,I,4,4 1,A,5,4,1,4 1,x,5,4,2,7 1,0,7,r,L,7 O,W,X,u,ah,8 1,1,Q,2,7,7 ab,m,Q,5,x,8 1,ai,2,6,4,6 aj,ak,5,ad,al,8 1,W,5,4,2,4 1,2,ad,2,6,6 1,2,am,2,5,5 1,2,4,2,6,7 ad,an,ao,ap,aq,8 2,M,ar,as,at,1 au,j,k,av,8,0 ad,aw,ax,o,ay,8 2,f,az,O,3,1 aA,x,0,2,5,0 2,aw,x,3,aj,1 2,a,0,3,2,6 2,0,0,4,2,3 ad,aw,ax,aB,aC,8 2,0,0,5,1,7 2,0,b,5,aC,8 2,x,0,5,7,5 ad,aD,aj,aE,aF,8 2,0,O,x,3,1 2,0,2,0,7,3 2,aG,l,2,3,1 af,0,2,3,2,1 2,0,3,2,aB,1 2,0,3,aH,2,1 2,0,5,5,2,1 2,1,1,2,6,1 3,0,0,Z,2,2 3,aI,az,f,r,8 3,x,0,0,4,1 3,0,0,0,7,6 3,D,aJ,aK,aL,8 3,v,1,0,2,1 3,az,aM,F,aL,8 aN,0,1,2,2,0 r,T,O,az,aO,8 3,0,R,0,aP,8 aQ,A,0,v,aR,8 h,av,j,k,8,1 aS,0,aw,q,aT,0 aS,0,ay,A,aT,0 aU,0,aT,q,O,0 aU,0,2,aw,aT,0 aS,0,2,aM,ay,0 4,0,e,2,2,1 4,0,2,3,2,6 aS,0,e,ay,aT,0 aS,0,3,2,ay,0 am,aM,aV,aW,aX,8 5,aY,0,0,2,2 5,aZ,T,F,az,8 5,az,ba,e,aC,8 bb,0,0,5,2,0 5,b,2,bc,2,2 5,0,e,bd,h,8 5,v,e,be,bf,8 5,0,2,1,5,2 bb,b,2,2,2,0 5,0,2,2,4,4 5,0,2,af,5,8 5,bg,2,bh,2,8 5,1,2,4,2,2 bi,l,bj,bk,bl,8 6,0,0,0,aJ,8 6,0,0,0,Q,1 i,0,0,5,1,8 bm,0,2,e,2,0 bn,0,3,2,2,0 6,O,aF,aM,bj,8 6,1,2,Q,2,5 6,1,2,1,3,1 6,1,e,bo,2,8 6,1,3,2,2,8 7,0,0,0,bp,8 7,0,ay,aT,r,0 7,0,2,bq,2,0 7,0,2,ay,r,0 7,0,2,2,ac,1 7,0,2,2,3,0 7,0,2,5,2,5 8,az,f,br,bs,0