User:DroneBetter/qfind results

From LifeWiki
< User:DroneBetter
Revision as of 03:47, 24 February 2024 by DroneBetter (talk | contribs) (create (some things contained herein are new, most notably the new speeds (2c/7, (1,1)c/5, (1,1)c/6) in the sqrt replicator rule, I will publish a forum post after finishing a few more searches (to avoid making unnecessarily many if I find more)), will add more rows and tables rules (and maybe even a few improved bounds from searches with my more RAMbunctuous computer :-) later)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

I had long assumed that DroneBetter/qfind results was simply not yet supported on macOS until I learned that the gcc command in fact uses Clang albeit named misleadingly

as such, having used Homebrew, I am now able to compile qfind, and finally create tables of bounds upon spaceship widths (which I will do here :-)

all links included are to the minimal spaceship found (first outputted, only minimal by bounding box, not population), however (where a table cell is split) the second subrow excludes members of a subset of the symmetry and those comprised of two smaller noninteracting spaceships, choosing the first nontrivial output instead to maximise information content

note that alike its gfind ancestor of yore, qfind is restricted to orthogonal searches, however it is very fast at them

you may add your own results (disproofs and spaceship examples upper bounds), however I think (to avoid confusion) I would like others to include citations of forum posts in which they explicitly state their results, so that those uncited can be attributed to me by default without having to go through the page's history

no gutter column is included for rules that are not gutter-preserving

B36/S245 (sqrt replicator rule)

(I like the name a lot for some reason)

Velocity Asymmetric Odd-symmetric Even-symmetric
(1,0)c/2 6 13 14
(1,0)c/3 6 11[n 1] 6
6
(1,0)c/4 4 9 10
12
(2,0)c/4 7 13 14
(1,0)c/5 8 11 12
(2,0)c/5 10 19 20
(1,0)c/6 8 13 14
(2,0)c/6 7 11 10
(3,0)c/6 7 13 14
(1,0)c/7 7 13 14
(2,0)c/7 8 15 16
(3,0)c/7 10 19 20
(1,0)c/8 6 11 12
(2,0)c/8 7 9 12
(3,0)c/8 9 17 18
(4,0)c/8 7 13 14
(1,0)c/9 5 9 10
(2,0)c/9 6 11 12
(3,0)c/9 7 11 12
(4,0)c/9 9 17 18
(1,0)c/10 5 9 10
(3,0)c/10 7 11 12
(4,0)c/10 7 13 14
(5,0)c/10 7 13 14
(4,0)c/14 12

I found the 4c/14 with ikpx2 as a new speed (together with a (1,1)c/5 and (1,1)c/6) before attempting the qfind searches that proved its minimality and found the true-period 2c/7

