User:DroneBetter/qfind results

From LifeWiki
< User:DroneBetter
Revision as of 03:11, 18 June 2024 by DroneBetter (talk | contribs) (many more results (mainly from my own installation of gfind, which is less powerful than JLS but has allowed many more results due to not being constrained by wwei doing the finicky setup), a few more notes regarding shortest spaceships at higher-than-minimum widths as well (thus far, this has reduced the smallest known c/4 diagonals in both √replicator and Geology), also some (varyingly arduous) improvements of lower bounds in √replicator (c/9a, 2c/9a, c/10o and c/10e, 2c/10a, 3c/10a, 5c/10a))
Jump to navigation Jump to search

I had long assumed that openmp was simply not yet supported on macOS until I learned that the gcc command in fact uses Clang albeit named misleadingly

as such, having used Homebrew, I am now able to compile qfind, and finally create tables of bounds upon spaceship widths (which I will do here :-)

all links included are to the minimal spaceship found (first outputted, only minimal by bounding box, not population), however (where a table cell is split) the second subrow excludes members of a subset of the symmetry and those comprised of two smaller noninteracting spaceships, choosing the first nontrivial output instead to maximise information content

note that alike its gfind ancestor of yore, qfind is restricted to orthogonal searches, however it is very fast at them

you may add your own results (disproofs for lower bounds and spaceship examples for upper), however (to avoid confusion) I would like others to include citations of forum posts in which they explicitly state their results, so that those uncited can be attributed to me by default without having to go through the page's history

no gutter column is included for rules that are not gutter-preserving

thank you very dearly to ascendantDreamweaver for using a 48-core computer with 512GB of RAM to which they had access, for increasing logical widths for 2c/5 and 3c/7 to 12 in the first four rules (except for B36/S12, in which 2c/5's are small enough that I managed on my own)

all results labelled as JLS are due to wwei23

non-orthogonal spaceships are of course found with other programs, widths are measured with the scheme of a line of cells parallel to the diirection of movement replacing a column (ie. half-diagonals (12-units) for diagonal spaceships, 15-units for knightships)[1]

B36/S245 (sqrt replicator rule)

(I like the name a lot for some reason)

ascendantDreamweaver did the searches that led to finding the asymmetrical 2c/5 and 2c/7, as well as obtaining the present best lower bounds for 3c/7, 3c/8 (except for the 3c/8 even, which they found!), 2c/9 asymmetric, 4c/9, 5c/10 asymmetric and 5c/11

Velocity Asymmetric Symmetric Glide-symmetric
odd even odd even
(1,0)c/2 6 13 14
(1,0)c/3 6 11[n 1] 6
6
(1,1)c/3 13[n 2] 13[n 3]
(1,0)c/4 4 9 10
12
(2,0)c/4 7 13 14 11 (gfind) 12 (gfind)
(1,1)c/4 10[n 4] 17[n 5] 12[n 6]
(1,0)c/5 8 11 12
(2,0)c/5 12 19 20
(1,1)c/5 12[3] 15[n 7]
(2,1)c/5 w ≤ 67
(1,0)c/6 9 13 14
(2,0)c/6 7[n 8] 11 10 9 (gfind) 6
(3,0)c/6 7 13 14
(1,1)c/6 7 (gfind) 13 (gfind) 16[6]
(2,2)c/6 9 (gfind) 11 (gfind) 16 (gfind)
(2,1)c/6 w ≤ 58[7]
(1,0)c/7 9[n 9] 13 14
(2,0)c/7 11[n 10] 17[n 11] 16
(3,0)c/7 12 23 24
(1,1)c/7 7 7
6
(2,2)c/7 8 (gfind) 15 (gfind)
(1,0)c/8 7[n 12] 13[n 13] 14[n 14]
(2,0)c/8 7 9

