Rule:SliderDemo

From LifeWiki
Revision as of 20:53, 2 January 2020 by Dvgrn (talk | contribs) (Rule 'SliderDemo' from auto-import project)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE SliderDemo Uploaded by HactarCE#5314 on Discord > A simple 4-state demonstration of a potential new logic technology

        • COMPILED FROM NUTSHELL ****
        • v0.5.5 ****

by HactarCE

0: Blank 1: Wall 2: Tail 3: Head

  1. 3: Head R {h0}
  2. 4: Head G {h1}
  3. 5: Cycler {c}


@COLORS 0 0 0 0 1 136 85 51 2 102 102 102 3 51 204 204

@TREE

num_states=4 num_neighbors=8 num_nodes=135 1 0 1 0 2 1 0 1 2 2 2 0 0 0 1 2 1 1 1 1 3 2 2 2 3 3 3 3 3 3 4 4 4 4 5 1 3 1 2 2 2 0 0 0 7 2 1 7 1 1 3 2 8 2 9 3 3 9 3 3 4 4 10 4 11 4 5 11 5 5 5 6 12 6 13 2 7 7 1 1 3 8 8 2 15 3 9 15 3 3 4 10 16 4 17 4 11 17 5 5 5 12 18 6 19 4 5 5 5 5 5 6 6 6 21 2 1 1 1 7 2 7 7 1 7 3 23 23 3 24 2 1 7 1 7 3 23 26 3 24 4 25 27 5 25 3 26 24 3 24 4 27 29 5 25 4 25 25 5 25 5 28 30 21 31 6 14 20 22 32 2 7 1 1 1 3 8 2 2 34 3 15 34 3 3 4 16 35 4 36 4 17 36 5 5 5 18 37 6 38 2 7 1 1 7 3 24 40 3 24 4 29 41 5 25 5 30 42 21 31 6 20 39 22 43 5 21 21 21 21 6 22 22 22 45 3 23 23 3 23 3 23 26 3 23 3 24 24 3 24 4 47 48 5 49 3 26 24 3 23 4 48 51 5 49 4 47 47 5 49 5 50 52 21 53 3 24 40 3 23 4 51 55 5 49 5 52 56 21 53 4 25 25 5 49 5 58 58 21 58 6 54 57 45 59 7 33 44 46 60 3 34 3 3 3 4 35 4 4 62 4 36 62 5 5 5 37 63 6 64 3 40 23 3 24 4 41 66 5 25 5 42 67 21 31 6 39 65 22 68 3 40 23 3 23 4 55 70 5 49 5 56 71 21 53 6 57 72 45 59 7 44 69 46 73 6 45 45 45 45 7 46 46 46 75 3 3 3 3 24 3 3 9 3 24 4 77 78 5 77 3 9 15 3 24 4 78 80 5 77 4 49 49 5 49 5 79 81 21 82 3 15 34 3 24 4 80 84 5 77 5 81 85 21 82 5 31 31 21 82 6 83 86 45 87 3 34 3 3 24 4 84 89 5 77 5 85 90 21 82 6 86 91 45 87 5 58 58 21 82 6 93 93 45 93 7 88 92 75 94 8 61 74 76 95 4 62 5 5 5 5 63 6 6 97 4 66 25 5 25 5 67 99 21 31 6 65 98 22 100 4 70 47 5 49 5 71 102 21 53 6 72 103 45 59 7 69 101 46 104 4 89 77 5 77 5 90 106 21 82 6 91 107 45 87 7 92 108 75 94 8 74 105 76 109 7 75 75 75 75 8 76 76 76 111 4 5 11 5 49 4 11 17 5 49 5 113 114 21 82 4 17 36 5 49 5 114 116 21 82 6 115 117 45 93 4 36 62 5 49 5 116 119 21 82 6 117 120 45 93 5 53 53 21 82 6 122 122 45 93 7 118 121 75 123 4 62 5 5 49 5 119 125 21 82 6 120 126 45 93 7 121 127 75 123 4 77 77 5 49 5 129 129 21 82 6 130 130 45 93 7 131 131 75 94 8 124 128 111 132 9 96 110 112 133

