User:AforAmpere/2x2
This page is an equivalent to the Spaceship Search Status Page, albeit for 2x2 instead of Life.
Known spaceships by width
The majority of spaceships shown as upper bounds are from LaundryPizza03's updated version of David Eppstein's glider database.[1]
The first four rows are by AforAmpere, all subsequent expansion thus far is by DroneBetter, Darren Li (enlisted for increasing 3c/7 to logical width 12 and 2c/7 asymmetrical to width 10) and wwei23 (for their ability to use JLS, which apparently utilises some manner of dark magic seeing widths far beyond those of qfind at low periods and high speeds)
all results were found with qfind except where noted otherwise
| Velocity | Asymmetric | Odd-symmetric | Even-symmetric |
|---|---|---|---|
| (1,0)c/2[n 1] | 20 | 29 | 34 |
| (1,0)c/3 | 8 | 13 | 14 |
| (1,1)c/3 | 14 | 21 | 29 |
| (1,0)c/4 | 8 | 13 | 16 |
| (2,0)c/4 | 14 | 25 | 28[n 2] |
| (1,1)c/4 | w ≤ 19 | ||
| (1,0)c/5 | 9 | 15 | 16 |
| (2,0)c/5 | 12 | 21 | 16 |
| (1,0)c/6 | 10 | 15 | 16 |
| (2,0)c/6 | 9 | 13 | 14 |
| (3,0)c/6 | 13 | 25 | 24 |
| (1,0)c/7 | 8 | 13 | 16 |
| (2,0)c/7 | 10[n 3] | 17[n 4] | 18 |
| (3,0)c/7 | 12[n 5] | 23[n 6] | 24[n 7] |
| (1,0)c/8 | 7[n 8] | 13[n 9] | 14[n 10] |
| (2,0)c/8 | 8 | 11 | 14 |
| (3,0)c/8 | 9 | 17 | 18 |
| (4,0)c/8 | 11 | 21 | 22 |
| (1,0)c/9 | 6 | 11[n 11] | 12 |
| (2,0)c/9 | 7[n 12] | 13[n 13] | 14[n 14] |
| (3,0)c/9 | 7 | 13 | 14 |
| (4,0)c/9 | 10 | 19 | 20 |
| (1,0)c/10 | 5 | 9 | 10 |
| (2,0)c/10 | 6 | 9 | 10 |
| (3,0)c/10 | 7 | 11 | 12 |
| (4,0)c/10 | 8 | 15 | 16 |
| (5,0)c/10 | 10 | 19 | 20 |
| (1,0)c/11 | 5 | 7 | 10 |
| (2,0)c/11 | 6 | 9 | 10 |
| (3,0)c/11 | 7 | 11 | 12 |
| (4,0)c/11 | 8 | 15[n 15] | 16 |
| (5,0)c/11 | 9 | 17 | 16 |
| (1,0)c/12 | 5 | 9 | 110 |
| (2,0)c/12 | 5 | 9[n 16] | 10 |
| (3,0)c/12 | 5 | 9 | 10 |
| (4,0)c/12 | 6 | 11 | 12 |
| (5,0)c/12 | 8 | 15 | 16 |
| (6,0)c/12 | 9 | 17 | 18 |
| (2,0)c/38 | w ≤ 16 |
Note by DroneBetter: From the previously-included (1,1)c/3 entry, it appears that unlike LifeWiki:Spaceship Search Status Page (which considers the maximum orthogonal width of the pattern itself), this page measures diagonal spaceships by the number of cells in an orthogonal ray through the footprint left in their wake (corresponding with half-diagonals of width perpendicular to travel direction). The other diagonal speeds are measured accordingly.
