where entries are bifurcated in twain vertically, the lower one is strict (must not be of a subsymmetry or comprised of disjoint objects)
diagonal spaceship speeds are measured in half-diagonal
Known spaceships by width
Velocity
Asymmetric
Symmetric
Glide-symmetric
odd
even
odd
even
(1,0)c/2
9 [n 1]
17
20
(1,0)c/3
10 [1]
15
12
(1,0)c/4
10 [n 2]
15
16
(2,0)c/4
5
11
12
5 [n 3]
12
10
15
uy0ub3c44kz0evgge968869eggvezxdt3fa44af3tdzy0ev5sws5ve/b36s23 18
14 [n 4]
(1,1)c/4
4
11
4 [n 5]
10
13
(1,0)c/5
10 [3]
17 [3]
16
(2,0)c/5
12 [5]
19
22 [6]
(1,1)c/5
10
17 < w ≤ 27
(1,0)c/6
9
17 [7]
18 [8]
(2,0)c/6
10
13 [4]
16 [5]
15 [n 6]
12 [n 7]
(3,0)c/6
9
17
18
(1,1)c/6
10[9]
19[9]
22 [9] [10]
(1,0)c/7
9
15
16
(2,0)c/7
10[n 8]
19 [11]
18[n 9]
(3,0)c/7
11
21
22
(1,0)c/8
7
13
16 [12]
(2,0)c/8
7
13
14
13
12
(3,0)c/8
10[13]
19[13]
20[13]
(4,0)c/8
8
15
18
13 [n 10]
18
(1,0)c/9
7
13
14
(2,0)c/9
8[n 11]
15[n 12]
16[n 13]
(3,0)c/9
8
13
14
(4,0)c/9
10
19
20
(4,0)c/10
9
15
16
13
14
(5,0)c/10
8
15
14
(6,0)c/12
8
13
14
13
12
(1,0)c/98
w ≤ 25
x = 577, y = 96, rule = B36/S23
3b3o7b3o12b3o12b3o3b3o8b3o5b3o6b3o3b3o5b3o6b3o8b3o9b3o4b3o6b3o6b3o4b3o8b3o5b5o13b3o10b3o14b3o5b3o6b3o7b2ob3ob3ob2o5b3o3b3o6b3o4b2o6bob4obo5bob4obo7b3o2b3o14b3o14b3o5b3ob3o8b3o4b3o8b3o4b3o9b3o4b3o4b3o10b3o10b4o4b4o11b4o11b3o13b3o2b2o$2b2ob2o5b2ob2o10b2ob2o11bo2bobo2bo7bo2bo2bo2bo2bo4bo2bo2bo2bo5bo2bo4b2ob2o6b2ob2o8bo2bo2bo2bo5bo2bo5bo2bo3bo2bo8bo2bo4bobob2o8bo2bo3bo2bo5bo2bo14bo2bo3bo3b2o3bo3b2o5b2o4bo4b2o4bo2bo3bo2bo5bo5b2obo4b2ob4ob2o3b2ob4ob2o5bo3b2o3bo13bobo15bo7bo3bo10bo6bo9bobo3bob2o4bo4b2obo2bo3bo2bo3bo4b2o3bobo3b2o4bob2obo2bob2obo10b4o11bo2bo11bo2bo3b2o$b2obob2o3b2obob2o8b2obob2o8bo11bo4b2ob4ob4ob2o6bo5bo5bo6b2obob2o4b2obob2o6bo3bo2bo3bo7bo8bo6bo8bo6b2ob2obo6b2ob4ob4ob2o7b2o10b2o7bo2bo5bo2bo6bo2bob5obo2bo3bobobobobobo5bo3bob2ob2o2bo4b2o4bobo4b2o4bo4b2obo2bob2o9bo3b3o3bo48b3o2b2o2bo5b2ob2o5bo2bo3bo2bo3bo5b2o2b3o2b2o45b2o13b2o3bo$2o5b2ob2o5b2o6b2o5b2o7bo2b2o3b2o2bo4bob2obo3bob2obo6bo5bo5bo5b2o5b2o2b2o5b2o6b3o4b3o8bo8bo2bo3bo8bo3bo3bo2bo7bo3b2o5b2o3bo6b2o10b2o33bo12b2o3b2o4b2o3bob2obobo7b4o9b4o7b2o2bo2bo2b2o6b2obo7bob2o10bo3bobo5bobo25bobo7b2obob2o8b3o4b3o