12

5 6
(3,0)c/8 10[n 15] 19[n 16] 20
(4,0)c/8 7 13 14 9 (gfind) 10 (gfind)
(1,1)c/8 5 (gfind) 9 (gfind) 12[6]
(2,2)c/8 6 (gfind) 11 (gfind) 10 (gfind)
(1,0)c/9 7[n 17] 11[n 18] 12[n 19]
(2,0)c/9 8[n 20] 13[n 21] 14[n 22]
(3,0)c/9 7 11 12
(4,0)c/9 11 21[n 23] 22[n 24]
(1,0)c/10 6 11[n 25] 12[n 26]
(2,0)c/10 7[n 27] 11 12 7 6
(3,0)c/10 8 13 14
(4,0)c/10 8 15 16 7 8
(5,0)c/10 8 13 14
(1,1)c/10 5 (gfind) 7 (gfind) 8 (gfind)
(3,3)c/10 6 (gfind) 9 (gfind) 10 (gfind)
(1,0)c/11 5 9 10
(2,0)c/11 6 11 12[n 28]
(3,0)c/11 7 11 12
(4,0)c/11 9 15 16[n 29]
(5,0)c/11 10 19[n 30] 20[n 31]
(1,0)c/12 5 9 10
(2,0)c/12 5 9 10 5 4
(3,0)c/12 5 9 10
(4,0)c/12 6 9 10 5 6
(5,0)c/12 7 13 14
(6,0)c/12 7 13 14 7 (gfind) 8 (gfind)
(2,0)c/14 4 7 8 3 4
(4,0)c/14 5 9 12 5 4
(7,0)c/14 6 < w ≤ 10 11 12
(3,0)c/15 4 7 8
(5,0)c/15 5 9 10
(4,0)c/16 4 7 8 3 4
(6,0)c/16 6 9 10 5 6
(8,0)c/16 6 11 12 5 6
(10,0)c/20 5 < w ≤ 10 9 10 5 4
(4,0)c/23 3 5 6 < w ≤ 10
(26,0)c/52 w ≤ 17

I found the 4c/14 with ikpx2 as a new speed before performing qfind searches up to width 10 that proved its minimality, then found the true-period 2c/7's