| Spaceships of speed c/2, 2c/4,[3] 2c/5, c/3, 2c/6,[3] c/4, c/5, c/6,[3][4] c/7,[5] 2c/38,[6] (1,1)c/8, (1,1)c/4 and (1,1)c/3. (click above to open LifeViewer) |
Notes
- ↑ these were found with JLS,[2] qfind cannot reach beynd logical width 14
- ↑ was found by Josh Ball on November 5, 2015[3], width 26 has been disproven with qfind but it crashes at 28, so not guaranteed to be of minimal length, but is of minimal width so counts as a green
- ↑ 10*47 partial
5b3o$8bo$3b2o3bo$3bo$2b3obo$2bo2bo$b2obo$4bo$3b2o2bo$2b3obobo2$5bo$3b2o3bo$2b5o$2b2ob2o$4bo$2b2o$6bo$2b2o3bo$4b3o$2b2o2b2o$2b2obobobo$3bo2bo$2b3ob3o$2b
o$2bo2bo$2bo2bo$4bo2bo$7b2o$bo6bo$bob2o$2obo$bobob2o$bo2bo$bo2bo$2b2o3bo$bo2b2o$2o2bobo$bo2bo$2b2o$bo2bob3o$bo3b4o$bobob2ob2o$bo3b2o$2bob3o$bo$bo5bobo! - ↑ 17*183 partial
2b2ob2o3b2ob2o$2b2o3bobo3b2o$2b3o7b3o$4bob2ob2obo$4b2o5b2o2$4bo7bo$4b2obobob2o$2bo11bo$bo2bobobobob
o2bo$6bo3bo$3bobobobobobo$3b3o5b3o$2bob9obo2$2bo11bo$3b2o7b2o$5b2obob2o$4bo7bo$3bo2b5o2bo$4bo2bobo2
bo$5b3ob3o$5b2o3b2o$4b2o5b2o$3bo9bo$3bo9bo$b2o3bo3bo3b2o$3ob2obobob2ob3o$4bo7bo$2bo11bo$2b2obo5bob2
o$bo2b9o2bo$o3b3obob3o3bo$4b2ob3ob2o$7b3o$7b3o$7b3o$3b2o3bo3b2o$3bob2o3b2obo$4bobo3bobo$2bobo2bobo2
bobo$2bobobo3bobobo$5bo5bo$2bo11bo$7b3o2$5bo5bo$6bo3bo$5bo2bo2bo$4bo2bobo2bo$3b2ob2ob2ob2o$6bobobo$
2bo3b2ob2o3bo$2b2o9b2o$6b2ob2o$8bo$7bobo$4b3o3b3o$4bobo3bobo$4bo2bobo2bo$5b7o2$4bobobobobo$3b2o7b2o
$2bo5bo5bo$obo3bo3bo3bobo$2bo11bo$2obo9bob2o$3b2o7b2o$3b3o5b3o$6b2ob2o3$3b3o5b3o$3b2o7b2o$2b2o3b3o3
b2o$2b2o2bo3bo2b2o$7b3o$4bobo3bobo$3b3o2bo2b3o$3bobo5bobo$2bo2bo5bo2bo$bo2b3o3b3o2bo$o2bo2bo3bo2bo2
bo$bo13bo2$obo11bobo$bob2o7b2obo$bo3bo5bo3bo$4b2o5b2o$3b2obo3bob2o$2bobob2ob2obobo$4b3o3b3o$4bo2bob
o2bo$3bobobobobobo$3b2obo3bob2o$6b5o$5bo5bo2$5bo5bo$4bobo3bobo$4b2o5b2o2$7b3o2$5b2o3b2o$7bobo$4bo7b
o$3bo4bo4bo$3b2o2b3o2b2o$8bo$7b3o$4b3obob3o$3bo2bo3bo2bo$5bo5bo$b2o11b2o$b3o9b3o$bo2bo2bobo2bo2bo$2
b2ob3ob3ob2o$4b2o2bo2b2o$4b3o3b3o$5b2o3b2o$5b2o3b2o$6bo3bo$5b2o3b2o$5b2o3b2o$3bo9bo$6b2ob2o$2bo2b3o
b3o2bo$bo2bob2ob2obo2bo$bobo3b3o3bobo$2b2o3b3o3b2o$4bob2ob2obo$4b3o3b3o$6bo3bo$4b3o3b3o$3b2ob2ob2ob
2o$3b5ob5o$2bob4ob4obo$4bo2bobo2bo$5bo2bo2bo$3bo3bobo3bo$4bobo3bobo2$4bob5obo$6b2ob2o$4b4ob4o$2bob3
o3b3obo$2bobobobobobobo$4b9o$3b2o7b2o$2b2ob2o3b2ob2o$2b3o2bobo2b3o$4bobo3bobo2$6bobobo2$6bo3bo$2b2o
bo5bob2o$8bo$2b2o4bo4b2o$bo2bobobobobo2bo$o2b3ob3ob3o2bo$4o9b4o$bob2o7b2obo$5b2o3b2o$2b2o3bobo3b2o$
bo3bobobobo3bo$o3b4ob4o3bo$4bobo3bobo$bo2b2o5b2o2bo$2b3o7b3o$4bob2ob2obo$4bo7bo$3bo4bo4bo$bo2bo2bob
o2bo2bo$bobo3bobo3bobo$2b2obobobobob2o$2bo11bo$3b2o2b3o2b2o$2bo2b7o2bo$o2b2obobobob2o2bo$ob5o3b5obo!