x = 631, y = 182, rule = B36/S245 2b4o4b4o2b4o3b2o4b4o2b4o6b4o4b4o5b4o8b4o12b4o12b4o9b4ob4o6b4ob4o4b4o5b4o2b4o5b4o4b4ob4o7b4o3b4o6b4o9b4o4b4o5b4o4b5ob5o3b4o5b4o5b5ob5o3b4o7b4o6b5ob5o7b4o11b2o7b4o4b3o8b4o8b3o6b3o8b4o8b4o6b3ob3o9b2o10b4o10b3o11b2o14b2o14bo41b2o17b3o14b2o11bobo14bo$3b2o6b2o4b2o3b4o4b2o4b2o8b2o6b2o7b2o7bobo2bobo8bobo2bobo8bobo2bobo8b2o3b2o8b2o3b2o6b2o7b2o4b2o7b2o6b2o3b2o9b2o5b2o7bo2bo4bo4bo2bo3b6o3b6o4b3o3b3o3b6o3b6o5b3o3b3o3b6o5b6o6b3o3b3o6bobo2bobo7b6o5b4o2b7o7b2o8bo3bo3b7o6b4o9b2o6b2obobob2o7b4o10b2o7b11o5b6o11bo2bo13b2o39b4o19b2o13b2o11b3o13b2o$b2obo4b2obo4bobobo2bo3b2ob6ob2o4b2obo4b2obo5b2obo6b4o2b4o6b4o2b4o6b4o2b4o5b2obo3bob2o4b2obo3bob2o4bob2o3b2obo4bob2o3b2obo4b2obo3bob2o5b2obo5bob2o5bo3bobobobobo3bo3bo4bo3bo4bo4bo2bobo2bo3bo4bo3bo4bo5bo2bobo2bo3bo4bo5bo4bo6bo2bobo2bo8b4o9bo4bo6b2o4bobobo6bo4bo6bo3bo4b5o8b2o9b2obo4b5ob5o5bob2obo19b2o5b2o6bo4bo28bobo40b2o18b2o11bobobo11b2obo12b3o$2o6b2o14bo2b2o3bo2bo3b2o2b2o6b2o7b2o8bobo2b2o2bobo4bobo2b2o2bobo4bobo2b2o2bobo3b2o9b2o2b2o9b2o6b2ob2o10b2ob2o6b2o9b2o3b2o11b2o4bo5bobobo5bo5b2o7b2o7bobobobo6b2o7b2o8bobobobo6b2o9b2o9bobobobo9bo2bo8b8o11b5o6b6o6b2ob2o4bobobo18b2ob3o4b3o3b3o6bob2obo6b2o4b2o5bobo3bobo20bo2b4o2bo12bo36bob2o2b2o13bob4o10b2ob2o11b3o$bo6bob2o18bo6bo5bob2o5bo8bo7bo4b4o4bo2bo4b4o4bo2bo4b4o4bo3bo9bo4bo9bo7bo3bo10bo3bo7bo9bo5bo11bo13bo12b4o5b4o7bo3bo6b4o5b4o8bo3bo6b4o7b4o9bo3bo9b2o2b2o7bo2b2o2bo6bo4b2ob2o6bo4bo8bo5b2o3b2o6bo2bo7b3o7b3o3b3o7b4o7b2o4b2o5bobo3bobo5b2o4b2o6b2o2b4o2b2o8bo3bo36b2o3b3o11bob2o2b2o10bo2b2o6b2ob2o2bo$o2bo5b3obo17bob2obo7b3obo2bo2bo5bo2bo6bob8obo4bob8obo4bob8obo3bo2bo5bo2bo2bo2bo5bo2bo4bo2bobo2bo6bo2bobo2bo4bo2bo5bo2bo3bo2bo7bo2bo10bo3bo10b4o4bob2obo7b3o7b4o5b4o9b3o7b4o7b4o10b3o8b3ob2ob3o4b2o2b2o2b2o4b2o3bo2bo2bo4b3o2b3o14bo3bo8b2o9b2ob2o3b2o7b2o17bo6bo4bob2o3b2obo4bo2b2o2bo7b3o4b3o10bo2bo34b4o2bob2o12b2obo11b3obo8bo5bo$bo2b2o3bo3b2o16bob2obo7bo3b2o2bo2b2o4bo2b2o3bobob2o2b2obobo2bobob2o2b2obobo2bobob2o2b2obobo3bo2b2ob2o2bo4bo2b2ob2o2bo3b2o2bo3bo2b2o2b2o2bo3bo2b2o3bo2b2ob2o2bo5bo2b2o3b2o2bo11bo3bo9bob2obo3b6o7b3o6bob2obo4bo2bo9b3o6bob2obo5b6o9b3o8b2o6b2o4bo8bo5b2o11b3obo2bob3o4bobo4b2o3b2o5bob2obo6bob3o4bobo5bobo4bo2b2o2bo32bo6bo5bo2b2o4b2o2bo8b2o35bo4b3obo8b3ob2obo9bo3b3o7b2obobo$3b2o3bo2b3o15bo8bo4bo2b3o5b2o7b2o6b2obo2bob2o6b2obo2bob2o6b2obo2bob2o7b2o3b2o8b2o3b2o6b2o7b2o4b2o7b2o6b2o3b2o9b2o5b2o13bobobo9bob2obo3bo4bo6bobobo5bob2obo4b4o8bobobo5bob2obo4b2o4b2o7bobobo8b2ob2ob2o5b4o2b4o10b5o4b2o6b2o6bo4b2o5b2o2b2obo2bob2o3bobo8b2o5b2o5b8o32b2o4b2o5b2o10b2o5b5o29bo5bo4b2o9bobo2b2o12b4ob3o7bo3bo$2b3o8b2o16bo4bo11b2o2bob2obo3bob2obo3b3o6b3o4b3o6b3o6b2o4b2o7b3o3b3o9bobo8b3o5b3o4b3o5b3o5b3o3b3o6bob2obobob2obo10bobobobo17b2o2b2o6b2ob2o16b2o9b2ob2o16b2o2b2o8b2ob2o10b4o7bob2o2b2obo12bo6bobob2obobo4b2ob2o4bo3bo4b2obo2bob2o4b2obo6b2o5b2o4b2ob4ob2o47b2o4b2o12b2o29b4obo4bobo8bo5bo13b4o10b4o$3bo8b2o33b2o3b6o3b6o3b3o6b3o3bob2o6b2obo4bo8bo6b3o3b3o6bo7bo6bo7bo6bo7bo7bo5bo7b6ob6o9b4ob4o8bo2bo2b2o6b2o15bo2bo3b2o4b2o17bo2bo6bo4bo56bo5b2o3b2o3b2o12bo3bo5b2ob2ob2o6bo21bobo4bobo31b2o4b2o7b3o4b3o7b7o27bo2bo7bo8b2o2b3ob2o9bob2o3bo5b2o3bo2bo$2ob3o6b3o32b3o3bo2bo5bo2bo3bob2o6b2obo2bob2o6b2obo4b2o6b2o5b2obobobob2o6bobobobo5b3ob2ob2ob3o2b3ob2ob2ob3o2b2ob3ob3ob2o5bo2bo3bo2bo7bob2o2bobo2b2obo11b4o2b4o3bobobobo12b3o2b3o5bobobobo14bobo2bobo6bobobobo7bobo2bobo5bo8bo9b7o4bo6bo5bobobo4b2ob2o6b2o2b2o8b2o8b5o6b10o30bobo4bobo8bo4bo9b2obo2bo29bo5b3o10bo2b4obo8b3o10b4o$bob3o3b2obo31b2obo21bobo8bobo4bo8bo5bobo6bobo4bo3bobo3bo7b2ob2o6b3obo3bob3o2b3obo3bob3o3bob3ob3obo24b2ob2o2bo2b2ob2o12bo6bo4b7o5bo2bo5bo2bo7b7o4b2o2b2o2b3o6b3o4b7o6bo2bo2bo2bo4bo8bo8bo2b3o2bo5b4o9bo6b2ob2o5b2o4b2o6bob2o7b5o7b2ob2ob2o31b2o6b2o7bo6bo7bo36b2o17bo7bo5bo3bo10bob2o2bo$b2o5b6o29b6o5b2o7b2o21b4o4b4o4bo10bo4bo3bobo3bo6bo5bo8b2o3b2o8b2o3b2o6b2o7b2o7b2o5b2o10bo2b2ob2o2bo25b2o2bo2b2o3b3o5b3o2b3o4b2o2bo2b2o3b2o2b2o3bo8bo4b2o2bo2b2o4bo2bo4bo2bo3bobo4bobo8bo7bo4b2o2b2o7bobo4b3ob3o3b2o2b2o2b2o16bo3bo7b3o2