Rule:Tempesti-simplified

From LifeWiki
Revision as of 01:55, 29 June 2022 by Ian07 (talk | contribs) (Created page with "@RULE Tempesti-simplified https://conwaylife.com/forums/viewtopic.php?p=123586#p123586 Transitions rules for Tempesti's self-replicating loops. Converted from rules given in Tempesti's thesis: http://lslwww.epfl.ch/pages/embryonics/thesis/ Note that there's an error in the text, where it says that states are given as clockwise from north: PS,N,NE,E,... but actually they start at NW: PS,NW,N,NE,... Note also that Table A-3 in his thesis has rules that are rotational...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

@RULE Tempesti-simplified

https://conwaylife.com/forums/viewtopic.php?p=123586#p123586

Transitions rules for Tempesti's self-replicating loops.

Converted from rules given in Tempesti's thesis: http://lslwww.epfl.ch/pages/embryonics/thesis/

Note that there's an error in the text, where it says that states are given as clockwise from north: PS,N,NE,E,... but actually they start at NW: PS,NW,N,NE,...

Note also that Table A-3 in his thesis has rules that are rotationally symmetric, but Table A-4's rules are not, despite what footnote 39 says. To make a single rule file we've had to expand A-3, giving 175*4+326=1026 rules. Hopefully this can be compressed further.

As in Tempesti's thesis, variables are bound within each transition. For example, if a={1,2} then 4,a,0->a represents two transitions: 4,1,0->1 and 4,2,0->2

@TABLE

  1. rules: 179
  2. variables: 4
  3. format: C,N,NE,E,SE,S,SW,W,NW,C'
  4. remaining cases default: state doesn't change
  5. symmetry: none (no rotation/reflection)