seems promising - ↑ 12*26 partial
4b5o2$5bobo$5bobo$4bobo$2b3obobo$4bo4b2o$bo4bo2b2o$b2obo2bob2o$5b2obob2o$3bo2bo2b2o$4b2o$4b2obo$2bo2b2
o2bo$bo4bo2b2o$o2bo2bob2o$obobo$3bo$2b2ob6o$2bo4bo2b2o$6b4o$bo6b2o$4b3o3bo$3bo6bo$3o2bob2obo$bo4bo4bo! - ↑ 23*89 partial
4bo13bo$2bobobo9bobobo$3b3o11b3o2$2b5o9b5o$2bo2bo11bo2bo$b2obob2o3bo3b2obob2o$2bobobob2obob2obobobo$
2bo7bobo7bo$2bo2b2o9b2o2bo$6bo3bobo3bo$3bo2bo3bobo3bo2bo$10b3o$4bobobo5bobobo$10b3o$10b3o$6bo2bo3bo2
bo$7bo7bo$6b3obobob3o$6b2o7b2o$9bo3bo$7bobo3bobo$6bo9bo$8bo5bo$6bo3b3o3bo$6bo2b5o2bo$7bo2bobo2bo$9bo
3bo$7bo3bo3bo$6bo3b3o3bo$4bobobob3obobobo$5bo3b5o3bo$5bobo7bobo$5b2o4bo4b2o$3b2o2bobo3bobo2b2o$2bo2b
o2b2o3b2o2bo2bo$2bobobobo5bobobobo$2bobo6bo6bobo$bobo5bobobo5bobo$b2o2bo2b3ob3o2bo2b2o$b2o3bob3ob3ob
o3b2o$2o2bo13bo2b2o$bo3bobo7bobo3bo$2b5o3bobo3b5o$4bo13bo$4b5o5b5o$3bo15bo$4b3obo5bob3o$3b2ob2o7b2ob
2o$2b3o13b3o$2b5o9b5o$3b3obo7bob3o$5bo3b5o3bo$5b4o2bo2b4o$4bo2b2o5b2o2bo$4b2o3b2ob2o3b2o$3bo3b3obob3o
3bo$3b6obobob6o$4b2ob2o5b2ob2o$4b2o3bo3bo3b2o$3bo15bo$8b3ob3o$6bobo5bobo$3bobo2bobobobo2bobo$b2obobo
3bobo3bobob2o$o2b2obo9bob2o2bo2$5bo2b2o3b2o2bo$2bo4bo2bobo2bo4bo$o6bo3bo3bo6bo$4b2obo3bo3bob2o$2bobo
2bo3bo3bo2bobo$3b2o3bobobobo3b2o$2bobo4b2ob2o4bobo$2bobo2bo2bobo2bo2bobo$2b2o2bobo2bo2bobo2b2o$o3bo2b
o2b3o2bo2bo3bo$bobo2b2ob2ob2ob2o2bobo$6b2o3bo3b2o$2bob5o5b5obo$4bo4bobobo4bo$3bo5bobobo5bo$ob2ob4ob3
ob4ob2obo$6bo9bo$o3b3o2bo3bo2b3o3bo$2bo4b2obobob2o4bo$3bo5bo3bo5bo$obo2bob2o2bo2b2obo2bobo$2b2o15b2o! - ↑ 24*50 partial
6b3o6b3o$5b5o4b5o$5bo3bo4bo3bo$6bobob4obobo$6bo4b2o4bo$7bob6obo$4b2o5b2o5b2o$6b2o2b4o2b2o$4b3obo6bo
b3o$6bo2bo4bo2bo$6b4o4b4o$6bo10bo$6bo2bo4bo2bo$7bobo4bobo$5b2obobo2bobob2o$4b7o2b7o$7b2o2b2o2b2o$7b
obo4bobo$3bo4bo2b2o2bo4bo$7bo3b2o3bo$4bo2bo3b2o3bo2bo$4bobo10bobo$6bo10bo$3bo4b3o2b3o4bo$4bo3b8o3bo