b3o33bo4bo7bobo6bobo48bo12bo3bo2bo6b3o10bob2o4bo$o3bo4bo4bo29bo4bo3b4o5b4o21b3o4b3o5bobo6bobo6bo5bo8b2o3b2o6bo3bobo3bo4bo3bobo3bo3bo3bo3bo3bo5b4o3b4o9bobo5bobo29bo8bo2b2o18bo9b2o5bo8bo8bo8b2o2bo2bo2b2o4b2ob2ob2o10b3ob3o5bo4bo7b3o5bo3bo4b4o2b4o3b5o7b2obob2o8bo2bo37b2o23b2obo39bob2o11b2ob2obo10bo7bo2b2o2b2obo$bo7bo34bo9b2o7b2o24bob2obo7b3o6b3o22bo3bo10bo3bo10bo3bo7bo3bobo3bo7b2o5b2o13b2ob2o30b5o4b5o18b5o5b6o5bo4bo8b5o6bobo6bobo33bobo2bobo8bo5bo3bo6b6o6b3obo6bo5bo5bobo4bobo31b2o4b2o19bobo2bobo36b2obo11b2o2bobo5bob2o2bo5bo2b2ob3ob2o$12bo34bo6b2o7b2o21bo2b6o2bo6bob4obo25b3o11b5o10b5o12bo12b2o5b2o10bobo5bobo26bo2bo2bo4bobo4b2o6b2o4bo2bo2bo5bo2bo5bo6bo6bo2bo2bo6b3o4b3o25bobo7bo4bo6bo7bobobobo5bob2obo5bobo3bo6bobobo10b2o38b2o21bo3bo43bo15bo5bobob4o5bobo4bobo$47bo5bo2bo5b4o23bo4bo10b6o26bobo41bobobo9b4o3b4o8b3obobobob3o25b3ob3o4bo2bo4bo6bo5b3ob3o5bo2bo4bobo4bobo5b3ob3o6b2obo2bob2o4bobo4bobo20b2o4b2o5b3o6b5o6bo4bo6bob2ob2o4bobobobo6b2ob2ob2o58bo3bo42bobo23bo2bo6bo2bo$12b2o33bo6b2o6b4o22b3o2b3o10bo2bo27bobo26b2ob2o10b5o9b4o3b4o8bo4bobo4bo26b2ob2o5b3o5b3o2b3o6b2ob2o5b2o2b2o2bo10bo5b2ob2o6bo3bo2bo3bo4bob4obo19b5o2b5o3bo17b4o2b4o8bobo6b3o10b4o34b8o19b2ob3o62b2o2bo12b2o2bo$11bo35bo6b2o49b2o2b2o42bo12b2ob2o11bobo28b2o2b2o3b2o2b2o24bo2bo2bo4b3o5bo6bo5bo2bo2bo6b2o4bo10bo4bo2bo2bo7bobo2bobo34b2obo2bob2o4bobo6b5o6b2o2b2o11bo7bobo47b10o21b3o59b2obo2b3o8bo3bobobo$11b3o74b8o9bo4bo42bo12b2ob2o11bobo30b3obobob3o28b3o7bobo4b2o4b2o7b3o7bobo5b2o6b2o7b3o10bo4bo34bob2o4b2obo4bob2o6bo7bobo2bobo6b2o23bo2bo63b2obo61bo3b2o8bob3o3b2o$11bobo76bo2bo10bob4obo41bo12b2ob2o7bo3bobo3bo24bo2bobo3bobo2bo25bo3bo8bo5bo4bo7b2ob2o7b2o6bo6bo7b2ob2o6b2obob2obob2o32bobo4bobo8b2o4bobo20b2o10b3o11b2o35bo6bo18b3o2bo60bobo4bo9b3o3bobo$13bo77b2o11bo6bo41bo14bo8b2ob2o3b2ob2o23bo4b2ob2o4bo25b5o16b2o8bobobobo16bo2bo8bobobobo4b3ob6ob3o32b3o2b3o6bo2bo6bo5bo4b2o4bo4b2o9b5o10b2o34b2obo2bob2o17bo2b2o61b4o8b2o2bobo2b2o$10bo77b2o4b2o7b2obo2bob2o52bo5bo6b3o5b3o25bo2bo5bo2bo25bob