x = 852, y = 265, rule = B36/S245 b2o3b4o3b4o4b4o5b4o4b4o5b4o6b4o8b4o12b4o9b4o2b4o5b4o2b4o9b4o9b4o2b4o6b4ob4o6b4ob4o4b4o5b4o2b4o5b4o4b4ob4o4b4o5b4o3b4o3b4o8b6o4b4o9b4o10b4o18b4o11b4o4b4o6b4o4b5ob5o3b4o5b4o5b5ob5o3b4o7b4o6b5ob5o2b7o8b9o10b4o10b4o6b4o4b3o8b4o8b3o6b3o8b4o8b4o5b3ob3o9b2o12b2o10b4o6b4o9b3o11b2o12b5o12b2o24bob5o7b3o38b2o17b3o14b2o11bobo14bo9b4o$4o3b2o5b2o6b2o7b2o6b2o7b2o8b2o7bobo2bobo8bobo2bobo8b2o4b2o7b2o4b2o8bobo2bobo8b2o4b2o8b2o3b2o8b2o3b2o6b2o7b2o4b2o7b2o6b2o3b2o6b2o7b2o5b2o5b2o8bo3b2o5bo2bo4bo4bo2bo3b5o3b2o3b5o12b2o11b6o2b6o4b6o4b3o3b3o3b6o3b6o5b3o3b3o3b6o5b6o6b3o3b3o4b2ob2o9bobobobobo8bobo2bobo6bo2b2o2bo4b4o2b7o7b2o8bo3bo3b7o6b4o9b2o5b2obobob2o7b4o10b4o10b2o7b2obo5b11o5b6o8b2o2bo2b2o9bo2bo22bob3ob3o6bob2o36b4o19b2o13b2o11b3o13b2o8b5o$bo2bobobo3b2obo4b2obo5b2obo4b2obo5b2obo6b2obo6b4o2b4o6b4o2b4o5b2ob6ob2o3b2ob6ob2o5b4o2b4o5b2obo4bob2o4b2obo3bob2o4b2obo3bob2o4bob2o3b2obo4bob2o3b2obo4b2obo3bob2o4bob2o3b2obo3b2obo5bob2o12b2o3bo3bobobobobo3bo6bo2b6o2bo7b6obo2bob6o3bo4bo2bo4bo4bo4bo4bo2bobo2bo3bo4bo3bo4bo5bo2bobo2bo3bo4bo5bo4bo6bo2bobo2bo5b2ob2o7b5ob5o9b4o9bo4bo6b2o4bobobo6bo4bo6bo3bo4b5o8b2o9b2obo3b5ob5o5bob2obo8bob2obo19b2o7b2o5b2o6bo4bo9bo5bo34b2o5b2ob2o5bo2bo38b2o18b2o11bobobo11b2obo12b3o9b2obo$bo9b2o6b2o7b2o6b2o7b2o8b2o8bobo2b2o2bobo4bobo2b2o2bobo3b2o3bo2bo3b2ob2o3bo2bo3b2o3bobo2b2o2bobo3b2o10b2o2b2o9b2o2b2o9b2o6b2ob2o10b2ob2o6b2o9b2o6b2ob2o5b2o11b2o5b2obob2o4bo5bobobo5bo4bob2o3b2o3b2obo7b3o8b3o7b2o6b2o8b2o7bobobobo6b2o7b2o8bobobobo6b2o9b2o9bobobobo5b4obo6bobob5obobo8bo2bo9b6o12b5o6b6o6b2ob2o4bobobo18b2ob3o3b3o3b3o6bob2obo8bob2obo6b2o4b2o5bo2bo5bobo3bobo21b3ob3o7bo2b4o2bo16bo4bo2b2ob2o7b3o33bob2o2b2o13bob4o10b2ob2o11b3o22bo4b2o$12bo6bob2o5bob2o5bo7bob2o7bo7bo4b4o4bo2bo4b4o4bo5bo6bo7bo6bo5bo4b4o4bo3bo10bo4bo9bo4bo9bo7bo3bo10bo3bo7bo9bo7bo3bo6bo11bo9bo2bo12bo14b2ob2o2b2ob2o7bob2o10b2obo4b4o4b4o6b4o7bo3bo6b4o5b4o8bo3bo6b4o7b4o9bo3bo6bob2o9b3ob3ob3o8b2o2b2o8bo4bo7bo4b2ob2o6bo4bo8bo5b2o3b2o6bo2bo7b3o6b3o3b3o7b4o10b4o7b2