$10b4o$5b2o2bo4bo2b2o$4bob2o2bo2bo2b2obo$3bo16bo$9bob2obo$3bo2b3o2b2o2b3o2bo$4b3obo6bob3o$8bo6bo$3b
o2bo2b2o2b2o2bo2bo$2b2o2bob3o2b3obo2b2o$2bo2bo12bo2bo$o2b2ob2o2bo2bo2b2ob2o2bo$ob2o16b2obo$4b2o2b3o
2b3o2b2o$2bo4bobob2obobo4bo$7bobob2obobo$3b2obo4b2o4bob2o$2b3o5bo2bo5b3o$2obobobo8bobobob2o$bob2o2b
o3b2o3bo2b2obo$obobob3ob4ob3obobobo$b5ob2ob4ob2ob5o$3bo3bo8bo3bo$ob2o2b12o2b2obo$2bo2b2o4b2o4b2o2bo! - ↑ 7*35 partial
2bo$3b3o$2bo2bo$2bobo$2bo$5bo$2bo2b2o$3b3o$2bo$bobo2$o2bo$4b2o$6bo$2bo3bo$4b2o$b2obo2$ob2ob2
o$obo$2bo$2bob2o$4bobo$4bobo$3b3o$3bo$2bob2o$2bo3bo$2bob2o$bo$b2o3bo$b2o$b2o2bo$3o2bo$2ob2o! - ↑ 13*79 partial
2o9b2o$2bo2bobo2bo$3obo3bob3o$3bo5bo$3
bo5bo$2bo7bo$2b4ob4o$2b2o5b2o$5bobo2$5
bobo$4bo3bo$2b2o5b2o$5bobo$3bo5bo$b3ob
obob3o$bo3bobo3bo$2b2o5b2o$6bo$5bobo$6
bo2$4bo3bo2$3bo5bo$o3b5o3bo$ob9obo$bo9
bo2$3b7o$5b3o$3bob3obo$3bo2bo2bo$2b2ob
obob2o$2b4ob4o$bob2o3b2obo$o3bo3bo3bo$
o5bo5bo$b2ob2ob2ob2o$2bo7bo$bo2bo3bo2b
o$2obo5bob2o$b2obobobob2o$4b2ob2o$6bo$
6bo$4bo3bo$4bo3bo$5b3o$3b2obob2o$4bo3b
o$bo3bobo3bo$2b3o3b3o$3bo2bo2bo$bo3bob
o3bo$2b2o2bo2b2o2$4b2ob2o$2b2ob3ob2o$o
11bo$o2bo2bo2bo2bo$4bo3bo$2b2o5b2o$2b2
o5b2o$4bo3bo$4bo3bo$2bo7bo2$bob2o3b2ob
o$3obobobob3o$bo4bo4bo$bo2bobobo2bo$b2
o3bo3b2o$2o2bobobo2b2o$2obo5bob2o$2b3o
3b3o$b3obobob3o$2obo5bob2o$o3bo3bo3bo! - ↑ 14*70 partial
o12bo$o2bob4obo2bo$3b2ob2ob2o$bo10bo$bo10bo$2b2obo2bob2o$6b2o$6b2o$3bo2b2o2bo$3b3o2b3o$3
bo6bo2$6b2o$3bob4obo$5b4o$b3o6b3o$o12bo$3bo6bo$bo3bo2bo3bo$5bo2bo$3bo6bo$3b2o4b2o$2b2o6b
2o$2b2obo2bob2o$b2o8b2o$b2o8b2o$2b4o2b4o$b3o2b2o2b3o$3b2o4b2o$2bo2bo2bo2bo$bo2bo4bo2bo$b
2o2bo2bo2b2o$o12bo$2obo6bob2o$2bo8bo$2b2o6b2o$3b2o4b2o$4bob2obo$bo2bo4bo2bo$4bo4bo$2bo8b
o$bo4b2o4bo$4bo4bo$bo2bo4bo2bo$5bo2bo$3b8o$2bob6obo$bob3o2b3obo$4bo4bo$b2o8b2o$3bo6bo$3o
b2o2b2ob3o$4bo4bo$5bo2bo$3bo6bo$3b2o4b2o$2bob6obo$bo2b6o2bo$bo3b4o3bo$bo10bo$2bob2o2b2ob