4b2o3b2ob2o3b2o3bo2bo6bo2bo$bob3obo3bob3obo8bo5bo8bobo2b3o2bobo3b2o3bo2bo2bo3b2o2bobo3bobo7bobo3bob3obo4bob3obo5b3o8b3o3bobo3bobo2bo3bo3bo8bo3bo4b2o7bo17bo5bobo8bobo8b2ob2o4b2ob2o39bob2o10b2o4b2o5b2o4b2o10b2o10bo3b2o5b2o3bo6b4o2bo2b7o2bo5b3o4b3o8b2o8b3o3b3o9bob2obo10b2o3b2o9bo8bo9bob2o2b2obo$b3ob3o3b3ob3o7b2o5b2o23bo2bobo5bobo2bo14bo9b3ob3o4b3ob3o6bo2bo4bo2bo5b3obobobo9bo2b4o2bo7bo2b2ob2o3bob3o7b3obo3bo2b4o6b4o2bo25bob2obob2obo6bo7bo10bob3o7bo4bo7bo4bo7b2o6b2o9b2o7b2o8b3o5bo3bobo3bo8b2o2b2o8bobo2b2o6bo5bo8b4o2b4o7b2o5b2o9bo6bo9bobo6bobo10b2obo5bob2o7b2o$23b2obob3obob2o4b2o11b2o5bob3ob3obo16bobo32b2obo4bob2o7bo5b3o4bobo2bob2obo2bobo4b6ob2o24bob4o4b4obo7bo8bo9b2ob2obob2ob2o3b2o9b2o19bobo2bobo5bobo2bobo7b2ob2ob2o6bo3b2o7b2o3bo3bo2bo6bo2bobo2bo7bo2bo2bo2bo18b3obob3o7b3o4b3o27b4o16b2o15b2obo5bob2o8bo2b2o$b2o2bo5b2o2bo6bobo3bobo3bobo3b6o3b6o2bob2o3bobo3b2obo12bo3bo9bo2b2o4b2o2bo8b2o8b2o7bo3b2obo10bob2obo11b2o3b2o4b3o7b3o9bo3bo2bo3bo8b2o7b2o8bo3bo5bo3bo3bo4bo4bo8bo2bo9b6o7b6o7b2o6b2o5b2obo11bob2o3b4o6b2obobob2o6b3o2b2o2b3o4bo3bo8bo7bo6bo3bo2bo3bo8bo3bo8b4o6b4o6bo10bo12bo7bo8bobo3b2o$2bobobo5bobobo5b2obo2bobo2bob2o4b2ob2o3b2ob2o7b2o5b2o16bo3bo8bobobo6bobobo6bo12bo5b2obo5bo9b2ob2o13b2o2bo6b2o7b2o10bob3o2b3obo46bo7bo10b2o10b6o7b6o7bo8bo7bo13bo12b5o5b5o3b2obo4bob2o4b2o2bo8b3o3b3o5b2o2bob2obo2b2o4bo2bo3bo2bo4bo14bo46b2o3bo$bobobobo3bobobobo4b3o2b2ob2o2b3o6b3o3b3o6bo3b2o3b2o3bo13bo4bo6bobobobo4bobobobo5b3o8b3o4b3o2bo4bo9bobobo14b2o2bo5bo9bo11b2obo2bob2o8bo2b2obo4b3o8b2obo3bob2o22b2obo2bo6b2o6b2o3b2o6b2o5bobo4bobo26b2o2b2o6b7o9b2ob2ob2o7b3o10bobobobo6b4o6b4o5b2o5b2o7b2ob2o2b2ob2o7b2obo4bob2o27bobo4bo$8bo9bo2b2o5b3o5b2o21bobobo3bobobo19bo5bo8b2o8bo6b2o6b2o6bobo8bo7b2ob2o16b4o29b2o2b2o9b6ob2o5b2o8b2o5b2o8b7o8bo2bob2o34bo8bo36b2o2bobo2b2o6bo3b2o3bo6b2o9bobo5bobo6bo8bo24b2o6b2o13b2o32bo3b6o$5bo2bo6bo2bo8b2ob2o11b2o5b2o7bob2obobob2obo15bo2bo6bo2bo4bo2bo4bo2bo6b3o4b3o6bobo5b3o8b2obob2o13bo3bo4bobo7bobo7bo2b2o6b2o2bo4b2ob2o4bo2bobobo6bob2o3b2obo6b2o5b2o6b3o11bo8bo3bo8bo6bobo2bobo27bo4bo3bo2b3ob3o2bo8bo2bo9bo5bo4b4o3b4o6b4o2b4o9b5o10bobo4bobo10b2o4b2o30bo2b4obo$4bobo7bobo44bo2b3o2bo18b2o9bobo10bobo4b4o2bo4bo2b4o2b2o6b2o