Rule:SDSR-Loop
@RULE SDSR-Loop
- SDSR Loop
- Hiroki Sayama. "Introduction of Structural Dissolution into
- Langton's Self-Reproducing Loop." Artificial Life VI: Proceedings
- of the Sixth International Conference on Artificial Life, C. Adami,
- R. K. Belew, H. Kitano, and C. E. Taylor, eds., pp.114-122,
- Los Angeles, California, 1998, MIT Press.
- transition rules from: http://necsi.org/postdocs/sayama/sdsr/java/loops.java
- credits: "Self-Replicating Loops & Ant, Programmed by Eli Bachmutsky, Copyleft Feb.1999"
- Note that the transition table given in the above link is incomplete (it's the original
- Langton's Loops one), and is patched by the function set_undefined_rule(). The table
- below has these changes incorporated, and was produced automatically by a bottom-up
- merging procedure from the full 9^5 rule table. Tim Hutton <tim.hutton@gmail.com>
- states: 9
- rules: 142
- variables: 123
- format: CNESWC'
- Variables are bound within each transition.
- For example, if a={1,2} then 4,a,0->a represents
- two transitions: 4,1,0->1 and 4,2,0->2
@TABLE n_states:9 neighborhood:vonNeumann symmetries:rotate4 var a={0,1,2} var b={0,1} var c={0,1} var d={0,1} var e={2,3} var f={0,1,2,3,4,5,6,7} var g={0,1,2,3,4,6,7} var h={4,6,7} var i={6,7} var j={0,1,2,3,4,5,6,7,8} var k={0,1,2,3,4,5,6,7,8} var l={2,3,4,5,6,7} var m={0,1,2,3,5} var n={0,1,8} var o={1,4,6,7} var p={0,1,3,5} var q={1,2,4,6,7} var r={3,5} var s={2,3,4,5,6} var t={0,3,5} var u={1,3,5} var v={0,5} var w={2,3,5} var x={0,2} var y={1,4,7} var z={0,3,5} var A={0,3,5} var B={0,2,3,4,5} var C={0,2,4,6,7} var D={0,1,2,4,6,7} var E={0,1,2,4,6,7} var F={1,3,4,6,7} var G={0,1,2,3,4,5} var H={0,1,2,3,4} var I={1,2,4} var J={0,3,5,6} var K={0,1,3,4,5,6} var L={1,2,4,6} var M={0,3} var N={0,2,3,5} var O={1,3,4,5,6,7} var P={0,1,3,4} var Q={1,2} var R={2,4,6,7} var S={0,1,2,3,4,5,6} var T={0,1,3,4,5,6,7} var U={1,5} var V={0,1,3,4,5} var W={1,3,5} var X={1,3,5} var Y={0,3,4,5,6} var Z={0,6} var aa={0,6} var ab={1,3} var ac={2,5} var ad={2,3,5} var ae={0,7} var af={2,7} var ag={1,4,6,7,8} var ah={1,3,5} var ai={1,2,3,4,5} var aj={1,4,5,6,7} var ak={1,2,3,5} var al={1,2,3,5} var am={4,7} var an={0,5,6} var ao={0,5,6} var ap={0,5,6} var aq={0,5,6} var ar={0,3} var as={0,3} var at={3,7} var au={2,3,5,8} var av={0,1,2,3,4,5,6,7,8} var aw={0,1,4,5,6,7} var ax={0,1,4,5,6,7} var ay={1,4,6,7} var az={0,1,2,3,4,5,6,7} var aA={2,8} var aB={4,5,6,7} var aC={4,5,6} var aD={0,1,5} var aE={0,1,5} var aF={1,4,5,6,7} var aG={0,1,2,4,5,6,7} var