n_states:6 neighborhood:Moore symmetries:rotate4 var a={5} var b={5} var c={5} var d={5} 2,1,1,b,0,0,0,a,1,a a,2,0,0,0,b,1,1,1,b b,a,0,0,1,c,1,1,1,c b,a,0,1,0,c,d,1,1,c b,a,1,0,0,0,0,c,1,c c,1,a,b,0,0,0,d,1,d b,1,1,a,0,0,0,2,1,2 b,a,0,0,0,c,1,1,1,c c,1,a,b,0,0,0,2,1,2 b,a,1,0,0,0,0,2,1,2 2,1,c,b,0,0,0,a,1,a b,a,0,1,0,c,2,1,1,c b,1,a,2,0,0,0,c,1,c b,a,0,1,0,2,c,1,1,2 2,a,1,0,0,0,0,b,1,b 0,1,0,0,0,0,0,2,a,2 b,a,0,0,1,2,1,1,1,2 b,1,2,c,0,0,0,a,1,a 2,a,0,1,2,b,c,1,1,b a,2,1,2,0,0,0,b,1,b 0,0,0,0,0,0,2,2,0,2 2,2,0,0,0,0,0,a,2,0 2,a,0,0,1,b,1,1,1,b a,2,0,1,0,b,c,1,1,b 0,2,0,0,0,0,0,0,1,2 a,2,0,0,1,b,1,1,1,b 2,2,0,0,0,0,0,0,1,0 0,1,1,0,0,0,0,2,a,2 2,1,1,0,0,0,0,a,2,0 0,1,1,0,0,0,0,2,1,2 2,1,1,0,0,0,0,0,1,0 0,1,2,2,0,0,0,2,1,2 0,1,2,0,0,0,0,2,1,3 0,0,0,0,0,0,3,3,0,3 3,3,0,0,0,0,0,0,1,0 3,0,0,0,0,3,0,1,0,1 0,3,0,0,0,0,0,0,1,3 0,1,3,3,0,0,0,2,1,2 0,1,3,0,0,0,0,2,1,2 3,3,0,3,2,1,0,0,0,2 3,0,0,0,3,2,0,0,0,1 0,0,3,2,1,0,0,0,0,3 2,3,0,3,2,1,0,0,0,3 1,2,3,2,0,1,0,0,0,3 3,0,0,0,0,2,3,3,1,0 2,3,0,0,0,0,1,3,3,0 3,1,0,3,2,3,0,3,0,0 0,3,3,3,1,0,0,0,0,3 3,3,3,2,0,1,0,0,3,1 3,3,0,1,1,0,0,0,0,1 3,0,1,0,1,3,0,0,0,0 0,0,0,0,0,2,1,1,0,2 0,0,0,0,0,2,1,0,1,2 0,1,0,2,0,1,1,0,0,2 0,0,1,2,1,1,1,0,0,2 2,0,0,0,0,0,1,2,1,0 2,0,1,0,1,1,1,0,0,0 0,0,1,1,1,0,3,3,0,1 0,2,1,1,1,1,1,0,0,3 1,1,0,0,1,1,1,0,2,3 1,3,3,1,0,0,0,1,0,3 1,3,0,1,0,0,0,1,3,3 3,0,1,3,1,1,1,0,0,0 3,1,0,0,1,1,1,3,0,1 0,3,3,0,0,0,0,2,1,3 3,0,1,3,0,0,2,1,0,1 2,1,3,0,0,0,0,0,1,0 0,3,1,0,0,0,0,3,1,2 3,1,3,0,0,0,0,0,1,0 3,1,0,1,0,0,3,1,0,1 0,1,1,3,0,0,0,0,1,3 3,1,1,0,0,0,0,0,1,0 3,1,1,0,0,0,0,2,1,2 2,1,1,3,0,0,0,0,1,3 3,1,1,2,0,0,0,0,1,0 2,1,1,0,0,0,0,3,1,0 0,0,0,a,b,1,1,3,0,3 a,0,0,2,1,b,1,3,0,2 b,a,2,1,1,c,0,1,3,a b,2,a,1,1,c,0,1,3,2 3,0,0,2,a,1,1,0,0,2 2,0,0,b,1,a,1,3,0,b 1,3,2,a,b,0,0,1,0,2 0,0,0,2,2,1,1,0,0,2 2,0,0,a,2,2,1,0,0,a a,0,0,b,1,2,2,2,0,b a,0,2,2,1,1,1,b,0,2 2,a,b,1,1,c,0,2,2,a 2,2,a,2,b,0,0,1,0,1 2,0,0,a,1,1,1,0,0,a a,0,0,b,a,1,1,2,0,b a,b,c,1,1,2,0,1,a,b b,0,0,c,1,a,1,a,0,c b,0,0,c,b,1,1,a,0,c a,b,c,1,1,d,0,1,a,b 2,0,0,a,1,1,1,3,0,a 2,0,0,a,1,1,3,0,0,a 3,0,0,a,1,1,3,0,0,a a,0,0,b,1,1,1,3,0,b b,0,0,2,1,a,1,a,0,3 b,a,2,1,1,c,0,1,b,a b,0,0,3,c,1,1,a,0,3 a,3,c,1,1,b,0,1,a,2 3,0,0,a,1,b,1,b,0,a a,0,0,b,1,1,c,3,0,b b,0,0,3,1,1,1,a,0,3 2,b,c,1,1,a,0,1,3,b a,0,0,b,1,2,1,3,0,b 3,0,0,b,2,1,1,a,0,b 3,0,0,b,1,1,1,a,0,b a,0,0,b,a,1,1,3,0,b 2,0,0,a,1,1,0,0,0,a a,0,0,b,1,1,0,2,0,b 2,0,0,a,1,0,1,0,0,a 0,2,a,1,1,0,0,1,0,2 a,0,0,b,1,2,1,0,0,b 2,a,b,1,1,0,0,1,0,a 2,a,1,1,1,0,0,0,1,a c,0,0,3,1,1,a,b,0,2 0,1,1,0,0,0,a,3,1,4 3,1,1,0,0,a,1,3,1,a a,3,0,0,0,b,1,1,3,b 3,1,1,3,a,1,0,0,1,1 1,b,3,1,4,c,1,1,a,c a,1,1,4,0,b,1,1,1,b b,a,4,0,0,c,1,1,1,c 1,3,b,1,0,4,b,1,a,4 4,1,1,0,0,0,b,a,1,0 3,0,0,b,4,b,1,a,0,b 4,b,a,1,0,0,a,b,3,0 b,3,b,4,0,c,1,1,a,c a,0,0,b,1,4,a,3,0,0 1,b,c,1,0,0,0,4,a,4 3,0,0,b,c,1,1,a,0,b a,0,0,0,0,b,1,3,0,b b,a,0,0,0,c,1,1,3,c a,0,0,b,1,4,0,0,0,0 4,a,b,1,0,0,0,0,0,0 0,0,0,0,0,a,3,0,0,1 a,0,1,b,c,1,1,3,0,b b,1,0,0,0,c,1,a,0,c b,0,1,c,d,1,1,a,0,c 1,b,3,1,0,0,0,4,a,4 b,0,0,c,1,1,4,a,0,c b,0,0,c,b,1,4,a,0,1 1,b,c,b,a,0,0,4,a,0 a,0,0,2,1,b,0,1,0,2 b,a,2,1,1,c,0,0,1,a 1,0,2,a,b,0,0,0,0,2 2,2,a,2,b,0,0,0,0,1 2,0,0,2,0,1,0,0,0,1 1,0,2,1,0,0,0,2,0,3 2,0,0,3,3,2,0,0,0,3 2,2,3,3,0,0,0,0,0,3 3,3,0,1,0,0,0,2,2,1 3,0,0,0,1,3,2,2,0,0 0,0,0,3,3,2,0,0,0,3 2,0,3,3,0,0,0,0,0,3 3,3,0,1,0,0,0,2,0,1 3,0,0,0,1,3,2,0,0,0 2,0,0,0,1,1,0,0,0,0 2,2,0,1,1,0,0,1,0,0 2,0,0,a,1,b,0,1,0,a b,2,a,1,1,c,0,0,1,2 a,0,0,b,1,2,0,1,0,b 2,b,c,1,1,a,0,0,1,b a,b,c,1,1,2,0,0,1,b 1,0,0,1,0,0,0,0,0,4 2,0,0,0,1,1,4,0,0,0 4,0,0,1,0,0,0,0,0,0 1,0,0,1,0,0,0,4,0,4 0,0,0,a,b,1,4,0,0,1 1,0,a,b,c,0,0,4,0,0 2,0,0,a,2,1,4,0,0,0 1,0,a,b,2,0,0,4,0,0

@COLORS

  1. colors from
  2. http://lslwww.epfl.ch/pages/embryonics/thesis/AppendixA.html

1 255 255 255 2 255 0 0 3 0 255 255 4 0 255 0 5 255 0 255 6 0 0 255 7 255 255 0 8 85 85 85 9 170 170 170