11bo2b2o13bobo7b2o3bo3b2o12bo6bo12b3o8b3o5b2ob2ob2ob2o7b2o3b2o7b3obo13b2o10b2o11bo6bo28bo2bo6b2obobob2o7b3o4b3o7bobobob2o6bobo14b2o12b7o5bo16bo4b2o8b2o30b2o4bo3b2o$4bo2bo6bo2bo40b2obo2bobo2bob2o25bo2bo4b2o4bo2bo6bob2o4b2obo6b2o6bob2o12bo13bobo11bobo13bo12bo8bo3b2o6b2o6b2o3bo3b2o5bo2bo3bo2bo5b2ob5o23b2o46bo3bo7bo3bo9b4o2b4o5bo5b2o5bo2bobo2bo11b2o12b2obob2o6b2o12b2o8b2o2b2o35b2o7b2o$57bobo3bobobo3bobo45bo5bo4bo5bo3bo7bo11bo2bo13bob2o10b2ob2o13bo10bo9bob2o8b3o5b4o3b4o7b2o3b2o8bobobob2o21bo2bo10bo4bo28b2o2bo21bobo2b2o2bobo5b2o3b2o40bo3bo8b3o8b3o8b2o4b2o34b2o5bobo$4b2o8b2o42bob2o3bo3b2obo27b2o10b2o7bo3bo4bo3bo8b3ob3o11bo14bob4o9bo3bo16b2o2b2o11b5o7b2ob2o2b2o11b2o4b2o5b2o10b2ob2o21b4o10b2o2b2o27b2o2bo7b4ob4o6bo3b4o3bo6bob2o8b3ob3o25bob2ob2obo6bobo8bobo6bob2ob2ob2obo38bob2o2bo$13bo43b2ob2ob2ob2ob2ob2o46b2o2bobo2bobo2b2o4bo2b3o14bo2bo11b2o2b3o8b2obob2o14b2o4b2o12bo8bo13b3o28bo3bo22b4o12b2o27b2ob2ob3o4b2o7b2o3bo3bo6bo3bo10bo4b2o5b2o26b2ob2o8bobo8bobo6bo10bo37b2obob4o$13bo2bo45b2o3b2o51b2o2bobo2bobo2b2o4bo3bobo15bo11b3o2bo12bobo44bobo2b2o2bo13bo21b6o34b2o6b2o23b2o4b3o7bo3bo6bo2bo8bo2bo5bo11b2ob2o26b3o3b3o9bo6bo9b4o4b4o35bobo3b2o2bo$13bo2bo45bo5bo51b2o2b2ob2ob2o2b2o42b2o10bob3obo10b4o8b4o16bo12b7o9b3ob3o9bo2b3o20b2o4b2o5b3o6b3o23bo2b3o10b3o9bo10bo7bo11b2ob2o25b2o7b2o6b3o6b3o9b2o4b2o36b5o4bo$13b2obo45b3ob3o52b3o8b3o39b2o30b3o12b3o18bo11bobo10b2ob3ob2o34b2o4b2o5bo2bo4bo2bo26bob2o8b5o37bo3bo3bo22b3o3bo3b3o4bo2b3o2b3o2bo8bo6bo34bo2b3obob2o5bo$14b2o44bobo5bobo51b4o4b4o40b3o2b2o10b5o10bo4bo6bo4bo16bob2o11bo11bo2b3o2bo35b6o5bob3o4b3obo26b3o4b2ob3ob3ob2o3b2o10b2o6b2o2bo9bo26b2o4bo4b2o5b2obo4bob2o8bo8bo33bobo3b4o5bobo$13b2o44b2obo5bob2o52b3o2b3o43bo15b2ob2o11b4o8b4o21b2o21b2obobob2o35bo4bo4b2o12b2o21bo4b2o3bo2bo2bobo2bo2bo4b4o2b4o7b4obo6b2obob2o23b3o2bobo2b3o5bo3bo2bo3bo8bo8bo34b2o3b2o9b2o$13bo44b2o3bo3bo3b2o49b2obob2obob2o40b2o14b2obob2o10bo14bo21b2o22b2o3b2o37b4o5b2o12b2o21bobob2o5bobobo3bobobo3bo12bo9bo10bo25bo2bo3bo3bo2bo5b3o4b3o10bo6bo40b3o5b2ob3o$15b2o40bo3bobo3bobo3bo48b2ob2o2b2ob2o40b2ob3o8bo4bo4bo45b2o22bo5bo35b2ob2ob2o39b2ob2o2bo6b2o5b2o4bo14bo16b2o3b2o23b4o2bo2b4o25b2obo2bob2o31b2ob2ob2obo$14b3o43b2o7b2o52bo8bo42bobo10b2o3bo3b2o45bo63b2o8b2o50b2o7b2o4bo3b2o2b2o3bo7b2obo7bo3bo24bo11bo6bo2bo2bo2bo11bob2obo31b2o4bobo$12bobo2bo39b2o3b2o3b2o3b2o50b2o4b2o55bo2bo2bo2bo2bo40b3o66bo8bo39bo5b2o6bo5bo9bo6bo11b3o9bo27bo9bo7bo8bo11b2o2b2o40b2o8b2o$12bo2b2o47bobo56b2o6b2o42bo2b2o6b3o2b2ob2o2b3o39b3o65bo10bo42bobo4bo11bo5bobob2obobo9b2o11bo44bo4b2o4bo50bo2bo15b3o$12bo2bo42bob2o7b2obo50b4o2b4o53bo3bobobobo3bo38bo3bo65bo8bo40bob3o5b2o9b2o5bo3b2o3bo50b2o3bo3b2o4bo3b2ob2ob2o3bo8b6o37bo17bo$16bo46b2ob2o55b2obo2bob2o43bob2o12bobo50bo118bo5bo2bo3bo2bo7b3o2b3o52bobo3bobo4bo3bo8bo3bo5b10o34bo19b2o$13bo46bo9bo53bobo2bobo43b2o2bo10b2o3b2o41bo6b2o113bo2bo5b2o2bo3bo2b2o5b2o6b2o50bobob3obobo3bo3b10o3bo7bo4bo36bo20bo3bo$16bo43bo9bo104bo14b2obob2o41b2o121bo10bobobobo7bo2bo4bo2bo49bobobobobobo5bob10obo6bo2bo4bo2bo54bo3b2o$15b3o156b2o3bo11b5o43bo121bobo5bo11bo5bob2o2b2obo50bobo2bo2bobo6bo10bo7bo2bo4bo2bo58b3o$15bobo40b2ob2o5b2ob2o101b2obo2b4o55bo123b2o5b2o7b2o8bo4bo55bo3bo13b4o12b2o6b2o56bo5bo$14bobobo39b2ob2o5b2ob2o104bob2ob2o6bob3obo42b2o122bo6b3o5b3o8bob2obo71b2ob2ob2o10b2o6b2o56bo2bobo$16bo41bo3bo5bo3bo105bo5bo8bo47b3o118b2o8bo5bo10b2o2b2o57bo14b6o80bo$13b2obob2o157bobo13bo43b2o2b3o118b2o9b2ob2o11bo4bo56b3o13bo4bo86bo$16bo164b2o5b3o5b3o38b2o2bo2bo127b2o3b2o9b3o2b3o51b2o2b3o2b2o9bo4bo10b3o6b3o63b3o$13b2o3b2o157bo3bobo4b2o7b2o39bob2ob2o127bo5bo68bob2o3b2obo24bob2o6b2obo61bobobo$14bo3bo163b3o2bo2bobobobo2bo40bo3bo145bo2bo55b2o3b2o10b2o4b2o9b2o8b2o64b2o$13b3ob3o162bo7b3ob3o43bo130b2o5b2o10b4o55b2o3b2o11b2o2b2o88bo$182bo6b2o5b2o40bo224b3o2b4o2b3o81bo3b2o$176bo3bob3o4bo7bo253bobo9bo2bo2b2o2bo2bo77b3o5b2o$14bo3bo156bobobobob2o4bo7bo40b2o149bo4bo55b5o8b2ob2ob2ob2ob2o77b3o2b3o$14bo3bo155bo3b2o210b4o53b3obobob3o5b3o8b3o81bob3o3b2o$175bo3bo58b3o205b2ob3ob3ob2o4b2o3bo2bo3b2o76bo7bobo2bobo$175b3o3bo56bo210b3ob3o5bo5bo4bo5bo73b2o7bobo2b2o$176b6o57bo208b3o3b3o7bob2o4b2obo75bob2ob2o6b2o$178bo3bo58bob3o202b2o5b2o4bo3bo8bo3bo71b4o3b2o2b2o$240b2ob2obo201bo7bo8b2o2b2o2b2o74b3o2bo2bob2o2bo$177bob4o56bo3b4o218b3ob2ob3o75bob2o3b2o4bo9bo$177b3o59b5o221b3o4b3o74b5o19b2o$177bobo59bo4bo307b3ob4ob2o10bobo$239bobo223b3o4b3o70b4o6bo18b3o$177b2o64b2o221b2o4b2