3obo4b2o6b8o6b2ob2o7bo7bobo2bobo7b2ob2o7b2o2b2o2b2o33bo8bo6b2obo12b4o2b4o7bo8bo3bo7bob4obo33bo4bo17bobobo2bo56bo2bo3b2o7bo2bo$10bobo76bo4bo8b3o4b3o52b3ob3o6b2obo3bob2o24b2o2bo5bo2b2o36bo6b2ob2ob2o17bo9bo4bo20bo8bo34bo6bo7b2obo4b3o7b2o2b2o8bob2o5bo5bo7bob2obo57b7o57b3o2bobo5b2o2b2obo$9bo2bo76b2o2b2o70b3ob3o6b2obo3bob2o27bo7bo27bo5bo5b2o6bo4bo7b5o7bobo6b2o2b2o8b5o7b3o4b3o49b3o12b3o6b3o4b2ob2o4bo2bobo2bo6b2o2b2o56bo2bob2obo56bob3obo6b3ob2o2b2o$10bobo75b2o4b2o6b5o2b5o50b2o5b2o6bo7bo26b2o9b2o26bo3bo5bo9bo2bo8bo3bo7bob2o3bo2b4o2bo6bo3bo11b2o68bob2o4b2obo4b3o5b2obobobob2o4bo2b2o2bo33bob2obo17bobob2o57b2o2b3o5b2o2b2ob2obo$11bo91b3o4b3o50b2obo3bob2o3b4o5b4o24b3o7b3o26bo3bo8bo5bob2obo7bobobo5b2o2b2o2bobo6bobo5bobobo10bo2bo60bobo5bobo4bobo13b4o3b4o3bob6obo31b2o4b2o20bobo57b2ob2o6bobo2bo2bo$103bobo4bobo51b2o5b2o4b3o7b3o26bo7bo40b2o17b2obob2o4b2o6bobob4obobo4b2obob2o9bo2bo52bo7b3o22bo8bo3bo7bo6bo32b2o4b2o18bo3bo57bo9b3o4bobo$102bob2o4b2obo50b2o5b2o40b3o2bo3bo2b3o36bobo3b2o6b2o3b2o5b2o4b2obo4bo2bo2bo2bo4b2o5b2o8b4o50b3obo5bobo5bo8bo8b2o4bo3bo3bo4bob2o2b2obo31b8o21b2o56bo9b3obo2b3obo$104b3o2b3o65bob4ob4obo22b3o2bo5bo2b3o35b2o4bo3b2o3bo4bo5bo4b2o8bo2b2o2bo6bo5bo64bobo5b2ob2o22bo6bobobobo7b6o33b2ob2ob2o18bo2bo55b2obo16b4o$104b8o52b2o5b2o4bo2b2o3b2o2bo23b3o9b3o38bo4b2o4b2o4bobo3bobo4b4o4bobo4bobo4bobo3bobo8b4o49b3ob3o2b2o3b2o3b3o4b3o7bo10bo9bo6bo31b2o6b2o71b3obob2o8b2o3b2o3bo$104bobo2bobo52b2o5b2o5b2o2bobo2b2o24bo13bo35b3o6bo4bo4b2o7b2o4b3o8b2o7b2o7b2o7bo2bo51bob2o5bobo6b2o4b2o7b2o20bo6bo30b3o2b2o2b3o18b2o49bo3bo2bo9b2o4b2ob2o$105b6o53bobo3bobo5b2o3bo3b2o22b4o11b4o33bo6bo8bo2bo9bo2bo3bo5bob4obo4bo9bo7b4o50b2o3bo13bobo2bobo5b2obo19b2obo2bob2o57bo52b2o16b2o2b3o$104bo6bo67bobobobobo23b3obo9bob3o41b2o4b2o4bobo3bobo4bobo7b6o6bobo3bobo7bo4bo52bobo3b2ob2o6bo4bo7b2o21bob4obo58bo2b2o45b5o11bobo2bobo2b2o$105bo4bo70b2ob2o27bo2bo7bo2bo56b2obob2o14b2o4b2o6b2obob2o6b2ob4ob2o47b4o5bobobo6bo4bo8b2o19bobob2obobo57b6o44b2o2b2o9bo3b2ob3ob2o$179bob