I had long assumed that openmp was simply not yet supported on macOS until I learned that the gcc command in fact uses Clang albeit named misleadingly
as such, having used Homebrew, I am now able to compile qfind , and finally create tables of bounds upon spaceship widths (which I will do here :-)
all links included are to the minimal spaceship found (first outputted, only minimal by bounding box, not population), however (where a table cell is split) the second subrow excludes members of a subset of the symmetry and those comprised of two smaller noninteracting spaceships, choosing the first nontrivial output instead to maximise information content
note that alike its gfind ancestor of yore, qfind is restricted to orthogonal searches, however it is very fast at them
you may add your own results (disproofs for lower bounds and spaceship examples for upper), however (to avoid confusion) I would like others to include citations of forum posts in which they explicitly state their results, so that those uncited can be attributed to me by default without having to go through the page's history
no gutter column is included for rules that are not gutter-preserving
thank you very dearly to ascendantDreamweaver for using a 48-core computer with 512GB of RAM to which they had access, for increasing logical widths for 2c/5 and 3c/7 to 12 in the first four rules (except for B36/S12, in which 2c/5's are small enough that I managed on my own)
all results labelled as JLS are due to wwei23
non-orthogonal spaceships are of course found with other programs, widths are measured with the scheme of a line of cells parallel to the diirection of movement replacing a column (ie. half-diagonals (1 √2 -units) for diagonal spaceships, 1 √5 -units for knightships)[1]
(I like the name a lot for some reason)
ascendantDreamweaver did the searches that led to finding the asymmetrical 2c/5 and 2c/7, as well as obtaining the present best lower bounds for 3c/7, 3c/8 (except for the 3c/8 even, which they found), 4c/9 and 5c/11
Velocity
Asymmetric
Odd-symmetric
Even-symmetric
Glide-symmetric
(1,0)c/2
6
13
14
(1,0)c/3
6
11 [n 1]
6
6
(1,1)c/3
w ≤ 19
(1,0)c/4
4
9
10
12
(2,0)c/4
7
13
14
(1,1)c/4
w ≤ 12
(1,0)c/5
8
11
12
(2,0)c/5
12
19
20
(1,1)c/5
w ≤ 17
w ≤ 19 [2]
(2,1)c/5
w ≤ 67
(1,0)c/6
9
13
14
(2,0)c/6
7
11
10
(3,0)c/6
7
13
14
(1,1)c/6
w ≤ 16
(2,1)c/6
w ≤ 58 [3]
(1,0)c/7
9[n 2]
13
14
(2,0)c/7
11 [n 3]
17 [n 4]
16
(3,0)c/7
12
23
24
(1,1)c/7
w ≤ 7
(1,0)c/8
6
11
12
(2,0)c/8
7
9
12
(3,0)c/8
10[n 5]
19[n 6]
20
(4,0)c/8
7
13
14
(1,1)c/8
w ≤ 12
(1,0)c/9
6
11[n 7]
12[n 8]
(2,0)c/9
7
11
12
(3,0)c/9
7
11
12
(4,0)c/9
11
21[n 9]
22[n 10]
(1,0)c/10
6
9
10
(2,0)c/10
6
11
12
(3,0)c/10
7
13
14
(4,0)c/10
8
15
16
(5,0)c/10
7
13
14
(1,0)c/11
5
9
10
(2,0)c/11
6
11
12[n 11]
(3,0)c/11
7
11
12
(4,0)c/11
9
15
16[n 12]
(5,0)c/11
10
19[n 13]
20[n 14]
(1,0)c/12
5
9
10
(2,0)c/12
5
9
10
(3,0)c/12
5
9
10
(4,0)c/12
6
9
10
(5,0)c/12
7
13
14
(6,0)c/12
7
13
14
(2,0)c/14
4
7
8
(4,0)c/14
5
9
12
(7,0)c/14
6 < w ≤ 10
11
12
(3,0)c/15
4
7
8
(5,0)c/15
5
9
10
(4,0)c/16
4
7
8
(6,0)c/16
6
9
10
(8,0)c/16
6
11
12
(10,0)c/20
5 < w ≤ 10
9
10
(4,0)c/23
3
5
6 < w ≤ 10
(26,0)c/52
w ≤ 17
I found the 4c/14 with ikpx2 as a new speed before performing qfind searches up to width 10 that proved its minimality, then found the true-period 2c/7's
x = 852, y = 265, rule = B36/S245
b2o3b4o3b4o4b4o5b4o4b4o5b4o6b4o8b4o12b4o9b4o2b4o5b4o2b4o9b4o9b4o2b4o6b4ob4o6b4ob4o4b4o5b4o2b4o5b4o4b4ob4o4b4o5b4o3b4o3b4o8b6o4b4o9b4o10b4o18b4o11b4o4b4o6b4o4b5ob5o3b4o5b4o5b5ob5o3b4o7b4o6b5ob5o2b7o8b9o10b4o10b4o6b4o4b3o8b4o8b3o6b3o8b4o8b4o5b3ob3o9b2o12b2o10b4o6b4o9b3o11b2o12b5o12b2o24bob5o7b3o38b2o17b3o14b2o11bobo14bo9b4o$4o3b2o5b2o6b2o7b2o6b2o7b2o8b2o7bobo2bobo8bobo2bobo8b2o4b2o7b2o4b2o8bobo2bobo8b2o4b2o8b2o3b2o8b2o3b2o6b2o7b2o4b2o7b2o6b2o3b2o6b2o7b2o5b2o5b2o8bo3b2o5bo2bo4bo4bo2bo3b5o3b2o3b5o12b2o11b6o2b6o4b6o4b3o3b3o3b6o3b6o5b3o3b3o3b6o5b6o6b3o3b3o4b2ob2o9bobobobobo8bobo2bobo6bo2b2o2bo4b4o2b7o7b2o8bo3bo3b7o6b4o9b2o5b2obobob2o7b4o10b4o10b2o7b2obo5b11o5b6o8b2o2bo2b2o9bo2bo22bob3ob3o6bob2o36b4o19b2o13b2o11b3o13b2o8b5o$bo2bobobo3b2obo4b2obo5b2obo4b2obo5b2obo6b2obo6b4o2b4o6b4o2b4o5b2ob6ob2o3b2ob6ob2o5b4o2b4o5b2obo4bob2o4b2obo3bob2o4b2obo3bob2o4bob2o3b2obo4bob2o3b2obo4b2obo3bob2o4bob2o3b2obo3b2obo5bob2o12b2o3bo3bobobobobo3bo6bo2b6o2bo7b6obo2bob6o3bo4bo2bo4bo4bo4bo4bo2bobo2bo3bo4bo3bo4bo5bo2bobo2bo3bo4bo5bo4bo6bo2bobo2bo5b2ob2o7b5ob5o9b4o9bo4bo6b2o4bobobo6bo4bo6bo3bo4b5o8b2o9b2obo3b5ob5o5bob2obo8bob2obo19b2o7b2o5b2o6bo4bo9bo5bo34b2o5b2ob2o5bo2bo38b2o18b2o11bobobo11b2obo12b3o9b2obo$bo9b2o6b2o7b2o6b2o7b2o8b2o8bobo2b2o2bobo4bobo2b2o2bobo3b2o3bo2bo3b2ob2o3bo2bo3b2o3bobo2b2o2bobo3b2o10b2o2b2o9b2o2b2o9b2o6b2ob2o10b2ob2o6b2o9b2o6b2ob2o5b2o11b2o5b2obob2o4bo5bobobo5bo4bob2o3b2o3b2obo7b3o8b3o7b2o6b2o8b2o7bobobobo6b2o7b2o8bobobobo6b2o9b2o9bobobobo5b4obo6bobob5obobo8bo2bo9b6o12b5o6b6o6b2ob2o4bobobo18b2ob3o3b3o3b3o6bob2obo8bob2obo6b2o4b2o5bo2bo5bobo3bobo21b3ob3o7bo2b4o2bo16bo4bo2b2ob2o7b3o33bob2o2b2o13bob4o10b2ob2o11b3o22bo4b2o$12bo6bob2o5bob2o5bo7bob2o7bo7bo4b4o4bo2bo4b4o4bo5bo6bo7bo6bo5bo4b4o4bo3bo10bo4bo9bo4bo9bo7bo3bo10bo3bo7bo9bo7bo3bo6bo11bo9bo2bo12bo14b2ob2o2b2ob2o7bob2o10b2obo4b4o4b4o6b4o7bo3bo6b4o5b4o8bo3bo6b4o7b4o9bo3bo6bob2o9b3ob3ob3o8b2o2b2o8bo4bo7bo4b2ob2o6bo4bo8bo5b2o3b2o6bo2bo7b3o6b3o3b3o7b4o10b4o7b2o4b2o3bo3b2o5bobo3bobo5b2o4b2o8bobobobo6b2o2b4o2b2o18b3o3b2obo7bo36b2o3b3o11bob2o2b2o10bo2b2o6b2ob2o2bo21b2ob2o$11bo2bo5b3obo4b3obo2bo2bo6b3obo4bo2bo6bob8obo4bob8obo7bob2obo9bob2obo7bob8obo3bo2bob4obo2bo2bo2bo5bo2bo2bo2bo5bo2bo4bo2bobo2bo6bo2bobo2bo4bo2bo5bo2bo4bo2bobo2bo3bo2bo7bo2bo7b3o12bo3bo11b2o10b2o28b4o4b4o5bob2obo7b3o7b4o5b4o9b3o7b4o7b4o10b3o6bobo3bo5b7ob7o4b3ob2ob3o4bobo4bobo4b2o3bo2bo2bo4b3o2b3o14bo3bo8b2o9b2ob2o2b2o7b2o31bo6bo4bobob2o3bob2o3b2obo4bo2b2o2bo9bo3bo8b3o4b3o17bob3o3b3o7bobo33b4o2bob2o12b2obo11b3obo8bo5bo20b2ob2o$12bo2b2o3bo3b2o3bo3b2o2bo2b2o4bo3b2o4bo2b2o3bobob2o2b2obobo2bobob2o2b2obobo6bob2obo9bob2obo6bobob2o2b2obobo3bo3bo2bo3bo4bo2b2ob2o2bo4bo2b2ob2o2bo3b2o2bo3bo2b2o2b2o2bo3bo2b2o3bo2b2ob2o2bo3b2o2bo3bo2b2o2bo2b2o3b2o2bo8b3ob2o9bo3bo34bo10bo6bob2obo2bob2obo4b6o7b3o6bob2obo4bo2bo9b3o6bob2obo5b6o9b3o8b4o7bo11bo5b2o6b2o3b3obo2bob3o4b2o11b3obo2bob3o4bobo4b2o3b2o5bob2obo6bob3o3bobo5bobo4bo2b2o2bo6bo2b2o2bo17bob3obo17bo6bo10bobo7bo2b2o4b2o2bo13b2o2b2o2b2o9b4o32bo4b3obo8b3ob2obo9bo3b3o7b2obobo21bo4b3o$14b2o3bo2b3o3bo2b3o5b2o4bo2b3o7b2o6b2obo2bob2o6b2obo2bob2o6bo8bo5bo8bo6b2obo2bob2o4b2o10b2o5b2o3b2o8b2o3b2o6b2o7b2o4b2o7b2o6b2o3b2o6b2o7b2o5b2o5b2o10b3o12bobobo12bo3b4o3bo9bo2bo6bo2bo5bob2obo2bob2obo4bo4bo6bobobo5bob2obo4b4o8bobobo5bob2obo4b2o4b2o7bobobo6bobob2o8bo7bo8b2ob2ob2o4bo2bob2obo2bo9b5o4b2o6b2o6bo4b2o5b2o2b2obo2bob2o3bobo7b2o5b2o5b8o6b8o20bob3o16b2o4b2o10bobo7b2o10b2o14b2o2b3o2bo7b2obo27bo5bo4b2o9bobo2b2o12b4ob3o7bo3bo20b3ob4o$13b3o8b2o7b2o2bob2obo7b2o4bob2obo3b3o6b3o4b