o69b2o2b2o3b2o$176bobo363bo5b7o13b3o$176bo2bo63bo221b2o6b2o69bo2b2obo3bo14bobo$176bobo63bobo297bobo18b3o4b2o$178b2o62b2o220bo10bo65b2o8b2o18bo$176bo2bo58b3o222bobo8bobo63b5o$178bo58bobo2b2o219b4o6b4o62b7o3b2o$180bo56bo2bo2bo221b2o6b2o59b2o3b2obo2b3obo$238bobobobo220b2o6b2o59b2o3bob4o4b2o$241bobo221b3o4b3o57b2o7bo3bo4bo$239b2o290b4o4b3o3bo$243bo291bobobo2bo3b2o$242bobo223b4o56bo6bo5b3o$245bo218b2ob6ob2o51bo4b4o2bo2bo$241b4o218bo2bo2b2o2bo2bo52b2o6bob2o$240b2o221bo3bo4bo3bo51b2o9bo2b2o$245b2o217bo10bo51bo10b3o2bo$239bo2bo2b2o296bo$238b6obo219b2o6b2o50b2o11b2obo$238b2o2bob2o218bo10bo49bo12b2o$523b2obo9bobo$243bobo275b2o2bo10bo$242b2o277b4obo7b2ob2o$242b2o275bo13b4o$241bo277b3o13bo$241b3o276bo8b3o$240bob2o284bo2bobo$518b2o7bo$517b2obo6b3o$516bob4o3bob2o2bo$516b7o2bo$513bo4bo3bo6bo$512bo2b2o6bo4bo$511bobo7b3obobo$515bo3bo2b2o$510b5o3bobo$507bob2o6bo2bo$507bo2b3o3bo2bo$513bo3bobo$512b2obob2o$515bob2o$512bo3b2o$512bob3o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ WIDTH 2920 HEIGHT 530 ZOOM 5 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer )
Credits to Matthias Merzenich, Josh Ball and Arie Paap for some of these searches.
Known spaceships by height
using Matthias Merzenich's definition,
“
a period-p spaceship's height is the minimum height of an envelope from simulating it for all p phases, with choice of initial phase
”
note that the 'strict' criterion from the lower subcells above pertains to all entries
Velocity
Asymmetric
Symmetric
Glide-symmetric
odd
even
odd
even
(1,0)c/2
10
10
10
(1,0)c/3
7 [n 14]
7
7
(1,0)c/4
6[n 15]
7 [14]
6[n 16] < w ≤ 9
(1,0)c/5
6
6
6
(2,0)c/5
7
7
7
(2,0)c/6
6
6
6
6
6
(3,0)c/6
7
7
7
x = 98, y = 25, rule = B36/S23
9b3o3b2o20b3o32b4o$5b3ob3ob2o2b2obo12b3ob3ob3o24b3ob4ob3o$5bo3bobo8b2o11bo3bobo3bo24bo3bo2bo3bo$4b2obo5bo3bob2o11b2obo5bob2o22b2obo6bob2o$14b2o4b3o$2b3obo13bo9b3obo7bob3o18b3obo8bob3o$b2o20b3o3b2o15b2o16b2o16b2o$bo23bo3bo17bo16bo18bo$2o26b2o17b2o14b2o18b2o$25b2o2$4b2ob3o3b2o20b3ob3o27b3o4b3o$2b2obob3o2bo2bob3ob2obo6bo3bobobobo3bo10b3o6bo5b2o2b2o5bo6b3o$4bo2b2o2bo3bo5b2ob2o4bo2bobo5bobo2bo5bob2o3bob3obob2obo6bob2obob3obo3b2obo$b2o2bo5b2o4bobobobo2bo2b2o