2ob2obo24bobo2bo5bo2bobo43bo4bo5bo3bo3bo3bob2o6b3o2b3o5bo3bo3bo4b2o3b2o3b2o45bo2bo7b3o8b4o8b3o85bo5b2o43b2ob2o9bob2o3bo4bo$180bob3obo26bo3bo5bo3bo44bo4bo7bobobo5b5o6bo4bo8bobobo7b2ob4ob2o47bo21b2o9bo23b6o59b2o2bo43bo2b2o11b3o5bo$180bo2bo2bo29bo7bo45bobo4bobo5b2ob2o5bob2o6b3o2b3o7b2ob2o8b2ob2ob2o49bobo7bo10b2o9bo3bo16b4o4b4o54bo2bo4bo57bob4obo$180bobobobo29b2o5b2o45bo8bo4b2o3b2o5b3o6bo2b2o2bo6b2o3b2o6b4o2b4o49b2o5bobobo19b4o19bob4obo54b2o2b2o3bo41b3o14bob6o$183bo87b2o4b2o15b2obo6bo2b4o2bo6b2ob2o9bo4bo68bobo2bobo5bob2ob2o17bob4obo55bobobo44b2o16b5obo$182bobo33bo3bo47bobo4bobo5b5o7bobo5bo6bo5b2o5b2o4b2o2bo2bo2b2o47bobo15bo2b2o2bo6bobob2o19b4o56bo2bobo41b2obo18bo2b3o$180b7o86bo2bo6bobo3bobo5bob2o4b2o4b2o6b3ob3o5b2obob2obob2o46b2o17bo2b2o2bo9b2o81b2o40b2ob2o17bo4b2o$179bo2bobo2bo28b2ob3ob2o59b3ob3o6bobo4b3ob2ob3o5b3ob3o5bo2b2o2b2o2bo46bo2bo18b2o10bob3o80bo2b2o35b5o19bobobobo$178bobobobobobo29bo3bo61b3ob3o8bo4bo2b4o2bo4bobo3bobo7bo4bo51bo18b4o10b4o18bob2obo57b2ob2o34b5o18bo2b2o$179bobo3bobo27bo3b3o3bo58bo5bo5b2o7b8o7b2ob2o5bob4o2b4obo45bob2o15b3o2b3o8bo20bobo2bobo55bo3bo35b3o19b2o$180bo5bo29bo2bobo2bo58bobo3bobo5bo7b8o7bo3bo6b2o8b2o46b2o18b2o2b2o7bobo19bob6obo54b4o52bo$216bo2b3o2bo59bo5bo6b2o5b2o6b2o20bo4bo48b2o19bo4bo7b3o18b4o4b4o50bobo2b2o53b4ob2o$219bobo81b2o2bo2bo2b2o4b3ob3o7b2o4b2o66b3o4b3o4b3ob3o15b12o51b6o51bo2b2obo$216bob2ob2obo72bob2o3bo8bo5b3ob3o8b2o2b2o67bob2o2b2obo4b4o81b2o56b3o3bo$215b2ob5ob2o73bo3bobo6bobo5b2ob2o8b2o4b2o67b2o4b2o7b3o19bob4obo53bo2b2o52b3o3b2o$216b2o5b2o73bo5b2o6b2o6b2ob2o7b2o6b2o67b6o7bo2bo21bo2bo55bob2o52b2o2bo3bo$214b2o9b2o71bo6b8o6b7o6b4o2b4o66b2o4b2o7bo20b3ob2ob3o49bobo3b2o49bo5bob3o$214b2o9b2o70bo7b2ob2ob2o6bobobobo83b6o8bo22b6o50b3ob3obo50b2o3b2o$214b2o2b2ob2o2b2o71b2o4bobo4bobo20b6o69bo4bo7b2o22bo4bo49bobobo53bob3obo$219b3o77b2o3bob2o2b2obo7b3o9b8o68bo4bo8bobo18bo2bo2bo2bo46bo3b2obo53bo3bo$215bob3ob3obo74bo4b2o4b2o20bob4obo68bo4bo7bo3bo19bo4bo49b2ob2o54b4o$216b2obobob2o73bo8bo2bo8