o4b2o3bo3b2o5bobo3bobo5b2o4b2o8bobobobo6b2o2b4o2b2o18b3o3b2obo7bo36b2o3b3o11bob2o2b2o10bo2b2o6b2ob2o2bo21b2ob2o$11bo2bo5b3obo4b3obo2bo2bo6b3obo4bo2bo6bob8obo4bob8obo7bob2obo9bob2obo7bob8obo3bo2bob4obo2bo2bo2bo5bo2bo2bo2bo5bo2bo4bo2bobo2bo6bo2bobo2bo4bo2bo5bo2bo4bo2bobo2bo3bo2bo7bo2bo7b3o12bo3bo11b2o10b2o28b4o4b4o5bob2obo7b3o7b4o5b4o9b3o7b4o7b4o10b3o6bobo3bo5b7ob7o4b3ob2ob3o4bobo4bobo4b2o3bo2bo2bo4b3o2b3o14bo3bo8b2o9b2ob2o2b2o7b2o31bo6bo4bobob2o3bob2o3b2obo4bo2b2o2bo9bo3bo8b3o4b3o17bob3o3b3o7bobo33b4o2bob2o12b2obo11b3obo8bo5bo20b2ob2o$12bo2b2o3bo3b2o3bo3b2o2bo2b2o4bo3b2o4bo2b2o3bobob2o2b2obobo2bobob2o2b2obobo6bob2obo9bob2obo6bobob2o2b2obobo3bo3bo2bo3bo4bo2b2ob2o2bo4bo2b2ob2o2bo3b2o2bo3bo2b2o2b2o2bo3bo2b2o3bo2b2ob2o2bo3b2o2bo3bo2b2o2bo2b2o3b2o2bo8b3ob2o9bo3bo34bo10bo6bob2obo2bob2obo4b6o7b3o6bob2obo4bo2bo9b3o6bob2obo5b6o9b3o8b4o7bo11bo5b2o6b2o3b3obo2bob3o4b2o11b3obo2bob3o4bobo4b2o3b2o5bob2obo6bob3o3bobo5bobo4bo2b2o2bo6bo2b2o2bo17bob3obo17bo6bo10bobo7bo2b2o4b2o2bo13b2o2b2o2b2o9b4o32bo4b3obo8b3ob2obo9bo3b3o7b2obobo21bo4b3o$14b2o3bo2b3o3bo2b3o5b2o4bo2b3o7b2o6b2obo2bob2o6b2obo2bob2o6bo8bo5bo8bo6b2obo2bob2o4b2o10b2o5b2o3b2o8b2o3b2o6b2o7b2o4b2o7b2o6b2o3b2o6b2o7b2o5b2o5b2o10b3o12bobobo12bo3b4o3bo9bo2bo6bo2bo5bob2obo2bob2obo4bo4bo6bobobo5bob2obo4b4o8bobobo5bob2obo4b2o4b2o7bobobo6bobob2o8bo7bo8b2ob2ob2o4bo2bob2obo2bo9b5o4b2o6b2o6bo4b2o5b2o2b2obo2bob2o3bobo7b2o5b2o5b8o6b8o20bob3o16b2o4b2o10bobo7b2o10b2o14b2o2b3o2bo7b2obo27bo5bo4b2o9bobo2b2o12b4ob3o7bo3bo20b3ob4o$13b3o8b2o7b2o2bob2obo7b2o4bob2obo3b3o6b3o4b3o6b3o7bo4bo9bo4bo9b2o4b2o7bo8bo6b3o3b3o9bobo8b3o5b3o4b3o5b3o5b3o3b3o5b3o5b3o3bob2obobob2obo8bob5o7bobobobo10bobobob2obobobo8bobo8bobo23b2o2b2o6b2ob2o16b2o9b2ob2o16b2o2b2o8b2ob2o8b3o10b2o3b2o11b4o7bobo4bobo12bo6bobob2obobo4b2ob2o4bo3bo4b2obo2bob2o4b2obo5b2o5b2o4b2ob4ob2o4b2ob4ob2o19bo3bo35bo11b2o4b2o16bobo2b4o8b5o28b4obo4bobo8bo5bo13b4o10b4o20b3o$14bo8b2o7b2o3b6o6b2o5b6o3b3o6b3o3bob2o6b2obo23b2o10bo8bo6bo8bo6b3o3b3o6bo7bo6bo7bo6bo7bo7bo5bo7bo7bo4b6ob6o6b3o2bob2o6b4ob4o9bo4bo2bo4bo9b2o8b2o7bo2bo4bo2bo3b2o6b2o15bo2bo3b2o4b2o17bo2bo6bo4bo22bobo6b2o2b2ob2o2b2o41bo5b2o3b2o3b2o12bo3bo5b2ob2ob2o6bo20bobo4bobo4bobo4bobo19bo2bo17b2o4b2o10bobo9b3o4b3o18bobob3o5b4o2bo27bo2bo7bo8b2o2b3ob2o9bob2o3bo5b2o3bo2bo20b3o$11b2ob3o6b3o6b3o3bo2bo7b3o5bo2bo3bob2o6b2obo2bob2o6b2obo22b4o9b2o6b2o6b3o4b3o5b2obobobob2o6bobobobo5b3ob2ob2ob3o2b3ob2ob2ob3o2b2ob3ob3ob2o2b3ob2ob2ob3o3bo2bo3bo2bo6b3o3bo3bo2bob2o2bobo2b2obo5bo4bo4bo4bo42b4o2b4o3bobobobo12b3o2b3o5bobobobo14bobo2bobo6bobobobo9bobo5bobob2ob2obobo6bobo2bobo4b2o8b2o8b7o4bo6bo5bobobo4b2ob2o6b2o2b2o8b2o7b5o6b10o4b10o20bo18bobo4bobo10bo12bo4bo15b3obobo2b3o6b2obobo29bo5b3o10bo2b4obo8b3o10b4o26bo$12bob3o3b2obo5b2obo13b2obo14bobo8bobo4bo8bo36bobo6bobo6b3o2b3o6bo3bobo3bo7b2ob2o6b3obo3bob3o2b3obo3bob3o3bob3ob3obo3b3obo3bob3o23b2o3bo4b2ob2o2bo2b2ob2o8bo8bo13bo6bo16b2o2b2o3bo6bo4b7o5bo2bo5bo2bo7b7o4b2o2b2o2b3o6b3o4b7o6b2o3bo4b2o3b5o3b2o4bo2bo2bo2bo3b2o8b2o7bo2b3o2bo5b4o9bo6b2ob2o5b2o4b2o6bob2o6b5o7b2ob2ob2o6b2ob2ob2o21b2o17b2o6b2o4bob3obob3obo5bo6bo14b2o2bobo3bo8b2obo30b2o17bo7bo5bo3bo10bob2o2bo23b2o2bo$12b2o5b6o3b6o5b2o4b6o7b2o21b4o4b4o35bo10bo7bo4bo7bo3bobo3bo6bo5bo8b2o3b2o8b2o3b2o6b2o7b2o6b2o3b2o7b2o5b2o16b2o4bo2b2ob2o2bo6b3o12b3o6bob3o4b3obo13b2o2b2o14b2o2bo2b2o3b3o5b3o2b3o4b2o2bo2b2o3b2o2b2o3bo8bo4b2o2bo2b2o7bo3bo6bobo3bobo6bo2bo4bo2bo3bo8bo8bo7bo4b2o2b2o7bobo4b3ob3o3b2o2b2o2b2o15bo3bo7b3o2b3o6b3o2b3o22bo19bo4bo6b3o2b3o2b3o3bobo6bobo11bo2b2ob4obo4b4o40bo12bo3bo2bo6b3o10bob2o4bo21b3obobo$11bo3bo4bo4bo3bo4bo3b4o4bo4bo5b4o21b3o4b3o36bobo6bobo4bob2o4b2obo6bo5bo8b2o3b2o6bo3bobo3bo4bo3bobo3bo3bo3bo3bo3bo3bo3bobo3bo4b4o3b4o6b4o11bobo5bobo6bo3b2o6b2o3bo7bo3bo2bo3bo16b2o20bo8bo2b2o18bo9b2o5bo8bo8bo10bo4bo7bo5bo7b2o2bo2bo2b2o3bo8bo9b3ob3o5bo4bo7b3o5bo3bo4b4o2b4o3b5o6b2obob2o8bo2bo10bo2bo23b2o21b2o10b2o5b2o30bo2b2o2b2o4bobo39bob2o11b2ob2obo10bo7bo2b2o2b2obo23bo4bo$12bo7bo8bo9b2o5bo11b2o24bob2obo26b4o8b3o6b3o6bo6bo24bo3bo10bo3bo10bo3bo7bo3bobo3bo7bo3bo8b2o5b2o