2b2o2bobo2b2o2b2o3b3o3bob2o3bobobob2o4b2obobobo3b2obo3b3o$bo5bo3b2o3b2obo5bo5b2o5bo5b2o4bo3bo3bobo2bo4bo2b6o2bo4bo2bobo3bo3bo$bobobo10bo14bo13bo5bo10b2o3bobo3b2o3bobo3b2o10bo$17bo14bo11bo2$25b3o7b2obob2o7b3o$26bo3b2ob3o2bo2b3ob2o3bo$28b3obobobobobobobob3o$32bo11bo$34bo7bo$34bo7bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ WIDTH 840 HEIGHT 240 ZOOM 8 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer )
Notes
↑ 46 cells, only other at w9a is a 48-cell backend variant
↑ 84 cells, shortest/smallest w11a is 47 cells , both were first found in [2]
↑ unique second-thinnest nontrivial (after xWSS's) is a width 11
↑ 74 cells second-shortest w14 is 98 cells
↑ unique second-thinnest nontrivial is a width 14
↑ 65 cells, next two shortest w15's are tagalongs of the w15o c/3, both at 287 cells despite considerable variation
↑ 94 cells, only other at w12 is a 102-cell variant with a longer and thinner backend
↑ 9*40 partial (9-cell-wide phase of 10-cell-wide spaceship)5bo$4b3o$3b5o$3b5o$4bob2o$5b2o2$7bo$6b2o$5b4o$6bo$8bo$b2ob4o$b2o5bo$o$5bob2o$4b2o$5bob2o$2b2o3b2o$5bo$bobo3bo$2o2b 3o2$4bo$5b2o$bo3b2o$4bo$2b3obo$3bobobo$3b2o2bo$2bo2bob2o$2bo5bo$2b3o$3o2b3o$3o$bo3bobo$3o2bo2bo$6bobo$5b3o$2bo2bo!
↑ 18*58 partial3b3o6b3o$3bobo6bobo$3b3o6b3o$4b2o6b2o2$5b2o4b2o3$2b3o8b3o$2bo2bo6bo2bo$b2o3bo4bo3b2o$2bob2o6b2obo$bob2o8b2obo$2b3o8b3o$5bo6bo$5bo6bo$2bo3b2o2b2o3bo$4 b2o6b2o$5bobo2bobo$4bo3b2o3bo$2bobo8bobo$2bobo8bobo$2bobo8bobo$5b2o4b2o$6bo4bo$3bo2bo4bo2bo$3bo2bo4bo2bo$4b2o6b2o$4bo8bo$2bo3bo4bo3bo$2o4b6o4b2o$b2o4 bo2bo4b2o$2bo12bo$2b3obo4bob3o$2b2obo6bob2o$3bobob4obobo$7bo2bo$bo5b4o5bo$2bo3bo4bo3bo$2b2ob2o4b2ob2o$4b10o$4b2o6b2o$7bo2bo$3bo3bo2bo3bo$3b2obo4bob2o $4b2o6b2o$2bo12bo$bo14bo$bob2o8b2obo$bob3o6b3obo$4b3o4b3o$4bob2o2b2obo$5o2bo2bo2b5o$3bo3bo2bo3bo$2ob4o4b4ob2o$3bo10bo$bobo2bo4bo2bobo$o3bobo4bobo3bo!
↑ 32 cells, only other one found by gfind at w13glide is this 40-cell variation
↑ 8*37 partial3b3o$2b2o$2bo2bo$2b3o$6bo$bo2b2o$bob2o2bo$o3bobo$4bobo$2bo2bo$3b4o$3bo$3b2o$2b2o$2bobo$2b3o2$5b2o$4b3o$6bo $5bo$2bo2bo$3b5o$3bo2b2o$3bob2o$2bob2o$2bob2o$b2ob2o$b2o$b2o$2bobo$3bob2o$5bo$2b2o3bo$bo5bo$2o3bo$3bobobo!