@TABLE neighborhood: Moore symmetries: rotate4reflect n_states: 4

var any.0 = {0,1,2,3} var any.1 = any.0 var any.2 = any.0 var any.3 = any.0 var any.4 = any.0 var any.5 = any.0 var any.6 = any.0 var any.7 = any.0 var _a0.0 = {0} var _a0.1 = _a0.0 var _a0.2 = _a0.0 var _a0.3 = _a0.0 var _b0.0 = {0,1,2} var _b0.1 = _b0.0 var _b0.2 = _b0.0 var _b0.3 = _b0.0 var _b0.4 = _b0.0 var _b0.5 = _b0.0 var _b0.6 = _b0.0 var _b0.7 = _b0.0

0, 2, any.0, any.1, any.2, any.3, any.4, any.5, any.6, 0 0, any.0, 2, any.1, any.2, any.3, any.4, any.5, any.6, 0 0, 1, 1, 1, 1, 3, _a0.0, _a0.1, _a0.2, 3 0, 1, 1, 1, 1, _a0.0, 3, _a0.1, _a0.2, 3 0, 1, 1, 1, 1, _a0.0, _a0.1, 3, _a0.2, 3 0, 1, 1, 1, 1, _a0.0, _a0.1, _a0.2, 3, 3 0, 1, 1, 1, 3, 1, _a0.0, _a0.1, _a0.2, 3 0, 1, 1, 1, 3, _a0.0, 1, _a0.1, _a0.2, 3 0, 1, 1, 1, 3, _a0.0, _a0.1, 1, _a0.2, 3 0, 1, 1, 1, _a0.0, 1, 3, _a0.1, _a0.2, 3 0, 1, 1, 1, _a0.0, 1, _a0.1, 3, _a0.2, 3 0, 1, 1, 1, _a0.0, 3, 1, _a0.1, _a0.2, 3 0, 1, 1, 3, 1, 1, _a0.0, _a0.1, _a0.2, 3 0, 1, 1, 3, 1, _a0.0, 1, _a0.1, _a0.2, 3 0, 1, 1, 3, 1, _a0.0, _a0.1, 1, _a0.2, 3 0, 1, 1, 3, 1, _a0.0, _a0.1, _a0.2, 1, 3 0, 1, 1, 3, _a0.0, 1, 1, _a0.1, _a0.2, 3 0, 1, 1, 3, _a0.0, 1, _a0.1, 1, _a0.2, 3 0, 1, 1, 3, _a0.0, 1, _a0.1, _a0.2, 1, 3 0, 1, 1, 3, _a0.0, _a0.1, 1, 1, _a0.2, 3 0, 1, 1, 3, _a0.0, _a0.1, 1, _a0.2, 1, 3 0, 1, 1, _a0.0, 1, 1, 3, _a0.1, _a0.2, 3 0, 1, 1, _a0.0, 1, 1, _a0.1, 3, _a0.2, 3 0, 1, 1, _a0.0, 1, 3, 1, _a0.1, _a0.2, 3 0, 1, 1, _a0.0, 1, 3, _a0.1, 1, _a0.2, 3 0, 1, 1, _a0.0, 1, 3, _a0.1, _a0.2, 1, 3 0, 1, 1, _a0.0, 1, _a0.1, 1, 3, _a0.2, 3 0, 1, 1, _a0.0, 1, _a0.1, 1, _a0.2, 3, 3 0, 1, 1, _a0.0, 1, _a0.1, 3, 1, _a0.2, 3 0, 1, 1, _a0.0, 1, _a0.1, 3, _a0.2, 1, 3 0, 1, 1, _a0.0, 1, _a0.1, _a0.2, 1, 3, 3 0, 1, 1, _a0.0, 3, 1, 1, _a0.1, _a0.2, 3 0, 1, 1, _a0.0, 3, 1, _a0.1, 1, _a0.2, 3 0, 1, 1, _a0.0, 3, 1, _a0.1, _a0.2, 1, 3 0, 1, 1, _a0.0, 3, _a0.1, 1, 1, _a0.2, 3 0, 1, 1, _a0.0, _a0.1, 1, 3, 1, _a0.2, 3 0, 1, 1, _a0.0, _a0.1, 1, _a0.2, 1, 3, 3 0, 1, 