11b2o12b2ob2o11b2o10b2o7bo2b3o4b3o2bo12b6o16b5o4b5o18b5o5b6o5bo4bo8b5o7b2o2bo23bobo6bobo5b6o22bobo2bobo8bo5bo3bo6b6o6b3obo5bo5bo5bobo4bobo4bobo4bobo17b7o16b2o4b2o8bo2bo2bo28b3o2b2o8b3obo38b2obo11b2o2bobo5bob2o2bo5bo2b2ob3ob2o20bo2bo$23bo8bo6b2o8bo8b2o21bo2b6o2bo23bo2bo10bob4obo6bobo6bobo23b3o11b5o10b5o12bo12b5o8b2o5b2o6b3ob2o10bobo5bobo8bobobob2obobobo6bo3b3o4b3o3bo12bo2bo16bo2bo2bo4bobo4b2o6b2o4bo2bo2bo5bo2bo5bo6bo6bo2bo2bo6bo2bo11b5o9b3o4b3o7b4o14bobo7bo4bo6bo7bobobobo5bob2obo5bobo3bo5bobobo10b2o12b2o22bo24b2o11bo2bo2bo27b2o2bobo13bo41bo15bo5bobob4o5bobo4bobo21b3o$32bo5bo2bo15b4o23bo4bo41b6o7b4o4b4o23bobo41bobobo22b4o3b4o8b3o9b3obobobob3o5bo2bo2b2o2b2o2bo2bo3bob2o2b3o2b3o2b2obo11bo2bo16b3ob3o4bo2bo4bo6bo5b3ob3o5bo2bo4bobo4bobo5b3ob3o7b6o7b2obob2o8b2obo2bob2o5b2ob2ob2o21b2o4b2o5b3o6b5o6bo4bo6bob2ob2o3bobobobo6b2ob2ob2o6b2ob2ob2o20b3o34b7o26b6o11b2o2b2o39bobo23bo2bo6bo2bo26b4obo$23b2o7bo6b2o8b2o6b4o22b3o2b3o41bo2bo9bo8bo24bobo26b2ob2o10b5o22b4o3b4o5b3o2b2o8bo4bobo4bo6b4obob2obob4o5bo2b2o8b2o2bo11b2o2b2o16b2ob2o5b3o5b3o2b3o6b2ob2o5b2o2b2o2bo10bo5b2ob2o6bob2o2bo9bo3bo8bo3bo2bo3bo4bobo2bobo19b5o2b5o3bo17b4o2b4o8bobo5b3o10b4o10b4o22bobo18b8o43bob3o2bo9bob2o61b2o2bo12b2o2bo20b2ob3o$22bo9bo6b2o7bo82b2o2b2o8bo2bo2bo2bo40bo12b2ob2o11bobo12bobo25b2o2bobo6b2o2b2o3b2o2b2o4b3ob2o2b2o2b2ob3o3b3o14b3o12b2o17bo2bo2bo4b3o5bo6bo5bo2bo2bo6b2o4bo10bo4bo2bo2bo8bobo9bobobobo9bobo2bobo8bo2bo22b2obo2bob2o4bobo6b5o6b2o2b2o11bo6bobo70b10o8b5o25bo4bo4bo9b3obo58b2obo2b3o8bo3bobobo21b3obo$22b3o58b8o40bo4bo11b4o43bo12b2ob2o11bobo12b3o24bob3o3bo7b3obobob3o6bob2o3bo2bo3b2obo12b2o20bobo19b3o7bobo4b2o4b2o7b3o7bobo5b2o6b2o7b3o12bo2bo7b5o11bo4bo34bob2o4b2obo4bob2o6bo7bobo2bobo6b2o22bo2bo10bo2bo18b3o39b5o25bob2ob4o10bo2bobo60bo3b2o8bob3o3b2o21b2obo$22bobo24b2o34bo2bo41bob4obo11b2o44bo12b2ob2o7bo3bobo3bo7bo3bo23b3o2bo2bo5bo2bobo3bobo2bo6bobob2o2b2obobo13b4o20b2o18bo3bo8bo5bo4bo7b2ob2o7b2o6bo6bo7b2ob2o12bob2o19b2obob2obob2o32bobo4bobo8b2o4bobo20b2o9b3o11b2o12b2o44bo6bo