3o6b3o7bo4bo9bo4bo9b2o4b2o7bo8bo6b3o3b3o9bobo8b3o5b3o4b3o5b3o5b3o3b3o5b3o5b3o3bob2obobob2obo8bob5o7bobobobo10bobobob2obobobo8bobo8bobo23b2o2b2o6b2ob2o16b2o9b2ob2o16b2o2b2o8b2ob2o8b3o10b2o3b2o11b4o7bobo4bobo12bo6bobob2obobo4b2ob2o4bo3bo4b2obo2bob2o4b2obo5b2o5b2o4b2ob4ob2o4b2ob4ob2o19bo3bo35bo11b2o4b2o16bobo2b4o8b5o28b4obo4bobo8bo5bo13b4o10b4o20b3o$14bo8b2o7b2o3b6o6b2o5b6o3b3o6b3o3bob2o6b2obo23b2o10bo8bo6bo8bo6b3o3b3o6bo7bo6bo7bo6bo7bo7bo5bo7bo7bo4b6ob6o6b3o2bob2o6b4ob4o9bo4bo2bo4bo9b2o8b2o7bo2bo4bo2bo3b2o6b2o15bo2bo3b2o4b2o17bo2bo6bo4bo22bobo6b2o2b2ob2o2b2o41bo5b2o3b2o3b2o12bo3bo5b2ob2ob2o6bo20bobo4bobo4bobo4bobo19bo2bo17b2o4b2o10bobo9b3o4b3o18bobob3o5b4o2bo27bo2bo7bo8b2o2b3ob2o9bob2o3bo5b2o3bo2bo20b3o$11b2ob3o6b3o6b3o3bo2bo7b3o5bo2bo3bob2o6b2obo2bob2o6b2obo22b4o9b2o6b2o6b3o4b3o5b2obobobob2o6bobobobo5b3ob2ob2ob3o2b3ob2ob2ob3o2b2ob3ob3ob2o2b3ob2ob2ob3o3bo2bo3bo2bo6b3o3bo3bo2bob2o2bobo2b2obo5bo4bo4bo4bo42b4o2b4o3bobobobo12b3o2b3o5bobobobo14bobo2bobo6bobobobo9bobo5bobob2ob2obobo6bobo2bobo4b2o8b2o8b7o4bo6bo5bobobo4b2ob2o6b2o2b2o8b2o7b5o6b10o4b10o20bo18bobo4bobo10bo12bo4bo15b3obobo2b3o6b2obobo29bo5b3o10bo2b4obo8b3o10b4o26bo$12bob3o3b2obo5b2obo13b2obo14bobo8bobo4bo8bo36bobo6bobo6b3o2b3o6bo3bobo3bo7b2ob2o6b3obo3bob3o2b3obo3bob3o3bob3ob3obo3b3obo3bob3o23b2o3bo4b2ob2o2bo2b2ob2o8bo8bo13bo6bo16b2o2b2o3bo6bo4b7o5bo2bo5bo2bo7b7o4b2o2b2o2b3o6b3o4b7o6b2o3bo4b2o3b5o3b2o4bo2bo2bo2bo3b2o8b2o7bo2b3o2bo5b4o9bo6b2ob2o5b2o4b2o6bob2o6b5o7b2ob2ob2o6b2ob2ob2o21b2o17b2o6b2o4bob3obob3obo5bo6bo14b2o2bobo3bo8b2obo30b2o17bo7bo5bo3bo10bob2o2bo23b2o2bo$12b2o5b6o3b6o5b2o4b6o7b2o21b4o4b4o35bo10bo7bo4bo7bo3bobo3bo6bo5bo8b2o3b2o8b2o3b2o6b2o7b2o6b2o3b2o7b2o5b2o16b2o4bo2b2ob2o2bo6b3o12b3o6bob3o4b3obo13b2o2b2o14b2o2bo2b2o3b3o5b3o2b3o4b2o2bo2b2o3b2o2b2o3bo8bo4b2o2bo2b2o7bo3bo6bobo3bobo6bo2bo4bo2bo3bo8bo8bo7bo4b2o2b2o7bobo4b3ob3o3b2o2b2o2b2o15bo3bo7b3o2b3o6b3o2b3o22bo19bo4bo6b3o2b3o2b3o3bobo6bobo11bo2b2ob4obo4b4o40bo12bo3bo2bo6b3o10bob2o4bo21b3obobo$11bo3bo4bo4bo3bo4bo3b4o4bo4bo5b4o21b3o4b3o36bobo6bobo4bob2o4b2obo6bo5bo8b2o3b2o6bo3bobo3bo4bo3bobo3bo3bo3bo3bo3bo3bo3bobo3bo4b4o3b4o6b4o11bobo5bobo6bo3b2o6b2o3bo7bo3bo2bo3bo16b2o20bo8bo2b2o18bo9b2o5bo8bo8bo10bo4bo7bo5bo7b2o2bo2bo2b2o3bo8bo9b3ob3o5bo4bo7b3o5bo3bo4b4o2b4o3b5o6b2obob2o8bo2bo10bo2bo23b2o21b2o10b2o5b2o30bo2b2o2b2o4bobo39bob2o11b2ob2obo10bo7bo2b2o2b2obo23bo4bo$12bo7bo8bo9b2o5bo11b2o24bob2obo26b4o8b3o6b3o6bo6bo24bo3bo10bo3bo10bo3bo7bo3bobo3bo7bo3bo8b2o5b2o11b2o12b2ob2o11b2o10b2o7bo2b3o4b3o2bo12b6o16b5o4b5o18b5o5b6o5bo4bo8b5o7b2o2bo23bobo6bobo5b6o22bobo2bobo8bo5bo3bo6b6o6b3obo5bo5bo5bobo4bobo4bobo4bobo17b7o16b2o4b2o8bo2bo2bo28b3o2b2o8b3obo38b2obo11b2o2bobo5bob2o2bo5bo2b2ob3ob2o20bo2bo$23bo8bo6b2o8bo8b2o21bo2b6o2bo23bo2bo10bob4obo6bobo6bobo23b3o11b5o10b5o12bo12b5o8b2o5b2o6b3ob2o10bobo5bobo8bobobob2obobobo6bo3b3o4b3o3bo12bo2bo16bo2bo2bo4bobo4b2o6b2o4bo2bo2bo5bo2bo5bo6bo6bo2bo2bo6bo2bo11b5o9b3o4b3o7b4o14bobo7bo4bo6bo7bobobobo5bob2obo5bobo3bo5bobobo10b2o12b2o22bo24b2o11bo2bo2bo27b2o2bobo13bo41bo15bo5bobob4o5bobo4bobo21b3o$32bo5bo2bo15b4o23bo4bo41b6o7b4o4b4o23bobo41bobobo22b4o3b4o8b3o9b3obobobob3o5bo2bo2b2o2b2o2bo2bo3bob2o2b3o2b3o2b2obo11bo2bo16b3ob3o4bo2bo4bo6bo5b3ob3o5bo2bo4bobo4bobo5b3ob3o7b6o7b2obob2o8b2obo2bob2o5b2ob2ob2o21b2o4b2o5b3o6b5o6bo4bo6bob2ob2o3bobobobo6b2ob2ob2o6b2ob2ob2o20b3o34b7o26b6o11b2o2b2o39bobo23bo2bo6bo2bo26b4obo$23b2o7bo6b2o8b2o6b4o22b3o2b3o41bo2bo9bo8bo24bobo26b2ob2o10b5o22b4o3b4o5b3o2b2o8bo4bobo4bo6b4obob2obob4o5bo2b2o8b2o2bo11b2o2b2o16b2ob2o5b3o5b3o2b3o6b2ob2o5b2o2b2o2bo10bo5b2ob2o6bob2o2bo9bo3bo8bo3bo2bo3bo4bobo2bobo19b5o2b5o3bo17b4o2b4o8bobo5b3o10b4o10b4o22bobo18b8o43bob3o2bo9bob2o61b2o2bo12b2o2bo20b2ob3o$22bo9bo6b2o7bo82b2o2b2o8bo2bo2bo2bo40bo12b2ob2o11bobo12bobo25b2o2bobo6b2o2b2o3b2o2b2o4b3ob2o2b2o2b2ob3o3b3o14b3o12b2o17bo2bo2bo4b3o5bo6bo5bo2bo2bo6b2o4bo10bo4bo2bo2bo8bobo9bobobobo9bobo2bobo8bo2bo22b2obo2bob2o4bobo6b5o6b2o2b2o11bo6bobo70b10o8b5o25bo4bo4bo9b3obo58b2obo2b3o8bo3bobobo21b3obo$22b3o58b8o40bo4bo11b4o43bo12b2ob2o11bobo12b3o24bob3o3bo7b3obobob3o6bob2o3bo2bo3b2obo12b2o20bobo19b3o7bobo4b2o4b2o7b3o7bobo5b2o6b2o7b3o12bo2bo7b5o11bo4bo34bob2o4b2obo4bob2o6bo7bobo2bobo6b2o22bo2bo10bo2bo18b3o39b5o25bob2ob4o10bo2bobo60bo3b2o8bob3o3b2o21b2obo$22bobo24b2o34bo2bo41bob4obo11b2o44bo12b2ob2o7bo3bobo3bo7bo3bo23b3o2bo2bo5bo2bobo3bobo2bo6bobob2o2b2obobo13b4o20b2o18bo3bo8bo5bo4bo7b2ob2o7b2o6bo6bo7b2ob2o12bob2o19b2obob2obob2o32bobo4bobo8b2o4bobo20b2o9b3o11b2o12b2o44bo6bo11bo28bo2b2ob2o11bo2bo59bobo4bo9b3o3bobo$24bo23b2o36b2o42bo6bo10b4o43bo14bo8b2ob2o3b2ob2o4b2ob3ob2o26bob2o5bo4b2ob2o4bo10b6o14b2ob4ob2o37b5o16b2o8bobobobo16bo2bo8bobobobo5b3o3bobo5bo2bobo2bo5b3ob6ob3o32b3o2b3o6bo2bo6bo5bo4b2o4bo4b2o8b5o10b2o12b2o19b3o21b2obo2bob2o10bo25b2o6bobo8bobob2o60b4o8b2o2bobo2b2o$21bo28bo32b2o4b2o38b2obo2bob2o10b2o56bo5bo6b3o5b3o6b3ob3o24b2ob4o6bo2bo5bo2bo4bo3b3o2b2o2b3o3bo5b14o15bo18bob3obo4b2o6b8o6b2ob2o7bo7bobo2bobo7b2ob2o6bobobobo2bo5b7o8b2o2b2o2b2o33bo8bo6b2obo12b4o2b4o7bo7bo3bo7bob4obo7bo4bo19bo23bo4bo11bobo27b5obo8b4o2bo56bo2bo3b2o7bo2bo$21bobo23b2o35bo4bo39b3o4b3o68b3ob3o6b2obo3bob2o6bo5bo24b2o2bo3bo3b2o2bo5bo2b2o4b2o3b2ob2ob2o3b2o6bo5b2o5bo14bo31bo6b2ob2ob2o17bo9bo4bo20bo4bobo6b2o3b2o8bo8bo34bo6bo7b2obo4b3o7b2o2b2o8bob2o4bo5bo7bob2obo7b3o2b3o17bob2obo63b2o4b2o12b5o56b3o2bobo5b2o2b2obo$20bo2bo23bobo34b2o2b2o59b2o56b3ob3o6b2obo3bob2o8bobo26b2o2bo2bo7bo7bo7b2o3bobo2bobo3b2o35bobo16bo5bo5b2o6bo4bo7b5o7bobo6b2o2b2o8b5o21b2o3b2o8b3o4b3o49b3o12b3o6b3o4b2ob2o3bo2bobo2bo6b2o2b2o6b3o4b3o16b2o2bobo35b3o24b3ob2ob2o9b2o4bo56bob3obo6b3ob2o2b2o$21bobo22b2ob2o32b2o4b2o37b5o2b5o9b2o55b2o5b2o6bo7bo8bo3bo26bo2bo2b2o4b2o9b2o4bobo2b3o4b3o2bobo6bo4b2o4bo16bob2o16bo3bo5bo9bo2bo8bo3bo7bob2o3bo2b4o2bo6bo3bo10bobobo7b2ob2o13b2o68bob2o4b2obo4b3o4b2obobobob2o4bo2b2o2bo5b2obo2bob2o18b2o2bo18bob2obo10b2ob2o19bo2b4o17bob2o56b2o2b3o5b2o2b2ob2obo$22bo23bo3bo78b3o4b3o10b2o54b2obo3bob2o3b4o5b4o6b2ob2o24bob2obo2bo5b3o7b3o6b6o4b6o9b2obo2bob2o15b2o2b2o16bo3bo8bo5bob2obo7bobobo5b2o2b2o2bobo6bobo5bobobo9bob2o26bo2bo60bobo5bobo4bobo12b4o3b4o3bob6obo4b3o4b3o18b6o16b2o4b2o9b2ob2o19bob2obo2b3o14b3o57b2ob2o6bobo2bo2bo$48bo80bobo4bobo10b2o55b2o5b2o4b3o7b3o5b3ob3o23b7obo7bo7bo9b2ob2o4b2ob2o10b3o4b3o15b2o32b2o17b2obob2o4b2o6bobob4obobo4b2obob2o7bobo9b2o5b2o10bo2bo52bo7b3o22bo7bo3bo7bo6bo4b2o8b2o17b2ob2o17b2o4b2o9b2ob2o19bo3bo2bobo17bo57bo9b3o4bobo$47bobo78bob2o4b2obo66b2o5b2o24bobo25bo5bo6b3o2bo3bo2b3o6bob2ob4ob2obo8b2o3b4o3b2o14b2obo28bobo3b2o6b2o3b2o5b2o4b2obo4bo2bo2bo2bo4b2o5b2o6bo2bo7bob2obob2obo9b4o50b3obo5bobo5bo8bo8b2o3bo3bo3bo4bob2o2b2obo4b2o6b2o17b2o21b8o9b5o19bo3b3obo2bo15bo56bo9b3obo2b3obo$46bo3bo79b3o2b3o81bob4ob4obo5bo5bo22b2obob3o5b3o2bo5bo2b3o7bo2b4o2bo11bo3bo2bo3bo14b2o31b2o4bo3b2o3bo4bo5bo4b2o8bo2b2o2bo6bo5bo7bo10bo4bo4bo64bobo5b2ob2o22bo5bobobobo7b6o5bo10bo17bob2o18b2ob2ob2o9bo3bo17b2ob3o3b4o17b2o52b2obo16b4o$47b3o80b8o68b2o5b2o4bo2b2o3b2o2bo6b5o23bo6bo6b3o9b3o7bo10bo10