o2$2b2obo2bob2o$bo2bo4bo2bo$b4o4b4o$3b2ob2ob2o$b2o3b2o3b2o$o3b2o2b2o3bo$obo8bobo$2bo8bo! - ↑ 11*70 partial
4bobo$3bo3bo$3bobobo$3b2ob2o$5bo$3b2ob2o$bobo3bobo$2bobobobo$4bobo$4bobo$3bo3bo$2b2o3b2o$3b5o2$3b5o$2bo5bo2$4bobo2$3bo3bo$3bobob
o$3bobobo$3bobobo$5bo$2bo2bo2bo$2bo5bo$3obobob3o$obo5bobo$3bo3bo$b2o5b2o$2b2o3b2o$3b5o$3bo3bo$5bo$2b2o3b2o$2bob3obo$3bo3bo$4bobo
$bobo3bobo$ob2obob2obo$3bo3bo$2b2o3b2o2$4bobo$b4ob4o2$2bo5bo2$2b2obob2o$bo2b3o2bo$2o7b2o$3bo3bo2$5bo$2o7b2o$b4ob4o$4b3o$bo2b3o2b
o$3bobobo$3bobobo$bobo3bobo$3ob3ob3o$4b3o$2bo2bo2bo$obo5bobo$bob2ob2obo2$2bo5bo$b3o3b3o$b9o!
longest of all symmetries - ↑ 7*24 partial
5bo$2bobo$bo3bo$2o2b2o$bo3bo$2b2obo$3b2o2$3b2o$3bo$2bo$bo2$3b2o$b2obo$3b2o$4bo$bo3bo$bob3o$2ob2o$2bobo$bo2bo$bobobo$o3b3o! - ↑ 13*54 partial
4b5o2$4bo3bo$3b2o3b2o$4b2ob2o$5b3o$3o3bo3b3o$2bo7bo$2bo7bo$b3o5b3o$2b3o3b3o$b11o$5bobo$5bobo$5bobo$b2o3bo3b2o$ obobobobobobo$6bo$6bo$3b2o3b2o$3o7b3o$ob2ob3ob2obo$bob2obob2obo$3b2obob2o$4bobobo2$5bobo$3bo2bo2bo$2b2o2bo2b2o $b3o2bo2b3o$bo2bo3bo2bo$5bobo$bo9bo$b3o5b3o$2bo7bo$3bob3obo$2b2obobob2o$2b2o5b2o$4bobobo$2bo7bo$bo3bobo3bo$o 11bo$bo9bo$2b2o5b2o$2b9o$b2o3bo3b2o$4bo3bo$o5bo5bo$4b2ob2o$2obo2bo2bob2o$3bob3obo$2bo3bo3bo$2obob3obob2o$3bo5bo! - ↑ 14*59 partial
5bo2bo$5bo2bo2$3bobo2bobo$3bobo2bobo$4b6o$6b2o2$3b8o$6b2o$5bo2bo$bo4b2o4bo2$3b3o2b3o$b2o2bo2bo2b2o$bo10bo$4b6o$2bo3b2o3bo$4bob2o bo$2bo8bo$2bo2bo2bo2bo$b12o$2bob6obo2$3b3o2b3o$2b2o6b2o$bo3b4o3bo$2obo6bob2o$b2obo4bob2o$4bob2obo$3b3o2b3o$6b2o$6b2o$5bo2bo$bobo 6bobo$3b3o2b3o$bo2b2o2b2o2bo$5b4o$4bo4bo$4bo4bo$4bo4bo$4bo4bo$o3bo4bo3bo$o4bo2bo4bo2$3b2o4b2o$5bo2bo$b3o6b3o$bo2b2o2b2o2bo$2b3o4b 3o$2o10b2o$3b2o4b2o$2bo2b4o2bo$3b2o4b2o$o12bo$bo3b4o3bo$3b2ob2ob2o$bo2b2o2b2o2bo$2b2obo2bob2o! - ↑ 15*94 partial