aH={5,6,7} var aI={0,2,3,4,5,6,7} var aJ={0,4,6,7} var aK={2,3,5,7} var aL={1,2,3,4,6,7} var aM={1,2,3,4,5,6,7} var aN={3,4,6,7,8} var aO={1,3,4,5,6,7} var aP={2,4,6,7} var aQ={4,5} var aR={0,1,3,4,6,7} var aS={4,6,7,8} var aT={1,2,4,6,7} var aU={4,6,8} var aV={1,2,3,4,5,6,7} var aW={1,2,3,4,5,6,7} var aX={1,2,3,4,5,6,7} var aY={0,3,7} var aZ={0,1,2,3} var ba={0,3,4,5,6,7} var bb={5,8} var bc={0,1,7} var bd={0,1,3,7} var be={1,2,7} var bf={1,3,6,7} var bg={0,1,2,3,7} var bh={3,6} var bi={5,6} var bj={2,3,4,5,6,7} var bk={2,3,4,5,6,7} var bl={2,3,4,5,6,7} var bm={6,8} var bn={6,7,8} var bo={3,4,6,7} var bp={1,6} var bq={0,1,4,6,7} var br={0,1,2,3,4,5,6,7} var bs={0,1,2,3,4,5,6,7} 0,0,0,a,1,2 0,0,0,0,6,3 0,b,c,d,7,1 0,0,0,1,e,2 0,f,g,1,h,1 0,0,0,2,i,2 b,j,k,l,8,8 0,m,f,h,1,1 0,0,0,5,2,5 0,0,0,i,2,2 b,f,n,8,l,8 0,m,1,f,o,1 0,0,1,0,2,2 0,p,1,q,r,1 0,m,1,s,2,1 b,c,l,d,8,8 0,t,2,1,u,1 0,v,2,1,2,5 0,0,2,w,1,1 0,0,2,3,2,2 0,0,r,1,q,1 0,0,r,2,1,1 0,0,5,2,2,2 x,1,q,3,f,1 0,1,7,2,5,5 0,2,5,2,7,1 y,t,z,A,B,8 1,C,D,E,7,7 F,A,t,f,r,8 1,G,H,I,4,4 1,J,K,L,6,6 1,M,p,N,w,8 O,A,t,3,f,8 1,m,P,4,Q,4 F,0,A,5,R,8 1,S,K,6,L,6 1,f,T,7,q,7 U,M,u,m,w,8 1,p,I,A,4,4 1,A,L,V,6,6 u,A,W,w,X,8 1,p,q,f,7,7 1,p,L,7,Y,7 1,Z,2,aa,2,6 1,A,w,U,W,8 ab,N,w,ac,ad,8 1,0,2,2,6,3 1,ae,af,3,2,7 1,B,2,6,W,6 1,0,2,6,4,4 ag,0,2,7,1,0 O,A,r,v,D,8 1,b,s,L,7,7 1,p,5,I,4,4 1,A,5,4,1,4 1,x,5,4,2,7 1,0,7,r,L,7 O,W,X,u,ah,8 1,1,Q,2,7,7 ab,m,Q,5,x,8 1,ai,2,6,4,6 aj,ak,5,ad,al,8 1,W,5,4,2,4 1,2,ad,2,6,6 1,2,am,2,5,5 1,2,4,2,6,7 ad,an,ao,ap,aq,8 2,M,ar,as,at,1 au,j,k,av,8,0 ad,aw,ax,o,ay,8 2,f,az,O,3,1 aA,x,0,2,5,0 2,aw,x,3,aj,1 2,a,0,3,2,6 2,0,0,4,2,3 ad,aw,ax,aB,aC,8 2,0,0,5,1,7 2,0,b,5,aC,8 2,x,0,5,7,5 ad,aD,aj,aE,aF,8 2,0,O,x,3,1 2,0,2,0,7,3 2,aG,l,2,3,1 af,0,2,3,2,1 2,0,3,2,aB,1 2,0,3,aH,2,1 2,0,5,5,2,1 2,1,1,2,6,1 3,0,0,Z,2,2 3,aI,az,f,r,8 3,x,0,0,4,1 3,0,0,0,7,6 3,D,aJ,aK,aL,8 3,v,1,0,2,1 3,az,aM,F,aL,8 aN,0,1,2,2,0 r,T,O,az,aO,8 3,0,R,0,aP,8 aQ,A,0,v,aR,8 h,av,j,k,8,1 aS,0,aw,q,aT,0 aS,0,ay,A,aT,0 aU,0,aT,q,O,0 aU,0,2,aw,aT,0 aS,0,2,aM,ay,0 4,0,e,2,2,1 4,0,2,3,2,6 aS,0,e,ay,aT,0 aS,0,3,2,ay,0 am,aM,aV,aW,aX,8 5,aY,0,0,2,2 5,aZ,T,F,az,8 5,az,ba,e,aC,8 bb,0,0,5,2,0 5,b,2,bc,2,2 5,0,e,bd,h,8 5,v,e,be,bf,8 5,0,2,1,5,2 bb,b,2,2,2,0 5,0,2,2,4,4 5,0,2,af,5,8 5,bg,2,bh,2,8 5,1,2,4,2,2 bi,l,bj,bk,bl,8 6,0,0,0,aJ,8 6,0,0,0,Q,1 i,0,0,5,1,8 bm,0,2,e,2,0 bn,0,3,2,2,0 6,O,aF,aM,bj,8 6,1,2,Q,2,5 6,1,2,1,3,1 6,1,e,bo,2,8 6,1,3,2,2,8 7,0,0,0,bp,8 7,0,ay,aT,r,0 7,0,2,bq,2,0 7,0,2,ay,r,0 7,0,2,2,ac,1 7,0,2,2,3,0 7,0,2,5,2,5 8,az,f,br,bs,0