bo2bob2obo2bo15b4o30bo4b2o4b2o4bobo3bobo4b4o4bobo4bobo4bobo3bobo6bobo9b2ob3ob2o10b4o49b3ob3o2b2o3b2o3b3o4b3o7bo9bo9bo6bo7bo4bo21bo19b2o6b2o7b2obob2o16bo2b2o2b2o2bo15b2o50b3obob2o8b2o3b2o3bo$47bobo80bobo2bobo68b2o5b2o5b2o2bobo2b2o6b2o3b2o23bobo10bo13bo6bo3bo4bo3bo8b3o8b3o15b3o27b3o6bo4bo4b2o7b2o4b3o8b2o7b2o7b2o3b2o2b2o7bo9bo9bo2bo51bob2o5bobo6b2o4b2o7b2o19bo6bo7b2o2b2o23bo16b3o2b2o2b3o7bo3bo19bobo2bob2o16b3o48bo3bo2bo9b2o4b2ob2o$131b6o69bobo3bobo5b2o3bo3b2o6b2o3b2o26bo7b4o11b4o4b3ob2o2b2ob3o8bo2b8o2bo13bo3bo27bo6bo8bo2bo9bo2bo3bo5bob4obo4bo9bo3b5obo8bo5bo11b4o50b2o3bo13bobo2bobo5b2obo18b2obo2bob2o4b2obo2bob2o19bo36bobobobo19bo6bo16b2ob3o45b2o16b2o2b3o$130bo6bo83bobobobobo8bobobo26bo3bo4b3obo9bob3o6bo2b4o2bo10bobob2o2b2obobo14bobo36b2o4b2o4bobo3bobo4bobo7b6o6bobo3bobo6bob2obo5b4o3b4o8bo4bo52bobo3b2ob2o6bo4bo7b2o20bob4obo5bo2bo2bo2bo21bo32b3o5b3o14b2o2b2obobo16b2o2bo44b5o11bobo2bobo2b2o$131bo4bo86b2ob2o9bo5bo24b2ob2o7bo2bo7bo2bo8b2obo2bob2o11b2ob2o2b2ob2o67b2obob2o14b2o4b2o6b2obob2o11bo6b4o3b4o6b2ob4ob2o47b4o5bobobo6bo4bo8b2o18bobob2obobo3bobo6bobo58bo19bobo2b3o17bo4bobo42b2o2b2o9bo3b2ob3ob2o$221bob2ob2obo8b5o36bobo2bo5bo2bobo10b4o12bo2bob2o2b2obo2bo13b3o37bo4bo5bo3bo3bo3bob2o6b3o2b3o5bo3bo3bo4b2ob2o2b2o20b2o3b2o3b2o45bo2bo7b3o8b4o8b3o31bo2bo4bo2bo18b2obo31bobob3obobo18bo19b2obo3bobo41b2ob2o9bob2o3bo4bo$222bob3obo8b2o3b2o23bo3bob2o5bo3bo5bo3bo8bob6obo9b6o4b6o13bo39bo4bo7bobobo5b5o6bo4bo8bobobo6b2obo4bo5b3o3b3o7b2ob4ob2o47bo21b2o9bo22b6o7b3o2b3o18b2o37bobobobo18b2obobo16bo3bo3bo40bo2b2o11b3o5bo$222bo2bo2bo8bo5bo22b2o2bobobo8bo7bo10b2o3b2o3b2o8bob4o4b4obo12b3ob2o33bobo4bobo5b2ob2o5bob2o6b3o2b3o7b2ob2o5b2obo3bo7b3o3b3o8b2ob2ob2o49bobo7bo10b2o9bo3bo15b4o4b4o5bob2obo19bobo35b2o2bo2b2o17bobobo20bo61bob4obo$222bobobobo8bo5bo23b4o2bo9b2o5b2o9b2obo6bob2o8bob2o2b2o2b2obo15bobo34bo8bo4b2o3b2o5b3o6bo2b2o2bo6b2o3b2o5b2ob4o5b5o3b5o5b4o2b4o49b2o5bobobo19b4o18bob4obo6bo2b2o2bo57b2obob2o16bob2obo18b2ob2o43b3o14bob6o$225bo11b7o23bob3o2bo28b2ob4ob2o13bo2b2o2bo19b3o34b2o4b2o15b2obo6bo2b4o2bo6b2ob2o9bob2o6bo3bobo3bo8bo4bo68bobo2bobo5bob2ob2o16bob4obo6b2o4b2o20b2o33bo2bo3bo2bo13bobo2bo20b2obo42b2o16b5obo$224bobo8bobob3obobo28bo10bo3bo13b2o2b2o2b2o9b2o4b4o4b2o51bobo4bobo5b5o7bobo5bo6bo5b2o5b2o6bob2o6bo3b2ob2o3bo4b2o2bo2bo2b2o47bobo15bo2b2o2bo6bobob2o18b4o8bobo2bobo21b3o54bobob3o19bo2bo40b2obo18bo2b3o$222b7o5b2o2bobobo2b2o27bo29b2ob2ob2o16bo2bo20b2o38bo2bo6bobo3bobo5bob2o4b2o4b2o6b3ob3o8b2o6bo4bo3bo4bo3b2obob2obob2o46b2o17bo2b2o2bo9b2o32bo4bo22b2o34b2o3b2o15bob2o22b2obo35b2ob2o17bo4b2o$221bo2bobo2bo4bob2o5b2obo27b3o6b2ob3ob2o8b2obo8bob2o13b2o72b3ob3o6bobo4b3ob2ob3o5b3ob3o7bo10bob2o3b2obo5bo2b2o2b2o2bo46bo2bo18b2o10bob3o29b2ob4ob2o19bobo56b2o24b3o34b5o19bobobobo$220bobobobobobo4bobo5bobo28bob2o7bo3bo11bo3bo4bo3bo9bobo6bobo14b2o51b3ob3o8bo4bo2b4o2bo4bobo3bobo5b3obo7b3o5b3o8bo4bo51bo18b4o10b4o17bob2obo9b4o22b2o36b2ob2o15b2o23b3ob3o32b5o18bo2b2o$221bobo3bobo39b6obo5bo3b3o3bo6b2o3bobo2bobo3b2o8b2ob4ob2o17bo50bo5bo5b2o7b8o7b2ob2o8bob2o6b2o9b2o3bob4o2b4obo45bob2o15b3o2b3o8bo19bobo2bobo8b4o23b2o34bo5bo13b3o23b2o2b3o32b3o19b2o$222bo5bo5bobo7bobo24b4o2bo5bo2bobo2bo7b3o3bo4bo3b3o7bobob4obobo14bob2o48bobo3bobo5bo7b8o7bo3bo8bobo24b2o8b2o46b2o18b2o2b2o7bobo18bob6obo5b2o4b2o20bo38bobo14b2o2bo21bobo2b2o49bo$234bo2bo5bo2bo25bo2bo7bo2b3o2bo8bo3b2o4b2o3bo7b6o2b6o14bo51bo5bo6b2o5b2o6b2o19b2obo6bobo7bobo7bo4bo48b2o19bo4bo7b3o17b4o4b4o3b2o2b2o2b2o17bob2o36bo3bo14b5o21bo2bobo50b4ob2o$238b2ob2o30bo12bobo11b3obob4obob3o7bo12bo14b2o69b2o2bo2bo2b2o4b3ob3o11bo7b2o5b2o8b2o4b2o66b3o4b3o4b3ob3o14b12o4b2o4b2o19bo35bo2bo3bo2bo35bo3bobo49bo2b2obo$237bobobobo30bo8bob2ob2obo9bo2bob4obo2bo9b12o15bo64bob2o3bo8bo5b3ob3o8bobo8b3o3b3o9b2o2b2o67bob2o2b2obo4b4o32b10o20bo32b2o9b2o7bob2o23bobob2o51b3o3bo$236b2ob3ob2o26b5obo4b2ob5ob2o10bobo4bobo12b4o2b4o15b2obo64bo3bobo6bobo5b2ob2o9b2o10bobobobo9b2o4b2o67b2o4b2o7b3o18bob4obo5b3ob2ob3o20b2o32b3o5b3o6b2ob3o21b2o2bobo51b3o3b2o$238b5o29bob2obo5b2o5b2o11bobo4bobo11bo2bo4bo2bo16b2o63bo5b2o6b2o6b2ob2o20b4ob4o7b2o6b2o67b6o7bo2bo20bo2bo9bob2obo20b3o32bob2o5b2obo4b3o24bob2ob2obo49b2o2bo3bo$238b2ob2o28b2o3bo4b2o9b2o29b3ob2o2b2ob3o13bo2bo63bo6b8o6b7o8bo12b2ob2o9b4o2b4o66b2o4b2o7bo19b3ob2ob3o4bobob2obobo19b2o35b3ob3o5b2o4bo20bo2b2o2bobo48bo5bob3o$238bo3bo27b3o8b2o9b2o8b3o6b3o13bob2obo18b2o63bo7b2ob2ob2o6bobobobo7b3o10b2o3b2o85b6o8bo21b6o9b4o58bob2ob2obo3bo3b4o21b2ob2o2bo50b2o3b2o$238bobobo27bobo8b2o2b2ob2o2b2o9b10o8b3o2bob4obo2b3o12b2o64b2o4bobo4bobo20b2o12bobo12b6o69bo4bo7b2o21bo4bo7b2ob2ob2o19bo39b3o8b2o2bobo19b2o3bo51bob3obo$237bo2bo2bo26b3o13b3o13bo2b6o2bo7bo2bobobo2bobobo2bo14bo64b2o3bob2o2b2obo7b3o11b3o8b3ob3o9b8o68bo4bo8bobo17bo2bo2bo2bo73bo8bo2bobo23bo4bo51bo3bo$269bo12bob3ob3obo9b3ob4ob3o11bob2o2b2obo18bo65bo4b2o4b2o34b5o10bob4obo68bo4bo7bo3bo18bo4bo6b3o4b3o17bobo38b3o12bo19b2ob2o55b4o$238bobobo25bo2bo2bo8b2obobob2o12bobo2bobo15bob2obo19bobo62bo8bo2bo8bobobobo9b2o9bo2bo2bo10bob2obo82bobo22b2o9bob4obo19bo50b2obobo19bo3bobo47bo3bo3bo$239bobo26bo15bobobobo11b4o4b4o12b2ob2ob2o18bo63b3o33b2o11bo2bo2bo9bobo2bobo68bo4bo8bob2o15bob3o2b3obo3b2o2b2o2b2o17b3o47b4obobo19bobo2bo47bob2obo$268bo2b2o9bo2bo3bo2bo10bobo4bobo14b2o2b2o17b3o71b2ob2ob2o5b2obobob2o5b2obobo8bo5bo9b3o2b3o67b3o2b3o7bo18bo2b2o2b2o2bo3bo8bo17b3o46bobo2b3o25bo45bo4b2o$270b2o10b4o3b4o12bo4bo15b2o4b2o17bo63bo8b8o6bo5bo7bo12bobobobo9b3o2b3o67bo6bo10bo20b2o12b2o21b3o47bo29bobo46b2o3bo$270b2o11bobo3bobo11b3o4b3o12b4o2b4o15b2o64b2o6b8o18b3o12b2obob2o7b4o4b4o64bob2o2b2obo6b2obo20b2o10bob2obo20bo47bob3o24b4o46bo2bo2bo$282b2obo3bob2o9b2o3b2o3b2o10b2o2b4o2b2o16bo60b2o2bo50bo9b4ob4ob4o64bo2b2o2bo10b2o16bobo2bobo9b2o68b4o26bob3o44b6o2bo$283b2o5b2o10b4o4b4o11bob6obo17bo61bo2b2o31b4o10b2obobob2o5b2o2bob2obo2b2o65b2o2b2o7bobo22b2o11bo2bo68bobo24bobo2b2o43b2obo3bo$282b5ob5o11bo2b2o2bo11b4o2b2o2b4o17bo62bo33bo2b2o8bo7bo10bo2bo71bo2bo8bo2b2o32b2o2b2o67b2o25bo2b3o45bo3b3o$282bo2bo3bo2bo11bo2b2o2bo12bo2b2o2b2o2bo15b2ob2o95bo2b3o7bobo3bobo6bo2bo4bo2bo68b2o48b2o67b2o2bo22b4ob4o41b2o3b4obo$283bobo3bobo12bo6bo12bobobo2bobobo18b2o59bobo34bo3bo7b2obobob2o6b2ob2o2b2ob2o78b2o37bo2bo66b3obo21b4o2bobo43bo2bo2bo$283bobo3bobo12bo2b2o2bo12bob3o2b3obo79b2o33bo3bo12bobo9b2o2bo2bo2b2o117bo2bo66bob2o23bo51bo2b3o$284bo5bo13b2o4b2o13b2o6b2o17bobo58b2o36b4obo6bo3b3o3bo5b5o2b5o78bobo35bob2obo68bo21bo2bo47bob2o$282bobo5bobo12bo4bo16bo4bo19b2o60b2o33bob2o11b9o5b5ob2ob5o116b4o61b4obo24bobobo44b2obob2obo$284bo5bo15bo2bo41bo62bo37bo10b2o3bo3b2o8bob2obo81b4o34b2o2b2o60bo2b2o2bo22b5o43bo2bo$305b2o2b2o14bo2bo2bo2bo115bobobo8bob3ob3obo7bobo2bobo183bo2b3o2bo22bobo45bo3b3o$282bobo5bobo12bob2obo13b2ob2o2b2ob2o118bo9bo7bo9b2o2b2o183bo2bo3b2o21bob2obo43b2ob2o$283bo7bo12b2o4b2o12b2obo4bob2o118bo9bobo3bobo9bo4bo81bo102b2o3bo23bo5b2o38b3ob4o$282bo9bo11b2o4b2o11b3o8b3o115bo2bo9b2o3b2o12b2o82b2o38b4o61b2obo25bobo2bo43bobo$283bo7bo13bob2obo15bo6bo119bo13bobo13bo2bo82b2o36b6o57bobo3bo25b2ob4o40