bobobobo8bob2obo82bobo23b2o48b3ob3o50bo3bo3bo$217bobobobo73b3o33bobo2bobo68bo4bo8bob2o16bob3o2b3obo43bo2b2ob2o48bob2obo$215bo2bo3bo2bo79b2ob2ob2o5b2obobob2o6b3o2b3o67b3o2b3o7bo19bo2b2o2b2o2bo46b2o2bo46bo4b2o$215b4o3b4o70bo8b8o6bo5bo7b3o2b3o67bo6bo10bo21b2o55bo47b2o3bo$216bobo3bobo72b2o6b8o18b4o4b4o64bob2o2b2obo6b2obo21b2o53bobo46bo2bo2bo$215b2obo3bob2o68b2o2bo31b4ob4ob4o64bo2b2o2bo10b2o17bobo2bobo51bo45b6o2bo$216b2o5b2o70bo2b2o30b2o2bob2obo2b2o65b2o2b2o7bobo23b2o49b3ob2o44b2obo3bo$215b5ob5o72bo36bo2bo71bo2bo8bo2b2o72bo2bo47bo3b3o$215bo2bo3bo2bo105bo2bo4bo2bo68b2o84bo4b2o43b2o3b4obo$216bobo3bobo71bobo32b2ob2o2b2ob2o78b2o72bo6b2o44bo2bo2bo$216bobo3bobo71b2o33b2o2bo2bo2b2o153bobob2o47bo2b3o$217bo5bo70b2o35b5o2b5o78bobo73b4o45bob2o$215bobo5bobo69b2o33b5ob2ob5o150bo2b4o43b2obob2obo$217bo5bo71bo38bob2obo81b4o70b4o44bo2bo$333bobo2bobo155bo46bo3b3o$215bobo5bobo108b2o2b2o156bobo43b2ob2o$216bo7bo109bo4bo81bo69b4o44b3ob4o$215bo9bo110b2o82b2o69b2o4b3o43bobo$216bo7bo110bo2bo82b2o69bo2bo45b2ob2o$333bobo2bobo79b2o69bob6o40b3ob3o$216b2o5b2o107b4o2b4o79bo72bo2b2o39b2obob2o$215bo9bo105b2o2bo2bo2b2o80bo69bobobo41b2o$215b2o7b2o109bo2bo84b2o67b3o2b2o36b2o2b2o$330bo3b2o2b2o3bo78bo68bo2b2obo36bo2b2o$214bobobo3bobobo104bob2o4b2obo79b3o66bo3b2o38b3o$215bobo5bobo104b3o8b3o78b3o66b3o2bo35b6o$214b3o7b3o194bo2bo66bob3o38b2o$331bo4b2o4bo78b3o68b2o36bobo2bo$333b2ob2ob2o80b5o69bo37bo$333b2o4b2o84bo67b3o33b2obo$332b2ob4ob2o78b2o3b3o68bo29bob3o$420b8o65bob2o28b3ob3o$334b2o2b2o81b6o66bo30bob2ob2o$331b2o2bo2bo2b2o149bo3bo24b2o6bo$332bo3b2o3bo80b2o68b2ob2o24bo2bob2obo$331b4o4b4o78bob2o66b3o2bo22b2o7bo$331b5o2b5o80b2o69bobo22b3o4bo$331b2o3b2o3b2o79b2o102bo$332b3ob2ob3o79bob2o64b3o2bo23bo3bo2bobo$331bo2bob2obo2bo81bo65b2o25bo2bob3o$331b2obo4bob2o80bobo63bob2o24bob2o2b2o$331b4o4b4o81b3o61b4obo20bo3b2o$330b2obob4obob2o78bobo64b2o3bo20b2ob2obo$331bo10bo80bo3bo60bo2bo2bo19b2obo$330bo2b8o2bo78bobo64bo4bo18b2o3bo$330b2o10b2o79bo64bo3b2o18bo3b2o$330bo12bo78