Sawtooth 1212
x = 173, y = 114, rule = B3/S23
39b2o$39bo16b2o$28b2o7bobo16bo$28bo2bo5b2o$14bobo15bo$12bo3bo15bo$12bo
19bo$5b2o4bo16bo2bo6b2o$5bo6bo15b2o8bobo15bo$12bo3bo22b3o13b3o$14bobo
23b2o13b3o$37b2o$37b3o13b2o3b2o$31bo21bo5bo$32bo$30b3o5b2o$38bo22b2o$
55bo6bo$56bo5bobo7b2o$54b3o6b2o6b3o$9bobo56bob2o15bo$7bo3bo56bo2bo15bo
bo$2o5bo15b2o43bob2o16bobo$o5bo16bo2bo24bo5bo13b3o14bo2bo3b2o$7bo19bo
23bo5bo14b2o14bobo4bo$7bo3bo15bo6b2o16bo3bo30bobo28b2o$9bobo15bo6bo18b
3o31bo31bo$23bo2bo76b2o14bobo9bo$23b2o78bo16b2o8b4o$38b2o52bobo6bobo
25b2obo8b2o$38bo53bo2bo5b2o25b3obobo6bo2bo$26b2o8bobo38bo17b2o32b2obo
12bo$28bo7b2o38bobo14bo3b2o20b2o9b4o11bo6b2o$15b2o12bo26b2o17bob2o16b
2o21bo2bo9bo13bo6bo$15bo13bo26bo17b2ob2o13bo2bo6b2o14bo22bo2bo$12b2o
15bo27b3o15bob2o13bobo6bo2bo13bo22b2o$4b2o5b3o14bo8b2o20bo11b2o3bobo
25bo13bob2o$4bo7b2o12b2o9bo24bo7bobo4bo26bo15bo8bo$15bo31b2o12bo8bo30b
2obo22b2o$15b2o30bo13b3o5b2o31bo25b2o$37b3o79b2o$29bo8b2o55bo23bo12b2o
$30bo4b2o9b3o47b2o4b2o28bo$28b3o4b3o8b2o18b2o27b2o5bo41bo$36bobo10b2o
16bo74bobo$24b2o11b2o9b3o16bobo7b2o42b2o7b2o9bobo11b2o$24bo22bobo18b2o
5bo2bo42bo8b3o7bo2bo11bo$14bo32b2o25bo13bo43b2obo5bobo$13bobo58bo11b4o
42bo2bo6bobo$b2o10b2obo8bobo46bo12bob2o41b2obo8bo$bo11b2ob2o6bo2bo47bo
2bo6bobob3o31b2o5b3o$13b2obo6b2o52b2o8bob2o31bobo5b2o$13bobo5b2o3bo59b
4o8b2o22bo$14bo8b2o63bo9bobo20b2o$24bo2bo5b2o65bo$25bobo5bobo64b2o$35b
o$35b2o2$53bo7b3o$53b2ob2obo2b2o$54bo4b3o$34b2ob2obo13bo3bobo2bo$33b2o
2b2ob2o12bo4bo4bo$41bo12bo4bo4bo$33b2o19bo3bobo2bo$33b2o5b2o12bo4b3o$
40b2o11b2ob2obo2b2o$33bo13b3o3bo7b3o$33b2ob2o2b2o5b3o$34bob2ob2o6b3o$
50b3o$50b3o$50b3o2$39b2o23b2o$38b3o23bo44bo27b2o$26bo8bob2o9b2o59bobo
26bo$26bobo6bo2bo9bo63b2o6b2o16bobo9bo$27bobo5bob2o25bo47b2o4bo3bo16b
2o8b4o$14b2o11bo2bo7b3o22b2obo45b2o3bo5bo24b2ob4o5b2o$14bo12bobo9b2o
25bo33b2o7bobo4b2obo3bo23b3ob2o3bo3bo2bo$26bobo37bo32bobo7bo7bo5bo24b
2ob2o3bo7bo$26bo36bo2bo32bo18bo3bo7b2o17b5o3bo6bo6b2o$37b2o25b2o32b2o
20b2o8bobo17bo3b3o7bo6bo$37bo43b2o27bo21bo27bo2bo$81bo26b2o22b2o26b2o$
70b2o7bobo27b2o$70bobo6b2o54bo$57bobo13bo61b2o$56bo2bo5bo4bo2bo18b2o$
55b2o9bo6bo17bo2bo41bo$53b2o3bo5b3o3bobo21bo40bobo$55b2o13b2o22bo39bo
2bo$49b2o5bo2bo31b2obo38bo2bo24bo$48bobo6bobo32bo67bobo$48bo66bobo18bo
7bobo13b2obo4b2o$47b2o34b2o29bo2bo17b2o6bo2bo13b2ob2o3bo$23bo24bob2o
30bobo7b2o6b2o11b2o10b2o15b2o16b2obo$23b2o23bobo30b3o8bo7bobo8b2o3bo8b
o14b2o3bo14bobo$14b2o8b2o14bo5bobo2bo29b2o20bo9b2o27b2o17bo$14bo9b3o
13bobo3b2o2b2o32b2o14bo2bo10bo2bo18b2o5bo2bo$24b2o15bobo39b3o17bo11bob
o17bobo6bobo$23b2o16bo2bo13b2o33b2o5bobo32bo$23bo17bobo16bo8b3o20bobo
5b2o32b2o$40bobo7b2o9bo9bo3bo7b2o7bo$40bo9bo10bo8bo4bobo5bo7b2o$61bo
16b2o$60bo17b2o$58b2o18b2o$75bobo4b2o$75bo6bobo$84bo$84b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
View static image
Pattern type
Sawtooth
Number of cells
983
Bounding box
173 × 114
Static symmetry
Unspecified
Discovered by
Dean Hickerson
Year of discovery
1991
Sawtooth 1212 is an orthogonal sawtooth with expansion factor 21 that was discovered by Dean Hickerson on April 10, 1991 . It was the first sawtooth to be constructed.
Its population in generation t = 18(21n ) + 222 (n ≥ 0) is 7t/60 + 1290, but the population in generation 6(21n ) + 193 (n ≥ 1) is only 1212. It works by using a spark from a turtle to turn a heavyweight spaceship into a loaf , which is then pulled back by pairs of lightweight spaceships . When the loaf is pulled all the way back, another heavyweight spaceship is fired towards the turtle, starting the cycle again. The heavyweight spaceship synthesis, which uses two gliders , Kok's galaxy , and a figure eight , is due to David Buckingham .
Image gallery
Sawtooth 1212 works by sending out a stream of c/2 lightweight spaceships to collide with a c/3 turtle, creating loaves along the way.
The number of alive cells plotted versus the number of elapsed generations roughly forms an ever-increasing sawtooth graph.
External links