b2ob2o$299b3ob3o4b3ob3o7bo2bo4bo2bo116bobo10bo5bo9bobo2bobo79b2o37b2o2b2o61bo25bo2bo2bo40b3ob3o$283b2o5b2o7bobo4bo2bo4bobo7bo10bo118bo12bobo10b4o2b4o79bo36b3o2b3o57bo2bo25bob3o2bo38b2obob2o$282bo9bo5bobobob8obobobo8bo6bo123b2o6bo5bo7b2o2bo2bo2b2o80bo99b3o28b2ob2o40b2o$282b2o7b2o6b2ob2obo4bob2ob2o6b2o10b2o117bob3o6bo5bo11bo2bo84b2o35b4o57bobo2bo26b3ob2o36b2o2b2o$300b4obob2obob4o5bobobo8bobobo115bob4o4bobo3bobo5bo3b2o2b2o3bo78bo37b4o58bobo27bob2o2bo35bo2b2o$281bobobo3bobobo7b6o2b6o7bo2bo8bo2bo117b3o5bob2o3b2obo5bob2o4b2obo79b3o35b4o57bo31b3obo37b3o$282bobo5bobo7bo2bo2bo2bo2bo2bo6b2obo8bob2o116bo4bo4b2o5b2o5b3o8b3o78b3o35b4o59b2o28bobo36b6o$281b3o7b3o9bobo4bobo9bo14bo125bob2o3b2obo95bo2bo35b4o56b4o30b2o38b2o$303bobo4bobo11bob2o4b2obo120b2o6bobo3bobo6bo4b2o4bo78b3o35bo4bo55b2ob2o65bobo2bo$302bo3bo2bo3bo11b2o6b2o121bo9b2ob2o10b2ob2ob2o80b5o33b2o2b2o52bo5bo32b2o35bo$301bobo2bo2bo2bobo9bobo6bobo119bo7bo9bo7b2o4b2o84bo33b2o2b2o50bob3obo35bo31b2obo$301b2obo6bob2o9bobob4obobo118bobo4b2obo7bob2o4b2ob4ob2o78b2o3b3o30b3o2b3o46b2o3bob2obo31b2o30bob3o$303b2ob4ob2o10b2o3bo2bo3b2o117bo6b2obo7bob2o92b8o31bob2obo47b3obo4bo34bobo26b3ob3o$303bo2b4o2bo10b3ob2o2b2ob3o117b2o7bob2o3b2obo8b2o2b2o81b6o33b4o48b4o4bo33b2obo26bob2ob2o$305bo4bo17b4o122b2o7b2ob2ob2ob2o5b2o2bo2bo2b2o117bo2bo46b6o39b5o21b2o6bo$307b2o15bo4b2o4bo130bo3bo9bo3b2o3bo80b2o35bo4bo44bo4bobo36b2obo24bo2bob2obo$305b6o14b3o4b3o132bobo9b4o4b4o78bob2o35b4o44bobo3b2o36bo3b3o20b2o7bo$305b2o2b2o12b2ob2ob2ob2ob2o114b4o10bo5bo7b5o2b5o80b2o82b2obo2bo37b2o3bo22b3o4bo$304b2o4b2o10b2o5b2o5b2o113b2o2b3o6bo2bobo2bo6b2o3b2o3b2o79b2o81bob2obo39b2obo32bo$303bob6obo9bob2o8b2obo115b3o7b2o2b3o2b2o6b3ob2ob3o79bob2o79bob2o3b2o36bo3bo24bo3bo2bobo$302bo3b4o3bo8bo14bo118b3o5bo7bo6bo2bob2obo2bo81bo79bobo2bo41b3o23bo2bob3o$301bo12bo6bob2o10b2obo116b2o7b2o2bo2b2o6b2obo4bob2o80bobo77b2obobobo39bo2bo23bob2o2b2o$302bo10bo7bobobo8bobobo117b3o6bo5bo7b4o4b4o81b3o76bob3obo40b3o2b2o17bo3b2o$301bo12bo7bob3o6b3obo118bo21b2obob4obob2o78bobo78bo2bobo42bo3bo19b2ob2obo$301bo12bo10b2o6b2o121bo7b3o3b3o6bo10bo80bo3bo75b4o44bo2bo19b2obo$301bobo8bobo10b2o6b2o121bo8b2obob2o6bo2b8o2bo78bobo75b3obo43b3o3b2o17b2o3bo$300b2obo3b2o3bob2o8b3o6b3o119b2o8b2o3b2o6b2o10b2o79bo126b3o19bo3b2o$301b3o2b4o2b3o139bo3bo19bo12bo78bo76bo2b2o47b2o2b2o14bob2o2bo$300bob4ob2ob4obo7b2o10b2o119b3o6b3ob3o6b2o3b4o3b2o78b2obo71b2obo2bo46b2o3b2o16b2o$301b14o8bobo8bobo117bo2bo8bo3bo9bob2o2b2obo81bo76bob2o47b4o13bob2obo$303bobo4bobo8b2ob2o8b2ob2o116b4o6b3ob3o9bobo2bobo156bo3bo47b3obo14b6o$303bo8bo8b2o2b3o4b3o2b2o117b3o7bobobo10bobo2bobo82b3o72b2o48bob2o16bobobo$302bob8obo9b3o8b3o117bo10b3ob3o99b2obo67b4obo48bo18b2obo$304bo2b2o2bo11bob3o4b3obo117bo9bob2ob2obo96bo4bo66b4o2b2o44bo4bo16b2o2bo$304bo2b2o2bo12bo10bo116bobo6b3obo5bob3o94b3o67bo7bo43b3ob2o15bobo$307b2o15bo2bo4bo2bo114b3o2bo5b2o11b2o93b2obo68bo5bo43bob6o9b2o2bob2o$305b6o11bo3bo6bo3bo113bo3b3o7b2o3b2o98bo70bo3bobo43bo2b2obo11b3obo$306bo2bo13b2obo6bob2o114bo3b2o7bob2ob2obo96b4o65bo6bo46b2o13bo2b2obo$305bob2obo10b3o12b3o111b2o2b2obo6bobo3bobo95bob2ob2o64b2o4bo45b3o14bob3o$305b6o12b3o8b3o114bobo11b3ob3o98b2o66b3o3b2o45bo2bo11b3o3bo$305bob2obo12b2o10b2o116bo118b2o64b3o50b4o10b4o3bo$304bo6bo10b2o12b2o114bo119b3o65b2o52bo8bobobo4bo$305b6o11b2obo8bob2o113b4o183bobo48bob4o7bo2b2o2bo$307b2o14bob2o6b2obo114b3o234bob2o2bo5b3o4bob2o$305bo4bo11bo2b2o6b2o2bo113bo2bo117bobo61bob2o47bo3b3o6b2ob2ob3obo$304bo2b2o2bo11bo2bo6bo2bo117bo117b3o63b2o49bo3bo4b2ob2obobobo$305b6o12bo2bo6bo2bo114bobobo114bo2bo62bob2o45bob5o5bo$304bo2b2o2bo11b2o10b2o115bo2b2o112b5o63bo46bobobob2o4bo8b2o$305bob2obo12bobo8bobo116b2o114bo2b2o62b3o44bob2o2bo5b3o7bo$304b2o4b2o9b2obo2b2o2b2o2bob2o113b2o114b2ob3o109bo10bobo6bo$305b2o2b2o11bo4b2o2b2o4bo114bo116b2o62bob2o45b2ob2o7b2o7bo$306bo2bo12b5o6b5o112bob4o112bo3bo61bo46bobo3bo8bo6bo$305bo4bo11bo3bo2b2o2bo3bo116bo114bo2bo61bo44b6o8b2o2bo4bo$323b2obobo2bobob2o115b2obo116bo61bo43b2o2bobob2o5bo2bob2ob2o$322b2o4bo2bo4b2o115b2obo115bo59bobo43b3obo2bo8bobo3bo$327b2o2b2o119b3obo114bo60bo2bo41bobo6bo5b2obo3bo$452b3o176bo3bo42b2o10bobobo$325b2o6b2o116bo179b3o45bo11b3o$325b2o6b2o117b3o177b2o46bo4b3obobo$631bo56b4o$324bo2b6o2bo118b2o172b2o53b2o3b3o$324b3o6b3o118b3o170bo2bo52bobobo$325b2o2b2o2b2o119b2o170bo3bo50b2obo4bo$323bo3b2o2b2o3bo115bo2bo169bobo2bo51bo7bo$324bo3bo2bo3bo116bo2bo169b3o51bobo7bo$323bo4bo2bo4bo116bo2bo171bo50bobo4b3o$325bobo4bobo120b2o167b2o2b2o48b2o6b2o$326bobo2bobo119bo2bo167bo3b2o51b2obob3o$325bo8bo117bo2bo167b3obo53bobo2bo$326bo6bo120bo167b2o2b2o50bo4b2o$324bo3bo2bo3bo286bo3bo52bobo$324bo4b2o4bo116b2o169bo54bo$324bo10bo117bo169b3o48bo2bo$324bo3b4o3bo115bobo170bo50b2o$324bob3o2b3obo114bo171b2o$324bo2b2o2b2o2bo114b4o165b2obo49b3o$323bo3bob2obo3bo114b2o165bo2b2o45bo2b2o$322bo3bob4obo3bo113bo2b3o162bo47bo2b3o$323bo2b8o2bo113b7o161b2o46b2o2b3o$323b2o10b2o114b2obo211b2o4b2o$323bobobo4bobobo113b2o2b2o216bo$322bob2o2bo2bo2b2obo116bo210bobo2bo$323bo2b3o2b3o2bo117bo209bob2o2b2o$322b5o6b5o324bob5o2bo$322b2o2bo6bo2b2o115b2o207bo2b6o$322b2ob3o4b3ob2o117bobo207b2o$324bobo6bobo117b2o2b2o202b2obobo$452b3obo199b2obo2bo$452bo205bobobo$323bo12bo116b2o201bo2bobo$323b4o6b4o118bo198bobo2bob2o$322bo4bo4bo4bo116bobo197b3o4b2o$321b4o10b4o116b2o199bobob3o$322b3o10b3o116bo199bob3o$455bo197bob5o$322bobo10bobo115b2o198b2ob4o$320bo2b2o10b2o2bo311bobobobo$322b4o8b4o312b2o$324bo10bo314b3o$323bo12bo314b2o$321bo2bo10bo2bo306b4obo$323b2o10b2o306bo2b2ob2o$325b2o6b2o307bo2b4o$325bo8bo308bobo2bo$322b3o10b3o303b2o2b2o2bo$325bo8bo308b4obo$328b4o310bo$327b2o2b2o$326b2o4b2o$325b3ob2ob3o$323bobobob2obobobo$322b2o2bo6bo2b2o$321b2o3b2o4b2o3b2o$320bobo4b6o4bobo$320b2o2bobob4obobo2b2o$327b2o2b2o2$326b3o2b3o$324bo2b2o2b2o2bo$324b2ob6ob2o$327b6o$324bo10bo$325bobo4bobo$327bob2obo$325bo8bo$328b4o$328b4o$328bo2bo$327bo4bo$327bob2obo$326bo2b2o2bo$325bo2bo2bo2bo$325b2o6b2o$324bo10bo$326bo6bo$327bo4bo$323bobo8bobo$322bob2o8b2obo$322bobobo6bobobo$322bobo10bobo$324bo10bo$323bo12bo$322b3o10b3o$325b2o6b2o2$324b2o3b2o3b2o$324bo2b6o2bo$323bo2bob4obo2bo$323b2o2bo4bo2b2o$324b4ob2ob4o$324b2o3b2o3b2o$324bob8obo$323b3ob6ob3o$323bo12bo$324bobo6bobo$320b2o2bo10bo2b2o$323bobobo4bobobo$321bobo2bo6bo2bobo$324b2o8b2o2$323bo3bo4bo3bo$323bo12bo$325bo8bo$321bob2o10b2obo$321b3obo8bob3o$323bo12bo$323bo12bo$321b2o14b2o$323bo12bo$321b3o12b3o$321bo16bo$324bo10bo$323bo12bo$324bobo2b2o2bobo$323b2o2b6o2b2o$324bo2bo4bo2bo$326bobo2bobo$323b2obobo2bobob2o$323bo3b2o2b2o3bo$323bo2b3o2b3o2bo$326bo6bo$325bob2o2b2obo$327bob2obo$327b2o2b2o2$327bo4bo3$329b2o$329b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 WIDTH 3500 HEIGHT 1085 ZOOM 4 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer )
the flocks
thank you to for Lapintra/TrollDu13EtDu14/Lapin Acharné for finding a surprisingly small 2c/8 in apgsearch,[4] which works in all three rules and has been proven to be minimal-width by ascendantDreamweaver