1, _a0.0, _a0.1, _a0.2, 1, 1, 3, 3 0, 1, 3, 1, _a0.0, 1, _a0.1, 1, _a0.2, 3 0, 3, 1, _a0.0, 1, _a0.1, 1, _a0.2, 1, 3 0, 1, 1, 1, 3, _a0.0, _a0.1, _a0.2, _a0.3, 3 0, 1, 1, 1, _a0.0, 3, _a0.1, _a0.2, _a0.3, 3 0, 1, 1, 1, _a0.0, _a0.1, 3, _a0.2, _a0.3, 3 0, 1, 1, 3, 1, _a0.0, _a0.1, _a0.2, _a0.3, 3 0, 1, 1, 3, _a0.0, 1, _a0.1, _a0.2, _a0.3, 3 0, 1, 1, 3, _a0.0, _a0.1, 1, _a0.2, _a0.3, 3 0, 1, 1, 3, _a0.0, _a0.1, _a0.2, 1, _a0.3, 3 0, 1, 1, 3, _a0.0, _a0.1, _a0.2, _a0.3, 1, 3 0, 1, 1, _a0.0, 1, 3, _a0.1, _a0.2, _a0.3, 3 0, 1, 1, _a0.0, 1, _a0.1, 3, _a0.2, _a0.3, 3 0, 1, 1, _a0.0, 1, _a0.1, _a0.2, 3, _a0.3, 3 0, 1, 1, _a0.0, 1, _a0.1, _a0.2, _a0.3, 3, 3 0, 1, 1, _a0.0, 3, 1, _a0.1, _a0.2, _a0.3, 3 0, 1, 1, _a0.0, 3, _a0.1, 1, _a0.2, _a0.3, 3 0, 1, 1, _a0.0, 3, _a0.1, _a0.2, 1, _a0.3, 3 0, 1, 1, _a0.0, 3, _a0.1, _a0.2, _a0.3, 1, 3 0, 1, 1, _a0.0, _a0.1, 1, 3, _a0.2, _a0.3, 3 0, 1, 1, _a0.0, _a0.1, 1, _a0.2, 3, _a0.3, 3 0, 1, 1, _a0.0, _a0.1, 1, _a0.2, _a0.3, 3, 3 0, 1, 1, _a0.0, _a0.1, 3, 1, _a0.2, _a0.3, 3 0, 1, 1, _a0.0, _a0.1, 3, _a0.2, 1, _a0.3, 3 0, 1, 1, _a0.0, _a0.1, 3, _a0.2, _a0.3, 1, 3 0, 1, 1, _a0.0, _a0.1, _a0.2, 1, 3, _a0.3, 3 0, 1, 1, _a0.0, _a0.1, _a0.2, 1, _a0.3, 3, 3 0, 1, 1, _a0.0, _a0.1, _a0.2, 3, 1, _a0.3, 3 0, 1, 1, _a0.0, _a0.1, _a0.2, _a0.3, 1, 3, 3 0, 1, 3, 1, _a0.0, 1, _a0.1, _a0.2, _a0.3, 3 0, 1, 3, 1, _a0.0, _a0.1, 1, _a0.2, _a0.3, 3 0, 1, 3, _a0.0, 1, _a0.1, 1, _a0.2, _a0.3, 3 0, 1, 3, _a0.0, 1, _a0.1, _a0.2, 1, _a0.3, 3 0, 1, 3, _a0.0, _a0.1, 1, _a0.2, 1, _a0.3, 3 0, 1, _a0.0, 1, _a0.1, 1, _a0.2, 3, _a0.3, 3 0, 1, _a0.0, 1, _a0.1, 3, 1, _a0.2, _a0.3, 3 0, 1, _a0.0, 3, 1, _a0.1, 1, _a0.2, _a0.3, 3 0, 1, _a0.0, _a0.1, 1, 3, 1, _a0.2, _a0.3, 3 0, 3, 1, _a0.0, 1, _a0.1, 1, _a0.2, _a0.3, 3 0, 3, 1, _a0.0, 1, _a0.1, _a0.2, _a0.3, 1, 3 0, _a0.0, 1, _a0.1, 1, _a0.2, 1, _a0.3, 3, 3 3, any.0, any.1, any.2, any.3, any.4, any.5, any.6, any.7, 2 2, _b0.0, _b0.1, _b0.2, _b0.3, _b0.4, _b0.5, _b0.6, _b0.7, 0 0, 3, 3, any.0, any.1, any.2, any.3, any.4, any.5, 3