5bo3bo$2bo2b5o2bo$2b2o7b2o$o4bo3bo4bo$bobob2ob2obobo$b2o2bo3bo2b2o2$5b2ob2o$5bo3bo$3bo7bo$3bo2b3o2bo$bobo3bo3bobo$3bo2bobo2bo$3bobo3bobo$5bobobo$5bo3bo
$5bobobo$7bo$4bo5bo$3b2ob3ob2o$2bo2b2ob2o2bo$b2o2b2ob2o2b2o$2bo3b3o3bo$3b2ob3ob2o$3b2obobob2o$ob3o5b3obo$b4o5b4o$2ob2o5b2ob2o$2o2bo5bo2b2o$5bo3bo$4bo5b
o$3b2o5b2o$b2o9b2o$b2o9b2o$4bo5bo$3bo7bo$bob2o5b2obo$2b2o7b2o$5bo3bo$4b2o3b2o$2b2o3bo3b2o$bo2b2obob2o2bo$2b2o2b3o2b2o$4bo5bo$bo2b2o3b2o2bo$bo11bo$3b3ob
ob3o$5b2ob2o$3b2o2bo2b2o$4b7o$2bo2bo3bo2bo$4bo5bo$7bo$4bo5bo$5bo3bo$4bo2bo2bo$3b4ob4o$3b9o$2b2ob2ob2ob2o$b3ob2ob2ob3o$2b2ob2ob2ob2o$4bobobobo$2bo2bo3bo
2bo$5bo3bo$2obob5obob2o$2obo7bob2o$7bo$4bobobobo$2b2o7b2o$bo11bo$6b3o$ob2o7b2obo$bo2bobobobo2bo$5bo3bo$4b2o3b2o$b3o2bobo2b3o$bob2obobob2obo$2bobo2bo2bo
bo$o2b2o2bo2b2o2bo$o4b2ob2o4bo$3bo7bo$2b2o3bo3b2o$bo2bo2bo2bo2bo$6b3o$5bo3bo$5bo3bo$b4o5b4o$b2o3bobo3b2o$bo5bo5bo$b13o$4b7o$3bo7bo$4o3bo3b4o$3bo2bobo2bo! - ↑ 9*44 partial
2bo3bo$2b5o$bo5bo$b2o3b2o$2bo3bo3$3b3o2$b2obob2o$4bo$3bobo2$3b3o$3bobo$bo5bo$bob3obo$
3b3o$3b3o$b2o3b2o$3bobo$3bobo$bobobobo$o7bo$2o5b2o2$3bobo$2b2ob2o$bob3obo$4bo2$b2o3b2
o$2bobobo$3b3o2$bo2bo2bo$bo2bo2bo$2bo3bo$2b2ob2o$2bo3bo$4bo$b2obob2o$o2bobo2bo$4ob4o!
References
- ↑ LaundryPizza03 (March 1, 2022). Re: Spaceships in Life-like cellular automata (discussion thread) at the ConwayLife.com forums
- ↑ wwei47 (May 13, 2024). Re: 2x2 (discussion thread) at the ConwayLife.com forums
- ↑ 3.0 3.1 3.2 3.3 velcrorex (November 5, 2015). Re: 2x2 (discussion thread) at the ConwayLife.com forums
- ↑ DroneBetter (March 21, 2024). Re: 2x2 (discussion thread) at the ConwayLife.com forums
- ↑ lordlouckster (July 16, 2022). Re: 2x2 (discussion thread) at the ConwayLife.com forums
- ↑ creeperman7002 (March 29, 2024). Re: Soup search results in rules other than Conway's Life (discussion thread) at the ConwayLife.com forums