the dreamweaver also increased c/5 to logical width 11 (except in B36/S12, where my laptop's 10 was sufficient in odd and even, and they have not done asymmetrical yet), 4c/9 to 11 and 2c/8 even (in which none were known previously) to 18, 16 (found), and 18, respectively
all partials for c/2 seem to be single-row irrespective of period, I conjecture there are no c/2's in this rule
Velocity
Asymmetric
Odd-symmetric
Even-symmetric
Gutter-preserving
(1,0)c/3
1120 (JLS)[5] 24 (ikpx2)[6]
2139 (JLS)[5] 47 (ikpx2)[6]
2240 (JLS)[5] 48 (ikpx2)[6]
23 < w ≤ 71 [7] 41 (JLS)[5] 49 (ikpx2)[6]
38 (LLSSS)[8]
(1,0)c/4
11
17
22
17
13 (JLS)[6]
(1,0)c/5
11 < w ≤ 18
21
24 [n 15]
23
(2,0)c/5
12
25 [n 15]
24 < w ≤ 34
25
(1,1)c/5
17 (JLS)[6]
(1,0)c/6
10
17 < w ≤ 21
18
19
(2,0)c/6
10
19
20
21
(1,0)c/7
8
15[n 16]
16
17
(2,0)c/7
10
19
20
21
(3,0)c/7
12
23
24
25
(1,0)c/8
7
13
14
15
(2,0)c/8
10 [n 15]
17 [n 15]
18
17
(3,0)c/8
10
19
20
21
(1,0)c/9
7
11
12
13
(2,0)c/9
8
13
14
15
(3,0)c/9
9
17
18
19
(4,0)c/9
11
21
22
23
Velocity
Asymmetric
Odd-symmetric
Even-symmetric
(1,0)c/3
11
21
22
14 (JLS)[9]
29 (JLS)
30 (JLS)
(1,0)c/4
10
15
16
(1,0)c/5
10[n 17] < w ≤ 14
19
20
(2,0)c/5
11 [n 15]
17
20
(1,0)c/6
10[n 18]
17[n 19]
18
(2,0)c/6
10 < w ≤ 15
19
20
(1,0)c/7
9
15
16
(2,0)c/7
10
19
20[n 20]
(3,0)c/7
12
23
24
(1,0)c/8
7
11
12
(2,0)c/8
10 [n 15]
13
16
(3,0)c/8
10
19
20
(4,0)c/10
8 [n 21]
17 [n 21]
14
(1,0)c/9
6
11
12
(2,0)c/9
7
13
14
(4,0)c/9
11
21
22
(3,0)c/15
4
9
8
Velocity
Asymmetric
Odd-symmetric
Even-symmetric
Gutter-preserving
(1,0)c/3
1120 (JLS)
2127 (JLS)
2228 (JLS)
23 < w ≤ 71 [7] 27 (JLS)
38 (LLSSS)[8]
(1,0)c/4
10 < w ≤ 13
17
22
17
(1,0)c/5
11
21
24 [n 15]
23
(2,0)c/5
12
25 [n 15]
24 < w ≤ 34
25
(1,0)c/6
10
17 < w ≤ 21
18
19
(2,0)c/6
10
19
20
21
(1,0)c/7
8
15[n 16]
16
17
(2,0)c/7
10
19
20
21
(3,0)c/7
12
23
24
25
(1,0)c/8
7
13
14
15
(2,0)c/8
10 [n 15]
17 [n 15]
18
17
(3,0)c/8
10
19
20
21
(4,0)c/9
11
21
22
23
thank you to the dreamweaver once more for improving the 2c/5 and 3c/7 bounds (and thereby finding the surprisingly small 2c/5 asymmetrical)
Velocity
Asymmetric
Odd-symmetric
Even-symmetric
(1,0)c/2
12
23
24
(1,0)c/3
10
21
22
(1,0)c/4
10
19
20
(2,0)c/4
11
21
22
(1,0)c/5
10[n 22]
17
18
(2,0)c/5
11
21
22
(1,0)c/6
9
15
16
(2,0)c/6
10 < w ≤ 15
21
20
(1,0)c/7
7
13
14
(2,0)c/7
9
15
16
(3,0)c/7
11
21
22
Velocity
Asymmetric
Odd-symmetric
Even-symmetric
Gutter-preserving
(1,0)c/2
11
11
24
11
15
24
(1,0)c/3
11
11
20
11
11
17
(1,0)c/4
9
9
16
13
(2,0)c/4
5
11
12
11
14
13
(1,0)c/5
8
17
18
17
20
19
(2,0)c/5
11
19
20 < w ≤ 26
21
(1,0)c/6
10
17
18
19
(2,0)c/6
10
17
20
19
(3,0)c/6
10
15
20
19
(1,0)c/7
8
15
16
17
(2,0)c/7
9
17
18
19
(3,0)c/7
10
19
20
21
(1,0)c/8
7
13
14
15
(2,0)c/8
8
15
16
17
(3,0)c/8
10
19
20
21
(4,0)c/8
7
11
14
13
(3,0)c/9
8 < w ≤ 17
13
16
15
(5,0)c/10
8
15 < w ≤ 21
16
15
(6,0)c/12
7
11
14
13
(7,0)c/14
6
11 < w ≤ 19
12
13
(11,0)c/22
5
7 < w ≤ 17
8
9
(12,0)c/24
4
7 < w ≤ 21
8 < w ≤ 24
9
(10,0)c/26
4 < w ≤ 7
7
8
9
x = 495, y = 70, rule = B34kz5e7c8/S23-a4ityz5k
76bo9b3o6b3o5b3o3b3o5b3o5b3o5b3o11b3o5b3o4b3o3b3o4b3o4b3o4b3o3b3o7b3o14b3o6b3o3b3o8b3ob3o13b3o2b3o7b3o7b3o9b3o2b3o13b3ob3o11b3o7b3o8b3o2b3o9b3ob3o10b3o6b3o11b3o4b3o7b3o5b3o7b3o10b3o8b3o3b3o$6b3o5b3ob3o5b3o5b3o5b3o14b3o5bo7b3o8bobo6bobo4bo2bo3bo2bo3bo2bo5bo2bo4bob4o5b4obo5bo2bo3bo2bobo2bo4bo2bo2bo2bo3bo2bo3bo2bo6bob2o12b2obo6bob2ob2obo7b2obobob2o11bo8bo5bo2b3o3b3o2bo7bo8bo11b2obobob2o11bo9bo11b4o13bobo13bo8bo13bo4bo2b2o5b2o2bo3bo2b2o5bo2b2o8b2o2bo4bo3bo5bo3bo$6bo2bo3bo2bobo2bo3bo2bo5bo2bo3bo2bo14bo2bo3b3o4bo2bo2bo6bob2o4b2obo6b2o3b2o4bo3bob3obo3bo2b2o2bo2bo3bo2bo2b2o4bob2o3b2o5b2o4bo8bo5b2o3b2o8bo2b2ob2o4b2ob2o2bo5b2o2bobo2b2o4b2obo5bob2o8b2o8b2o5bo3b2ob2o3bo7b2o8b2o8b2obo5bob2o27bo2bob2obo2bo5bo2bo3bo2bo21bo7bo7bo2bo7bo2bo3bo2bo6bo2bo10bo2bo2b3o13b3o$2b3obo3bobo3bobo3bobo3bob3obo3bobo3bob3o6b3obo3bob2obo4b3ob3o5bobob2o2b2obobo6bo3bo5bo2b2obobob2o2bo2bobobo3bobo3bobobo3bo7bo7bo6bo4bo8bo3bo9b3o4b2o2b2o4b3o5bobo5bobo2b2obobo5bobob2o3b4obob4obob4o7bobo9b4obob4obob4o3b2obobo5bobob2o4b2o3b2o3b2o3b2o4b3o6b3o5b3o5b3o6b2o3b2o5bo2bo7bo2bo4b2o3bo3bo3b2o3b2o3bo4b2o3bo6bo3b2o4bo13bo$bo2bob2o2bobo2b2ob2o2bobo2b2obobob2o2bobo2b2obo2bo4bo2bob2o2bob3o5bobobobo6bo3bo2bo3bo4bo9bo4b2o2bobo2b2o6bobobobobobobobo17bo21bo9bo7bob2o3bo2bo3b2obo24bo5bo8bo3b2o2b2o2b2o3bo3b2o2bobo2b2o5bo3b2o2b2o2b2o3bo8bo5bo9bo2bo2bo3bo2bo2bo2b2o12b2ob2o11b2o4bo2bo2bo8bo7bo9b2o7b2o7b2o8b2o10b2o6bo2bo7bo2bo$o3bo2b2o5b2o3b2o5b2o2bobo2b2o5b2o2bo3bo2bo3bo2b2o4bobo17bobobo2bobobo6bo5bo5bobo2bobo2bobo5bob2o2bobo2b2obo15b5o21bo5bo10b4o2bo2bo2b4o22b2o2b2ob2o2b2o5bo3bo8bo3bo6b2ob2o8bo3bo8bo3bo5b2o2b2ob2o2b2o7bo3bo5bo3bo5bo10bo5bo9bo5b2o5b2o4bobo9bobo5b3o7b3o5b3o7b3o10b3o5bo4b2ob2o4bo$o2b2o2bobo3bobo3bobo3bobo2bobo2bobo3bobo2b2o2bo2bo2b2o2bobo24b2ob4ob2o7bo5bo7bob2ob2obo6b2ob2ob2ob2ob2ob2o40bo5bo10bo14bo20bob3o2bobo2b3obo3bo2b2o8b2o2bo5b2o3b2o7bo2b2o8b2o2bo3bob3o2bobo2b3obo58bo7bo23bo3b3ob3o3bo3bo3b3o3bo3b3o4b3o3bo4bo5bobo5bo$2b2o23bob2ob2obo11b2o6b2o29b5o2b5o5b2o5b2o5bobobobobobo6bob2ob2ob2ob2obo15bo3bo20b2o5b2o7b2o3b4o2b4o3b2o19bo5bobo5bo25bo2bo3bo2bo27bo5bobo5bo4b2obobob2ob2obobob2o34bo2b2obob2o2bo2bo2bo7bo2bo4bo13bo3bo9bo16bo4b2o2bobobobo2b2o$bobo22bobobobobobo10bobo4bobo29b2o8b2o5b2o5b2o5bob2o3b2obo7b3o7b3o16bo3bo20b2o5b2o7b2obo5b2o5bob2o21b2o7b2o8bo12bo5bo2bo3bo2bo7bo12bo8b2o7b2o9bobo7bobo40b2obob2o5b2obo7bob2o53b3ob2obobob2ob3o$26bob2o3b2obo9b2o8b2o45bo7bo7bo5bo9b2o9b2o16b2ob2o20bo7bo7b2o2b2obo4bob2o2b2o20b2o9b2o25bo3bo3bo3bo27b2o9b2o7b2ob2o5b2ob2o37bobo2bo2bobo5b2o7b2o19bo5bo13b2o4b2o9b2o4bobo4b2o$28bo5bo10bo2bo6bo2bo28b3o4b3o5bo2b2ob2o2bo6bo5bo10bo9bo19bo21bo2b2ob2o2bo10b3o6b3o62b3o7b3o7b2o8b2o30bo9bo40bo7bo6bo9bo19b2o3b2o31bo2bobobobo2bo$28bo5bo9b2o12b2o28bo6bo6b3obobob3o5bobo3bobo7b3o9b3o14b7o18b3obobob3o47bo9bo29bo5bo9bobo8bobo8bo9bo60b2o7b2o5b2o7b2o20b2ob2o15bo4bo11b4obobob4o$27bobo3bobo6b2obob2o6b2obob2o41b2obobob2o8bo3bo13b3ob3o17b2o5b2o18b2obobob2o10b4o6b4o24bo9bo26bo2bo5bo2bo6bob2o6b2obo8bo9bo7b2o3b2o3b2o3b2o37b4ob4o6bo9bo21bobo14bobo4bobo9b2obobobobob2o$27bobo3bobo7bobo12bobo41bo3bobo3bo7b2ob2o13bobobobo17b2ob3ob2o17bo3bobo3bo7b3o12b3o20bo13bo23b2o3bo3bo3b2o3bo3bobo4bobo3bo4bo13bo6bo3bo5bo3bo38bobo3bobo7b4ob4o21bo3bo12bo3bo2bo3bo9bo3bobo3bo$41b3obobo8bobob3o39bo2bo3bo2bo8bobo14bobobobo18b2obob2o18bo2bo3bo2bo6b2o16b2o20bo11bo25b4obobob4o4bo3b3o4b3o3bo5bo11bo5b4ob4ob4ob4o40bo11bo2bobo2bo18b2o2bobo2b2o8b2o2b2o2b2o2b2o7bobob2ob2obobo$40bo8bo4bo8bo39b3o3b3o8bo3bo15bobo21b5o20b3o3b3o7b2o16b2o21bo9bo26bo4bobo4bo6b2obobo2bobob2o8bo9bo59b2o9b2o7b2ob2o19bo11bo7b3o2bo2bo2b3o5bobo2b2o3b2o2bobo$44b4ob2o2b2ob4o44b2o3b2o7b2o5b2o63b2o3b2o8b2o16b2o58bo11bo11bo2bo34bo9bo37b2o3bobobo3b2o6bo3bo18bo6bo6bo25bo5bo3bo5bo$42bo3b3obo2bob3o3bo44bobo9bo7bo38b3o24bobo9bo20bo20b2o7b2o26bob2o5b2obo11bo2bo12b3o7b3o57b2o11b2o4b2obobob2o17bo11bo8bo10bo$49b2o2b2o48bob2ob2obo6bo7bo62bob2ob2obo9bo14bo60b4ob3ob4o9bo