↑ 15*50 partial4b2o3b2o$3bo2bobo2bo$3bobo3bobo$3bo7bo$3bob5obo$4b7o$5b5o$3bo7bo$2bobo5bobo3$2b3o5b3o$3b3o3b3o2$3bobo3bobo$3b2o 5b2o$2bo2bo3bo2bo$2bo9bo$b5o3b5o$ob2o7b2obo$obo9bobo$2bo9bo$2bo9bo$2bobo5bobo$2bo3b3o3bo$4b2o3b2o2$4bo5bo$4bo2b o2bo$3bo2bobo2bo$3b4ob4o$4bo2bo2bo$2b2o7b2o$b2o9b2o$bobobobobobobo$2bo2b5o2bo$5bobobo$4b3ob3o$5b5o$2o4b3o4b2o$ bo11bo$2bob2o3b2obo$bobo2bobo2bobo$4b3ob3o$b3o2b3o2b3o$obo3b3o3bobo$2b2o2bobo2b2o$3b2o5b2o$2obo7bob2o$2ob9ob2o!
↑ 16*45 partial5bo4bo$4bob4obo$5bo4bo$3b4o2b4o$3b2o6b2o$4bobo2bobo$bo12bo$b2o10b2o$5bo4bo$5bo4bo$5bo4bo$5b2o2b2o$5bob2obo$4bo6bo$2b2o8b2o$3bob2o2b2obo$2b2ob2 o2b2ob2o$3bo2bo2bo2bo$4b3o2b3o$4b3o2b3o2$3b3o4b3o$5bo4bo$3b2obo2bob2o$3bo8bo$7b2o$3bo8bo$3bo8bo$3bo3b2o3bo$b2o2bob2obo2b2o$b2ob3o2b3ob2o$3b10o $bo2bo6bo2bo$bo12bo$6b4o$2bo2b2o2b2o2bo$2bob2o4b2obo$3bo8bo$2b3obo2bob3o$6b4o$obo2b6o2bobo$5b2o2b2o$2bobobo2bobobo$obob2o4b2obobo$o4bob2obo4bo!
↑ is 7 cells high in all phases, whereas this one is 6 cells high in two
↑ if h=7, w>42; if h=8, w>14
↑ if h=7, w>74; if h=8, w>20
other such tables alike this
References
↑ 400spartans (April 30, 2020). Re: HighLife , in which the smallest c/3 (at w10a) was found
↑ velcrorex (April 23, 2018). Re: HighLife , in which the smallest c/4 w10a and w11a were found
↑ 3.0 3.1 Sokwe (April 24, 2018). Re: HighLife , in which the shortest minimal-width c/5's at w10a and w17o were found
↑ 4.0 4.1 praosylen (September 12, 2016). Re: HighLife , in which the smallest w13o 2c/6 (thinnest odd) was found, also seemingly the first 2c/6 in general
↑ 5.0 5.1 AforAmpere (April 23, 2018). Re: HighLife , in which the thinnest 2c/5 at w12a was found, and the thinnest even-symmetric 2c/6 (odd was a rediscovery, initially found in [4] )
↑ velcrorex (April 23, 2018). Re: HighLife , in which the thinnest even-width 2c/5 at w22e was found, as well as a w21o from deduplicating its central column
↑ velcrorex (November 19, 2015). Re: Thread for Your Accidental Discoveries that Aren't in CGOL , in which the first c/6 was found at w17o
↑ AforAmpere (April 23, 2018). Re: HighLife , in which the second c/6 was found at w18e
↑ 9.0 9.1 9.2 apgoucher (May 31, 2021). Message in #naturalistic on the Conwaylife Lounge Discord server, in which c/6d's were disproven up to logical width 10
↑ LaundryPizza03 (September 1, 2023). Re: HighLife , in which the first true-period c/6d was found at w22glide (thinnest possible) the program used to find this wasn't stated, if it was ikpx2 it may not be the shortest example
↑ wildmyron (October 6, 2018). Re: HighLife , in which the first and only known 2c/7 was found at w19o (28 cells!)
↑ velcrorex (April 22, 2018). Re: HighLife , in which the first c/8 was found at w16e with zfind
↑ 13.0 13.1 13.2 LaundryPizza03 (November 16, 2021). Re: HighLife , in which 3c/8 spaceships of logical width ≤10 were disproven
↑ JP21 (September 26, 2020). Re: HighLife , in which the shortest possible c/4 was found at h7 (also only 43 cells, a record at the time)