bo64bo3bo19bob2o2bo$330b2o3b4o3b2o78b2obo62b2o2bo20b2o$332bob2o2b2obo81bo65b5o14bob2obo$333bobo2bobo146bob3o16b6o$333bobo2bobo82b3o61bob2obo15bobobo$423b2obo63bobo14b2obo$421bo4bo61bo18b2o2bo$422b3o63b2o15bobo$421b2obo56bo2bobo13b2o2bob2o$422bo59b2obobo13b3obo$421b4o55bobobo14bo2b2obo$420bob2ob2o53bob3o15bob3o$422b2o58bobo13b3o3bo$424b2o57bo13b4o3bo$424b3o55bobo10bobobo4bo$481bob3o8bo2b2o2bo$479bobo2bobo5b3o4bob2o$424bobo52b2o4bo6b2ob2ob3obo$424b3o50b2ob2o8b2ob2obobobo$422bo2bo51b3obo7bo$421b5o51b2ob2o6bo8b2o$421bo2b2o49b2ob2ob2o4b3o7bo$420b2ob3o49b2obo7bobo6bo$421b2o52b3obo6b2o7bo$420bo3bo51bo11bo6bo$421bo2bo47bo2b2o8b2o2bo4bo$424bo45b2obob3o7bo2bob2ob2o$424bo45bo2bob3o8bobo3bo$423bo45bo2b2o10b2obo3bo$467b3o4bo7bobobo$467b3o13b3o$470bo6b3obobo$469bo10b4o$475b2o3b3o$475bobobo$473b2obo4bo$474bo7bo$471bobo7bo$471bobo4b3o$470b2o6b2o$473b2obob3o$473bobo2bo$470bo4b2o$471bobo$470bo$466bo2bo$467b2o2$464b3o$460bo2b2o$459bo2b3o$458b2o2b3o$458b2o4b2o$464bo$457bobo2bo$456bob2o2b2o$454bob5o2bo$454bo2b6o$457b2o$453b2obobo$448b2obo2bo$450bobobo$448bo2bobo$446bobo2bob2o$446b3o4b2o$448bobob3o$446bob3o$445bob5o$445b2ob4o$443bobobobo$442b2o$442b3o$443b2o$437b4obo$435bo2b2ob2o$434bo2b4o$435bobo2bo$433b2o2b2o2bo$435b4obo$434bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 WIDTH 2590 HEIGHT 742 ZOOM 4 ]]
(click above to open LifeViewer)

B3/S12 (Flock)

all partials for c/2 seem to be single-row irrespective of period, I conjecture there are no c/2's in this rule

Velocity Asymmetric Odd-symmetric Even-symmetric
(1,0)c/3 11 21 22
(1,0)c/4 11 17 22
(1,0)c/5 10 < w ≤ 18 19 20 < w ≤ 24
(2,0)c/5 11 21 < w ≤ 25 22 < w ≤ 34
(1,0)c/6 9 17 < w ≤ 21 18
(2,0)c/6 10 19 20

B3ai4/S23

Velocity Asymmetric Odd-symmetric Even-symmetric
(1,0)c/2 12 23 24
(1,0)c/3 10 21 22
(1,0)c/4 10 19 20
(2,0)c/4 11 21 22
(1,0)c/5 9 17 18
(2,0)c/5 10 19 20
(1,0)c/6 8 15 16
(2,0)c/6 10 < w ≤ 15 21 20

notes

  1. non-monotonic!

other such tables alike this