6bo11b2o7b2o8bo52b2o5b2o7b2obobob2o18b3o5b3o9bo10bo6b2ob2o7b2ob2o$47bob2o2b2obo44b2o2b2ob2o2b2o4b2obobob2o60b2o2b2ob2o2b2o3bo22bo18bo11bo27bo7bo12bo4bo11bo11bo8bo10bo40b2o5b2o9b2ob2o20bo2bo3bo2bo9bo10bo$101bo4bobo4bo8bo64bo4bobo4bo3b2ob2o14b2ob2o19b3o5b3o49b2o2b2o9b2o13b2o5bobo50bo7bo7bo7bo19b3o3b3o$121b3o79bobobo14bobobo21b2o3b2o50bob4obo8b2ob2ob2ob2ob2ob2o5bob2o48bo9bo7bo5bo20b3o3b3o$103bo2bobo2bo10bo66bo2bobo2bo5bo22bo22bo3bo35bo15bo6bo9b4o2bobo2b4o10bo45b2o11b2o4b3o3b3o$104bobobobo9bobobo65bobobobo7bobo16bobo19b3o2bobo2b3o29b2ob2o14bob2obo12bo3bobo3bo9b5o46b3o5b3o7b2o3b2o$104b3ob3o8b7o64b3ob3o9b2o14b2o20bob3o5b3obo28b2ob2o13b3o2b3o12bo7bo12bobo44b2o11b2o$103b2obobob2o7b2obob2o63b2obobob2o5bob2o16b2obo17bobob3ob3obobo27bobobobo12b2o4b2o11bo9bo60bo2bo3bo2bo5bo2bo3bo2bo$106bobo10bobobobo63bob2ob2obo4b2obo18bob2o15b2o4bobobo4b2o26bo5bo30b6ob6o57bo13bo7bobo$105b2ob2o8bo2bobo2bo63bobobobo6bobo18bobo16bo15bo26bo5bo33bobobobo61b2ob2o3b2ob2o5b4ob4o$105bo3bo80bobobobo6b3obo14bob3o17bo13bo28b2ob2o31bob2obobob2obo58b3obo3bob3o8bobo$103b3o3b3o77bo2bobo2bo6bobo16bobo58b2o2bobo2b2o29b2o2bobo2b2o61b2o5b2o5bo2bobobobo2bo$103bo2bobo2bo79b2ob2o8b2o18b2o58b5ob5o31bobobobo64bo5bo5bo3bobobobo3bo$103bo7bo80bobo9bo2bo14bo2bo56b2o4bobo4b2o25b3obobobobob3o58b11o3bobo2bo3bo2bobo$191b2ob2o11bo14bo58bo3b4ob4o3bo97bob7obo6bo7bo$105bo3bo95b3o14b3o56b2ob2o2bobo2b2ob2o23bo6bobo6bo62bo8bo2bo7bo2bo$285b4ob4o27bo2bobobobobobo2bo74bo7bo$207bo14bo62bo7bo27bo3b2obobob2o3bo$206b3o12b3o64b3o35bobobobo77b3o7b3o$205b5o10b5o62b5o36bobo82bo5bo$206b3o12b3o100bo3bobo3bo76bo9bo$206bobo12bobo63bo3bo31b2ob3ob3ob2o$323b2o9b2o75b2ob2ob2ob2o$207bo14bo62b3o3b3o29b2o9b2o74bo4bobo4bo$207b3o10b3o62bo3bo3bo29b2o9b2o73bo2b2obobob2o2bo$209bobo6bobo64bo2b3o2bo29b5o3b5o$207b5o6b5o62b2o5b2o29bo2b3ob3o2bo74bo11bo$207bo14bo64b5o29b2o2b2obobob2o2b2o$208b5o4b5o66bobo30b3ob2o5b2ob3o70b2o13b2o$208b2o2bo4bo2b2o99b2o13b2o71b2o11b2o$212b2o2b2o195b3ob3o$213bo2bo195b2obobob2o$412b2obobob2o$214b2o197b3ob3o$408b3ob2obobob2ob3o$411bob3ob3obo$410bobob2ob2obobo$409b6o3b6o$408bo5bo3bo5bo$408bobo11bobo$409b2o11b2o$410bo2b2o3b2o2bo$409bob2o2bobo2b2obo$409bobo3bobo3bobo$410b4obobob4o$411bobobobobobo$412b2obobob2o$413bobobobo$412b2obobob2o$411b2ob2ob2ob2o$412b2obobob2o$413b3ob3o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 WIDTH 2030 HEIGHT 350 ZOOM 4 ]]
Please enable Javascript to view this LifeViewer.
(click above to open LifeViewer )
self-complementaries
c/2 up to width 14 reports no partial results are found in any symmetry
Velocity
Asymmetric
Odd-symmetric
Even-symmetric
(1,0)c/3
13
19 [n 23]
20
15 (JLS)[10]
(1,0)c/4
10
21 [n 24]
20
(1,0)c/5
10
15
14
(2,0)c/5
12
23
24
(1,0)c/6
10
19
20[n 25]
(2,0)c/6
10
19
20
(1,0)c/7
9
15
16
(2,0)c/7
10
19
20
(3,0)c/7
11
21
22
(1,0)c/8
7
13
14
(2,0)c/8
8
15
16
(3,0)c/8
11
19
20
B3578/S24678 (Geology )
Velocity
Asymmetric
Odd-symmetric
Even-symmetric
Gutter
(1,0)c/2
7
11
10
11
(1,0)c/3
7
11
10
13
(1,0)c/4
7
11
12
13
(2,0)c/4
7
11
10
11
(1,0)c/5
8
11
12
13 [n 21]
(2,0)c/5
10
13
16
19
(1,0)c/6
7
11
10
15
15
(2,0)c/6
7
11
10
13
(3,0)c/6
7
11
10
13
(1,0)c/7
6
11
12
13
(2,0)c/7
7
13
14 [11]
15
(3,0)c/7
9
17 [12]
16
17
(1,0)c/8
5
9
10
11
(2,0)c/8
6
9
10
13
(3,0)c/8
8
13
14
15
(4,0)c/8
7
11
10
11
(2,0)c/10
5
9
10
11
(5,0)c/10
7
11
10
13
notes
↑ non-monotonic!
↑ 9*654 partial4b3o$3bob3o$4bo$3bo3b2o$4b2o$6b3o$3b2obo$2bob2obo$2bob2o$5obo$3o3bo$2bob3o$3bob2o$b2ob2o$o2b3o$3b3o$2bobo$bob3o$4b2obo$5b3o$5bobo$o2b4o$b2o2bo$bobo2$2b3o$3bo$2bob3o$5b2o$7bo$5bobo3$3b 2o$2b4o$5bo$2b2o2bo$2bobo$3b2o$4b2o$3b2obo$3bo3bo$2bobo2bo$2b3obo$4bobo$3bob2o$4bo2$6bobo$5b3o$8bo$2b3ob3o$3b3o$2bo3bo$2b2obo$5bobo$2o2bo2$2b6o$4bob2o$bo$bo$2b3o$5b2o$3b4o$3b2obo$4b3o $6bo$4b3o$5bo$2bo$b2o$2b2o$o2b2o2$2obo$2bo2bo$bob3obo$4bobo$5b2o$5bo$6bo$4bo$4bo$2b2o$2b2obo$bo2b2o$b3o$5b3o$2ob2obobo$3o2bobo$2b6o$2b2o2b3o$2bo2bobo$o2b3o2bo$o2b3obo$b5o2bo$obo3bo$4b o2bo$3b3o$4b3o$2b3o$bob2o$2bob2o$2bob2o$2bobobo$b2obo$b2o2b2o$b3o$2bo$2bobo$bo3bo$3bo$3b3o$6bo$5b3o$4b2obo$o2bob2o$b2o$2bobo2$bo$2bo$2b3o$2bobo$3b3o$4b2o$5bo$4bo$5b2o$3b4o$2bob4o$3bo2 b2o$3bobo$3bo$3bob2o$5bo$3b2o$3bobo$5b2o2$6bo2$4bob2o$3bo$4b2o$3bo2bo$2bo2b2o$3b3o$4b2o2$4bo2bo$5b2o$3bo3bo$2b2o$2bo$3bobo$2b4o$2bo2bo$b3obo$bo2bo$3bo2b2o$3bo2bo$4b4o$4bo$5bo$bo2bo$2b 3o$bo2b2o$bo2bobo$2b4o$b3o$6bo$6bo$5bo$5b2o$5bobo$6b3o$7bo$3b4o$b2o$b2o$2bob2o$2bo$o$2o2$2b2o$2bo$3b5o$6bo$6bo$2bo3bo$b2obo$bobobo$2b2obo2$b2obo$4bo$3bo$bo2b2o$3b2o2bo$3b2obo$3bo2$2b2 o$3bo$3bo$b2o$b2o$2bobo2$5b3o$7bo$4b2o$4bo$4bobo2$2b2o3b2o$2bob4o$4bo$4b2o$bo$3o$o2b2o$3bo$bo2$2b3o$3b2o$2bo$2bobo$4bo2$3b2o$3b3o$3bob2o$3bo$4b2o$3b3o$3b3o$2bob2o$5b2o$b3o$b4o$7bo$5bo b2o$b2o3b3o$obo$obo2bo2bo$7bo$7bo2$5b2o2$6bo$4bo$2b3o$2bobo$2bo4bo$3bo2b2o$3bo$3bo$6bo$5bo$2b3o$2bobob2o$bob2obo$2obob2o$2o3bo$5bo$2b4o$2bob3o$2bo$4bo$2bo$4bobo$bobobo$4b3o$4bo2bo$3b5 o$4bobo$4b2o$5b2o$4b2o$4bo$6bo$3b2o2bo$4b2obo$5o$3bo2bo$4obo$2b4o$bo$3bobo$4b2o$3b3o$3bo3bo$6b2o$6bo$4bo$2b3o$b3o$3bobo$5bo$7bo$5b2o$3b3obo$5b2o$2bobo$2b2o2bo$4bo2$3bobo$5b2o$4b2o$4b3 o$4b2o$4bo2$2bobo$3b2o$b2o$2o2bob2o$o2b2o2bo$bo3bo$6bo$7b2o2$5b3o2$3b2o$2bo$2b3o$3b2obo$3bobo3$3b2o$3b2o2bo$3bo2b3o$2bob3obo$4bo$3b2o$b3o$2b3o3$2b3o$2b3o$2bo3bo$2bobobo$3b2o$bob2o$obo $4bobo$2bo$3b4o$3b2obo2$4b2o$3bo2bo$4bob2o$4bobo$3b2ob2o$4bob2o$4b2obo$4bo$4bobo$3b3obo$4b3o$3bo$5b2o$4b3o$4bo$bo2b2o$2o4bo$b4o$obo2bo$b2o$2bo3b2o$2b5o$2b2o3bo$5b2o$5bo$7bo$5b2o$5bo$5 bobo$4bob2o$3b3obo$2b3obo$2bob2obo$bob2ob2o$2b4obo$6bo$3bo$4bo$4b2obo$5bobo2$4bobo$5b2o2$4b2o$4bo$3b2o$4bo2$4b2o$3b3obo$3bo2b2o$3bobo$3bobobo$4bo2bo$4bo2bo$5b2o$3b2o2b2o$4b2o2bo$4bob2 o$5b3o$5b3o$5b2o$6bobo$3b2ob2o2$6b2o$5b4o$6b2o$5b3o$3b2obo$b3obo$b4o$2b2o2bo$2bo$bo4bo$4b3o3$3b3o2$3bo$2b2o$b2obo$bo2bobo$2b3obo2$2bob3o$4b2o$5b2o3$2bo$2ob2o$bobo$o3bo$bobo$3bo$2bobo$ 2b4o$3b5o$3bo3b2o$5bobo$6bobo$6bo$3b2o$3bobo$2b3obo$4b2obo$b4ob2o2$4bo$2bob3o$2b6o$2b2obobo$3b3ob2o$3b2o2bo$2bo4bo$2b2o$bo2b2o$2b2obo$bo2$2bo$2b4o$bo3bo$4b2o$4b3o$5b2o$5b2o$6bo$2bob2o $3b2obo$3bob2o$3b2o$3b2o$2b2o$3bo$2bobo$bo$2b2o$3bo$bo$2bo$2b4o$2bo2bo$b2ob2o$bo2bo$3o2b2o$bobo$bo2b3o$b4o$ob3o$3o2b2o$b2ob2o$2b2o2bo$2b2o$2ob3o$2bob2o$2bob2o$3b4o$4bo$2b3o2$2b4o$3bo$ 3bob3o$3b2o3bo$5bobo$6bo$3b2o2bo$2bobo$3bo2$4b2o$3b2o$3b2o$3bo$bo2bo$bo2bo$3o$bo$ob4o$4b2o$b3obo$3b2o$2bob2o$3b3o$2bo3bo$2b4o$4b3o$bo$o2bo$ob2o$4b2o$5bo$2b2o$5b3o$4bo2bo$3b4o$bo2bo$b3 o$2o2b2o$2o2bo$3bo2bo$b2obo$o2bo$5b2o$6b2o$2b4o$3bobo$4bo$3bo$5bo$5b2o$5b2o$5bob2o$7b2o$6bo$6bo2$3bob2o$3bo3bo$5o2b2o$bo2b2o$o2bobo$2b3o$3bo3bo$3bobo$3b2o$3b2obo2$b4obo$b2obo$3bo$3bo$ 4bobo$4b2ob2o2$3b3obo$3bob3o$5b2o$4b3o$4b3o$3b2ob2o$6bo$4b3o$5bo$3b3o$3b3obo$4b3obo$4bobo$2bob3o$3bobo$3b4o$2bob2o$2b6o$2b2o2bo$7b2o$3bo3bo$2bob2obo$3bob2obo$3b2ob3o$5b2o$4b2o$2b2o$3b ob2o$3o2b2o$b4ob2o$2obob2o$2b2o$2bo2bo$5o$bob5o$bob5o$bobobo$ob4o$4bobo$b5o$b2o2bo$3bobobo$5bobo$4bob2o$2bobobo$2b2o$2b2o$bo4b2o$4b2o2bo$3b5o$2b2obobo$2bobo2b2o$o5b3o$3b2obo$2ob2o2bo!
↑ found by the dreamweaver, who specified that it is not guaranteedly minimal-length for a width-11 since the search split and only one branch was necessary to search to find it, but shows that 11 is the minimum shares frontend with the longest width-10 (10*65 ) partial5bobo$5b3o$4bob2o$2b4o2bo$2b4o$6bobo$9bo$5bobo$4b4o$3bobobo$3b2o$5bobo$5b4o$4bobo$4b2obobo$4b2o$4b5o$3b2o$4bo3bo$2b2ob4o$2bobob2o$3bobobo$3b2o$2b2 obo$b2o2b2o$7bo$3bo$2bo3b3o$2bob2obobo$2bobobob2o$4b2o2bo$6b4o$4b2obo$4b3o$5b2o2$3b2obo$2bo3b3o$3b2obobo$3b2obobo$3b2obobo$o2b5o$7b2o$2b3o2bo$2bo4 bo$3bo3bo$3b2o2b2o$2bo2b3obo$b2obo$b2obo$o4bo$b2ob2o$3b5o$b4obo$bo2bo2bo$9o$bob4obo$2bo2bo2b2o$2bo2bobo$5bo3bo$2bobo$bobo$b3o2b4o$2obobob2o$3b4obo!
↑ this spaceship (with a forked tail) is in fact shorter, but higher-population
↑ 10*30 partial5b2o$4b3o$7b2o$4b3obo$4bo3bo$5b3o$7bo$6bo$3bo3b2o$3b2o$3b6o$4bobob2o$5b5o$4bo$5bo$3b5o$2bobo3bo$5b2 o2bo$b2o2bo$2b2o2bo$obobo$3obobo$b2obob2o$o2b6o$b2ob2o2b2o$2bo4b2o$bob3ob2o$2b2o3bobo$3b3o3bo$ob2o!
↑ 19*86 partialb4o9b4o$2b2o11b2o$2bobo9bobo$b5o7b5o$4bo9bo$b2o13b2o$bobo11bobo$2bob2o7b2obo$3b obo2b3o2bobo$3b3o7b3o$3b2o9b2o$3bob2o5b2obo$8b3o$9bo$7bobobo$5b2o2bo2b2o$5bo2b3 o2bo$4bo2bo3bo2bo$4bob2o3b2obo$3bob2ob3ob2obo$6b7o$8bobo$3bo2bob3obo2bo$3b4obob ob4o$4b3o5b3o$4b2ob2ob2ob2o$6b2o3b2o$6b2o3b2o$6b3ob3o$5bobo3bobo$4bo2b5o2bo$4b2 o7b2o$3b3o7b3o$4b5ob5o$6bob3obo$4bo2bobobo2bo$4b2obobobob2o$3bobo2b3o2bobo$4b4o bob4o$4b2obo3bob2o$3b2o2bo3bo2b2o$3bob3o3b3obo$4b2o7b2o$4b2ob2ob2ob2o$6b2o3b2o$ 4b2o2bobo2b2o$4bo9bo$4bobo5bobo$5b2o5b2o$3b3o2bobo2b3o$2bo2b2o5b2o2bo$3bo3bo3bo 3bo$2o3bo7bo3b2o$bo3b2o5b2o3bo$2ob3o7b3ob2o$bob3o3bo3b3obo$b3obobobobobob3o$2bo 4bobobo4bo$2b4o3bo3b4o$2b3o9b3o$4b5ob5o$2b2o3bo3bo3b2o$2bo2b4ob4o2bo$bobob2obob ob2obobo$3bobob5obobo$bobo2bobobobo2bobo$o2bobo2bobo2bobo2bo$b2o2bo3bo3bo2b2o$2 o4bobobobo4b2o$ob2o2b2obob2o2b2obo$6b7o$4b3o5b3o$4b2o7b2o$4b5ob5o$2bo3bobobobo3 bo$4bo2b5o2bo$b4obo5bob4o$4bo2bobobo2bo$bo3bobo3bobo3bo$b2obobob3obobob2o$b2obo b3ob3obob2o$b2o2b3o3b3o2b2o$2bob2o3bo3b2obo$4b2o2b3o2b2o$b3o11b3o$3bo3bo3bo3bo!
↑ 11*61 partial3b2ob2o$2b3ob3o$2b3ob3o$2b2o3b2o$2bobobobo$3bobobo$3b2ob2o$3b5o$3bo3bo$b3obob3o$b3o3b3o$2bo5bo$2b2o3b2o$bobo3bobo2$4b3o$4bobo$4b3o$4bobo$4bobo$4b3o $5bo$5bo$2bob3obo$2b2o3b2o$2b7o$5bo$4b3o$3bobobo$4b3o$2b2obob2o$2bobobobo$4bobo$2bob3obo$3b5o$2bob3obo$b2o5b2o$4bobo$2b2o3b2o$4b3o$2b2obob2o$bobo3b obo$2bobobobo$b3o3b3o$3b2ob2o$4bobo$5bo2$b3obob3o$b3o3b3o$4bobo$3b2ob2o$bo7bo$o3bobo3bo$b4ob4o$4b3o$2bobobobo$5bo$bo2b3o2bo$2obobobob2o$b2obobob2o!
↑ 12*91 partial5b2o$5b2o$4bo2bo$5b2o$4b4o$3bo4bo$4bo2bo$3b6o2$2b2o4b2o$2bobo2bobo$b2ob4ob2o$b2o6b2o$b2o6b2o$3b6o$3b6o2$5b2o$3bo4bo$3bo4bo$2bobo2 bobo$2bobo2bobo$5b2o$3b2o2b2o$2o8b2o$b3o4b3o$b2o6b2o$2o3b2o3b2o$2b8o$bo8bo2$4b4o$5b2o$4b4o2$4bo2bo$4b4o$3bob2obo$2bo2b2o2bo$b2o2b 2o2b2o$5b2o$3b2o2b2o$2bobo2bobo2$2b2o4b2o$3b6o$b2ob4ob2o$2bobo2bobo$bob2o2b2obo$4b4o3$2bob4obo$bob6obo$b2ob4ob2o$b3ob2ob3o$3b2o2b 2o$b4o2b4o$3b2o2b2o$4bo2bo$4bo2bo$b4o2b4o$bo8bo2$o4b2o4bo$2b8o$3b6o$2o2b4o2b2o$o10bo$b3o4b3o$b3o4b3o$5b2o$2b8o$2b2o4b2o$3b2o2b2o$ 5o2b5o$ob2o4b2obo$3b6o$2bobo2bobo$3b2o2b2o$4bo2bo$2b2o4b2o$3b2o2b2o$4bo2bo2$3bob2obo$2b2o4b2o$4bo2bo$2bobo2bobo$4ob2ob4o$o4b2o4bo!
↑ 19*33 partial7b7o$5b2o2b3o2b2o$5bobobobobobo$4b2o2b5o2b2o$5bob7obo$5b2o7b2o$3bo2bo7bo2bo$6bobobobobo$4bo 3b2ob2o3bo$4b3ob2ob2ob3o$4b3ob5ob3o$3bo3b7o3bo$4bob2o5b2obo$2b3o11b3o$3b3obo5bob3o$3bo3b2o3 b2o3bo$b2o4b2o3b2o4b2o$b2obo11bob2o$4bob2o5b2obo$2bob2o2b5o2b2obo$3bobo3bobo3bobo$bo5b2o3b2 o5bo$2bob2ob2obob2ob2obo$bobo2b3o3b3o2bobo$6bobobobobo$3bo13bo$b3ob2o3bo3b2ob3o$bo2bo3b2ob2 o3bo2bo$5bob3ob3obo$2bo3bobo3bobo3bo$b3obob2o3b2obob3o$bo4bo3bo3bo4bo$2obo3b2o3b2o3bob2o$b2 o4bobobobo4b2o$5bobo2bo2bobo$3bob2obobobob2obo$b3obo2bobobo2bob3o$o2b3ob7ob3o2bo$6bo3bo3bo!
↑ 20*39 partial6bo2b4o2bo$5b2ob6ob2o$4b2obo6bob2o$4b5ob2ob5o$4bo2b2ob2ob2o2bo$7b2o4b2o$5b2ob2o2b2ob2o$5b2ob2o2b2ob2o$4b2ob2ob2ob2ob2o$3bob2obob2obob2obo$3b3obo6bo b3o$4b5o4b5o$6b4o2b4o$3b5obo2bob5o$2bobo2b2o4b2o2bobo$3bo2bo8bo2bo$2bobo12bobo$2b5obo4bob5o$3b2obo8bob2o$b2obobo8bobob2o$2b2ob3o6b3ob2o$6b3o4b3o$6b 2o6b2o$4b5o4b5o$2bo2bob2o4b2obo2bo$bobobo10bobobo$2b2ob2ob2o2b2ob2ob2o$4bob3o4b3obo$2b2o2b3o4b3o2b2o$4bo2bo6bo2bo$6bo8bo$7b2o4b2o$4b2o2b2o2b2o2b2o$ 2b7ob2ob7o$3bo2bo2b4o2bo2bo$5b3o6b3o$4bobobob2obobobo$5b5o2b5o$4bo3bo4bo3bo$2b6ob4ob6o$4bo4b4o4bo$3bo4b6o4bo$5bo2b2o2b2o2bo$3bobo2bob2obo2bobo$3b5o 6b5o$3bob2obo4bob2obo$5b2o3b2o3b2o$4bob10obo$9bo2bo$2b4o2b2o2b2o2b4o$2b2o2b4o2b4o2b2o$2bo4bo6bo4bo$3bobo10bobo$4bo12bo$4bo2b8o2bo$5bobo6bobo$4bo12b o$6b2ob4ob2o$4b3o2b4o2b3o$6bo2b4o2bo$2bob2obo6bob2obo$3o16b3o$3bo5b4o5bo$4bob2ob4ob2obo$6b10o$6b3ob2ob3o$3bob4o4b4obo$2b2o2bob6obo2b2o$2b2obo3bo2bo 3bob2o$3bo2b2o6b2o2bo$3bob4o4b4obo$4b3o8b3o$3b2o5b2o5b2o$5bo3b4o3bo$2b2obo2b6o2bob2o$bo4b2o6b2o4bo$2b2o4b6o4b2o$b5o2bo4bo2b5o$2b4ob2o4b2ob4o$2b2ob2 o3b2o3b2ob2o$2bo2bobo6bobo2bo$3bo2bo3b2o3bo2bo$3b2ob2obo2bob2ob2o$4bo2b8o2bo$2b4o3b4o3b4o$4bo2bobo2bobo2bo$2bo4b8o4bo$2b3ob3o4b3ob3o$ob3ob2obo2bob2 ob3obo$b3o2b4o2b4o2b3o$o2bo2bo8bo2bo2bo$4obobobo2bobobob4o$3b2ob10ob2o$4bob3ob2ob3obo$2bo2bob3o2b3obo2bo$o2bo3bo6bo3bo2bo$bobob3ob4ob3obobo$4bo12bo!
↑ 12*70 partial5b2o$4b4o$5b2o$4bo2bo$4bo2bo$3b6o$2b2o4b2o$3b6o$3b2o2b2o$3b6o$4b4o2$4b4o$4bo2bo$5b2o$3b6o$4bo2bo$4bo2bo$4b4o$4bo2bo$4bo2bo$5b2o$4b 4o$4b4o$bobo4bobo$3bo4bo$b3o4b3o$2b2o4b2o$b2o6b2o$ob3o2b3obo$b2o2b2o2b2o$12o$2b8o$3b6o2$2b2o4b2o$bobo4bobo$2ob2o2b2ob2o$bo2bo2bo2b o$b3o4b3o$b2obo2bob2o$3b2o2b2o$3bob2obo$2bo2b2o2bo$5b2o$2b8o$4bo2bo$5b2o$b2obo2bob2o$2bo6bo$3bob2obo$3bo4bo$2bo2b2o2bo$4bo2bo2$3b2 o2b2o$3bob2obo$5b2o2$2b8o$bo3b2o3bo$bo3b2o3bo$bo2bo2bo2bo$2bo2b2o2bo$2bo2b2o2bo$b4o2b4o$b2obo2bob2o$b2obo2bob2o$2bob4obo$3bob2obo!
↑ 12*48 partial4b4o$2b8o$4b4o$b2obo2bob2o$3bo4bo$3bob2obo$2b2o4b2o$2b2o4b2o$3b2o2b2o$4bo2bo$3b6o$5b2o$2bo6bo$2o8b2o$bobo4bobo2$3b2o2b2o$b2o6b2o$2bo6bo$3bo4bo$bo3b2o3bo2$2o8b2o$12o$b10o$2b2o4b2o$ 3bo4bo$4b4o$4bo2bo$2b2ob2ob2o$2bo6bo$3bob2obo$ob2o4b2obo$ob3o2b3obo$b10o$2bo2b2o2bo$2obob2obob2o$b4o2b4o$bob6obo$5b2o$bo8bo$3bob2obo$2b2o4b2o$5o2b5o$4o4b4o$bo3b2o3bo$3b6o$b2o6b2o! 14*54 6b2o$4b2o2b2o$3b8o$3bobo2bobo$3b2o4b2o$4b6o$4b6o$4b2o2b2o$4b2o2b2o$5b4o$5b4o$4bo4bo$2b3o4b3o$2b2o6b2o$2b3o4b3o$3b2o4b2o$3b3o2b3o2$3bo6bo$b2obo4bob2o$b4o4b4o$2ob2o 4b2ob2o$2b3o4b3o$2bo2b4o2bo$3bo2b2o2bo$2bo2bo2bo2bo$4b6o$bo4b2o4bo$5bo2bo$3b3o2b3o$4b2o2b2o$4bo4bo$2bo2bo2bo2bo$2bo2bo2bo2bo$2bo2bo2bo2bo$2b2obo2bob2o$5b4o$3bo6bo $4b2o2b2o$2b2obo2bob2o$bobob4obobo$bo4b2o4bo$b5o2b5o$4bob2obo$3b2ob2ob2o$2b3o4b3o$3b3o2b3o$2ob8ob2o$o3b2o2b2o3bo$2bob2o2b2obo$2bo2b4o2bo$3bo2b2o2bo$o12bo$bob8obo! 16*70 6b4o$4b8o$6b4o$3b2obo2bob2o$5bo4bo$5bob2obo$4b2o4b2o$4b2o4b2o$5b2o2b2o$6bo2bo$5b6o$7b2o$4bo6bo$2b2o8b2o$3bobo4bobo2$ 5b2o2b2o$4bo6bo$3b2o6b2o$3b2o6b2o$2bo2b2o2b2o2bo$b2o2b2o2b2o2b2o$3b3ob2ob3o$7b2o$3b2o2b2o2b2o$3b3ob2ob3o$3b2o6b2o$3b obo4bobo$3b3o4b3o$2bobob4obobo$3bob2o2b2obo$5b6o$4bo6bo$3bo3b2o3bo$2b2o2bo2bo2b2o$4b3o2b3o$3b2o6b2o$3b3ob2ob3o$7b2o$ 4b2o4b2o$3bo2bo2bo2bo$3b2o2b2o2b2o$5b2o2b2o$4bo2b2o2bo$5b6o$4b3o2b3o$bob2obo2bob2obo$o3bobo2bobo3bo$2o3bob2obo3b2o$2 b3o2b2o2b3o$4b3o2b3o$3bo2bo2bo2bo$3bob2o2b2obo$2bob8obo$b2o3bo2bo3b2o$b2o4b2o4b2o$bo2b2o4b2o2bo$bobobob2obobobo$2b2o 8b2o$5bo4bo$b2o3b4o3b2o$2b12o$b4o6b4o$ob3o6b3obo$3b2o6b2o$b2o3bo2bo3b2o$b14o$b2o2b6o2b2o$2b2obo4bob2o$2bob2ob2ob2obo!
↑ 19*47 partial2b15o$b4o4bo4b4o$5b2obobob2o$b2obob2o3b2obob2o$2b2o2b2o3b2o2b2o$bo4b3ob3o4bo$4bobob3obobo$6bob3obo$bobo2b3ob3o2bobo$b3obo2bobo2bob3o$b2o2bobo3bobo2b2o$3bob 2o5b2obo$6b3ob3o$5bobo3bobo$2bo2bo2bobo2bo2bo$bo2bobo5bobo2bo$b2ob2o7b2ob2o$b4ob7ob4o$bob2obob3obob2obo$2bo6bo6bo$b2ob11ob2o$bo2bo9bo2bo$3b2ob7ob2o$b3o2b2o 3b2o2b3o$bo2bobo5bobo2bo$b2o2bobo3bobo2b2o$b2o5bobo5b2o$3bo2bobobobo2bo$bob5o3b5obo$7bo3bo$2o4bo5bo4b2o$b3o11b3o$bo3bob2ob2obo3bo$bob2o2bo3bo2b2obo$2bo3bo5b o3bo$b3obo7bob3o$b3o11b3o$2bo4bo3bo4bo$7ob3ob7o$bob4o5b4obo$2ob5o3b5ob2o$5bobo3bobo$3b2o3bobo3b2o$3b3o2bobo2b3o$3bob2o2bo2b2obo$3b3o2bobo2b3o$3o3b3ob3o3b3o!
↑ 20*30 partial8b4o$6b8o$5b3o4b3o$8bo2bo$3bo3bob2obo3bo$4b2o2bo2bo2b2o$2b2o2bo2b2o2bo2b2o$2b2ob2obo2bob2ob 2o$3bob10obo$3bo3bo4bo3bo$3bobo2bo2bo2bobo$5bo8bo$5b3ob2ob3o$5b4o2b4o$5bobo4bobo$7b6o$6bo6b o$2b3ob3o2b3ob3o$4bob2ob2ob2obo$b3ob3ob2ob3ob3o$bob3o8b3obo$2b2o2b2o4b2o2b2o$5b2o6b2o$3bobo bo4bobobo$b3obobob2obobob3o$bo2bo3bo2bo3bo2bo$o5bobo2bobo5bo2$ob3obo6bob3obo$bo4b3o2b3o4bo!
↑ 15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 though preceding width has been disproven, this was not found with qfind so is not guaranteed to be of minimal height
↑ 16.0 16.1 15*44 partial6b3o$5bo3bo$5bo3bo$3bob5obo$3bobo3bobo2$5b2ob2o$2bo9bo$2bo2b2ob2o2bo$4bobobobo$4b2o3b2o $3b3o3b3o3$6bobo$7bo$7bo$4b3ob3o2$3b4ob4o$2b4o3b4o$3b2o5b2o$7bo$6bobo$6bobo$2bobo5bobo $2bobo5bobo$2b2o7b2o$5b2ob2o$3bo2bobo2bo$4bobobobo$bo11bo$3o9b3o2$3o9b3o$2b2ob2ob2ob2o$ 2bo3bobo3bo$obo2b2ob2o2bobo$3ob2o3b2ob3o$3bobo3bobo$3bo3bo3bo$3bo3bo3bo$7bo$2bobo5bobo!
↑ 10*32 partial4b2o$4bo2bo$5bo2bo$4bo$3b2obobo$3bo$3b2o2bo$3bo$4bo2bo$5b2o2$2b3o$bo2b5o$b4o3bo$2b2obo2bo$3bobo$2bo 2b2o$bo4bo2$bo2b2obo$5bobo$2b5o$bo$b3obo2b2o$4bo$o3bo$2b2o2bo$3b2o2b2o$bo6bo$2bo3b2o$2b3o$bo3bo2bo!
↑ 10*42 partial4bo2b2o$3bob2obo$2bo2b3o$5b2o$5bo$4bo2$3b4o$3o$2bo$5bob2o$3b2obobo$7bo$2b3obo$2b5o$b3o2bo$4b2o$6bo$6bo$3bo2bo$3bo2bo$5b3 o$2bo3bo$2bobo$7bo$3bobo2bo$4b2o$3b2ob2o$3bo5bo$3bo4bo$5bo$2bo$2bo$6b2o$3b3o$3bo3bo$6b3o$2bo6bo$3b5obo$2b2o4bo$b9o$o6b3o!
↑ 17*47 partialb4o7b4o$bobobo5bobobo$2b2o9b2o$2bo11bo$b2o11b2o$3bo9bo$2b2o9b2o$2b2o9b2o2$2bo11bo$bobo2bo3bo2bobo$o3b2obobob2o3bo$o4b2o 3b2o4bo$5bo5bo2$bo13bo$2b3o7b3o$4b2o5b2o$3bobo5bobo$2bo2bo5bo2bo$5bo5bo$bo3bo5bo3bo$o2bobo5bobo2bo$b4o3bo3b4o$3bo4bo4bo $2bo11bo$bo2bo7bo2bo2$2ob2obo3bob2ob2o$o4b7o4bo$b2o2bo5bo2b2o$2bo2b2o3b2o2bo$3b2o7b2o$2bo3bo3bo3bo$2bob3o3b3obo$2bo4bob o4bo$4bo7bo$4bo7bo$b2ob2o5b2ob2o$bobo9bobo$b2o3bo3bo3b2o$4bo2bobo2bo$4b2obobob2o$4bo7bo$5bobobobo$3b2o7b2o$2bob3o3b3obo!
↑ 20*62 partial8b4o$7b6o$6b2o4b2o$7bo4bo$7bo4bo$7bob2obo$9b2o$5bo8bo$5b2o6b2o$5bo3b2o3bo2$9b2o$6b2o4b2o$4bo10bo$4bo10bo2$8bo2bo$6bobo2bob o$7b2o2b2o$4b2o8b2o$5bo3b2o3bo$5bo3b2o3bo$3bo12bo$2bo14bo2$bo2b4o4b4o2bo$4b2obo4bob2o$4bo3b4o3bo$bobobob6obobobo$5bobob2ob obo$7bo4bo$3bo3bo4bo3bo$4bo10bo$5bo2b4o2bo$6bo6bo$7bo4bo$7bo4bo$7bo4bo2$3b2o3bo2bo3b2o$2bo2b3o4b3o2bo$6bo6bo$2bo4bo4bo4bo$ 2bo4bo4bo4bo$7bo4bo$2bo3bo6bo3bo$b5obo4bob5o$2b2o2b2o4b2o2b2o$3b4o6b4o$b3o2bo6bo2b3o$ob2obo8bob2obo$2o7b2o7b2o$3bo2bo6bo2b o$2b2o3bo4bo3b2o$2bob2o2bo2bo2b2obo$2bobob2ob2ob2obobo$3b5o4b5o$4bo10bo$4bo3b4o3bo$3b2o2b2o2b2o2b2o$bo3bo8bo3bo$bo7b2o7bo!
↑ 21.0 21.1 21.2 unique thinnest
↑ 10*33 partial5bo$4bobo$5bo$5bo$5bo$4bo2bo2$5bob2o$5bobobo$6b3o$6b2o$5bo$4b2o$4b2o$4bo2bo$4bo2bo$7bo$3bob3o$3b obobo$3b3o2bo$4b2o$4bobo$3bo2bo$3bo2bo$2b2o$2b2o3bo$2bobob2o$2b4o$bobobo2bo$o4bo2bo$5o3bo2$o8bo! looks alike the Statue of Liberty
↑ this one has a smaller population but a backspark that increases its bounding box
↑ not sure of minimality of length
↑ 20*46 partial7b6o$5bob2o2b2obo$3bobob6obobo$bob3ob6ob3obo$bob14obo$ob4obob2obob4obo$b5ob6ob5o$b18o$b4obo6bob4o$3b3o8b3o$bobobo8bobobo$bob3o8b3obo$2b2o5b2o5b2o $ob5o2b2o2b5obo$obobobobo2bobobobobo$2bobobob4obobobo$4bob8obo$2b5ob4ob5o$2bobob2o4b2obobo$3b5ob2ob5o$2b5o6b5o$2bob4o4b4obo$4b2o8b2o$2b3obobo2bo bob3o$3b4o2b2o2b4o$b8o2b8o$4bobob4obobo$3b4ob4ob4o$bob2obob4obob2obo$bob14obo$bob5o4b5obo$4b4o4b4o$b7o4b7o$4bo2b2o2b2o2bo$2b3obo6bob3o$4bobo6bob o$2b2o12b2o$2b16o$2bobo2b2o2b2o2bobo$2bo2bobob2obobo2bo$4b2ob6ob2o$b2o3b3o2b3o3b2o$2b4o3b2o3b4o$4o2bo2b2o2bo2b4o$ob3ob8ob3obo$2bobob2ob2ob2obobo!
other such tables alike this
references
↑ wwei47 (May 14, 2024). Re: Thread for your miscellaneous posts and discussions , in which the scheme for non-orthogonal width notation was specified
↑ May13 (March 3, 2024). Re: B36/S245 , in which a symmetrical width-19 c/5d was found
↑ LaundryPizza03 (December 21, 2020). Re: B36/S245 , in which a (2,1)c/6 was found (the first knightship)
↑ LaundryPizza03 (March 25, 2024). Re:B3/S12 (Flock) , noting Lapin Acharné's 2c/8
↑ 5.0 5.1 5.2 5.3 wwei47 (May 13, 2024). Re: B3/S12 (Flock) , in which bounds upon c/3 widths were found with JLS
↑ 6.0 6.1 6.2 6.3 6.4 6.5 wwei47 (May 14, 2024). Re: B3/S12 (Flock) , in which considerably improved bounds were found with ikpx2
↑ 7.0 7.1 May13 (May 17, 2024). Re: B3/S12 (Flock) , in which a width-71 gutter-preserving c/3 was found with LSSS (which also works in Pedestrian Flock)
↑ 8.0 8.1 amling (May 18, 2024). Re: amling questionable searches/ideas firehose , in which dark magic was utilised to achieve the impossible of finding a minimal-width w38a c/3
↑ wwei47 (April 27, 2024). Re:RLE copy/paste thread - everyone else , in which minimal-width c/3's weere found in HighFlock with JLS
↑ wwei47 (April 25, 2024). Re:RLE copy/paste thread - everyone else , in which width-15 c/3's were found in Holstein (per personal correspondence, with JLS and also disproving lower widths)
↑ LaundryPizza03 (September 11, 2020). Re: B3578/S24678 , in which the smallest w14e 2c/7 was first found (apparently they didn't remember to do w13o otherwise they would have a considerably smaller one)
↑ found by Saka in 2021 (forum post desired)