11bo28bo2b2ob2o11bo2bo59bobo4bo9b3o3bobo$24bo23b2o36b2o42bo6bo10b4o43bo14bo8b2ob2o3b2ob2o4b2ob3ob2o26bob2o5bo4b2ob2o4bo10b6o14b2ob4ob2o37b5o16b2o8bobobobo16bo2bo8bobobobo5b3o3bobo5bo2bobo2bo5b3ob6ob3o32b3o2b3o6bo2bo6bo5bo4b2o4bo4b2o8b5o10b2o12b2o19b3o21b2obo2bob2o10bo25b2o6bobo8bobob2o60b4o8b2o2bobo2b2o$21bo28bo32b2o4b2o38b2obo2bob2o10b2o56bo5bo6b3o5b3o6b3ob3o24b2ob4o6bo2bo5bo2bo4bo3b3o2b2o2b3o3bo5b14o15bo18bob3obo4b2o6b8o6b2ob2o7bo7bobo2bobo7b2ob2o6bobobobo2bo5b7o8b2o2b2o2b2o33bo8bo6b2obo12b4o2b4o7bo7bo3bo7bob4obo7bo4bo19bo23bo4bo11bobo27b5obo8b4o2bo56bo2bo3b2o7bo2bo$21bobo23b2o35bo4bo39b3o4b3o68b3ob3o6b2obo3bob2o6bo5bo24b2o2bo3bo3b2o2bo5bo2b2o4b2o3b2ob2ob2o3b2o6bo5b2o5bo14bo31bo6b2ob2ob2o17bo9bo4bo20bo4bobo6b2o3b2o8bo8bo34bo6bo7b2obo4b3o7b2o2b2o8bob2o4bo5bo7bob2obo7b3o2b3o17bob2obo63b2o4b2o12b5o56b3o2bobo5b2o2b2obo$20bo2bo23bobo34b2o2b2o59b2o56b3ob3o6b2obo3bob2o8bobo26b2o2bo2bo7bo7bo7b2o3bobo2bobo3b2o35bobo16bo5bo5b2o6bo4bo7b5o7bobo6b2o2b2o8b5o21b2o3b2o8b3o4b3o49b3o12b3o6b3o4b2ob2o3bo2bobo2bo6b2o2b2o6b3o4b3o16b2o2bobo35b3o24b3ob2ob2o9b2o4bo56bob3obo6b3ob2o2b2o$21bobo22b2ob2o32b2o4b2o37b5o2b5o9b2o55b2o5b2o6bo7bo8bo3bo26bo2bo2b2o4b2o9b2o4bobo2b3o4b3o2bobo6bo4b2o4bo16bob2o16bo3bo5bo9bo2bo8bo3bo7bob2o3bo2b4o2bo6bo3bo10bobobo7b2ob2o13b2o68bob2o4b2obo4b3o4b2obobobob2o4bo2b2o2bo5b2obo2bob2o18b2o2bo18bob2obo10b2ob2o19bo2b4o17bob2o56b2o2b3o5b2o2b2ob2obo$22bo23bo3bo78b3o4b3o10b2o54b2obo3bob2o3b4o5b4o6b2ob2o24bob2obo2bo5b3o7b3o6b6o4b6o9b2obo2bob2o15b2o2b2o16bo3bo8bo5bob2obo7bobobo5b2o2b2o2bobo6bobo5bobobo9bob2o26bo2bo60bobo5bobo4bobo12b4o3b4o3bob6obo4b3o4b3o18b6o16b2o4b2o9b2ob2o19bob2obo2b3o14b3o57b2ob2o6bobo2bo2bo$48bo80bobo4bobo10b2o55b2o5b2o4b3o7b3o5b3ob3o23b7obo7bo7bo9b2ob2o4b2ob2o10b3o4b3o15b2o32b2o17b2obob2o4b2o6bobob4obobo4b2obob2o7bobo9b2o5b2o10bo2bo52bo7b3o22bo7bo3bo7bo6bo4b2o8b2o17b2ob2o17b2o4b2o9b2ob2o19bo3bo2bobo17bo57bo9b3o4bobo$47bobo78bob2o4b2obo66b2o5b2o24bobo25bo5bo6b3o2bo3bo2b3o6bob2ob4ob2obo8b2o3b4o3b2o14b2obo28bobo3b2o6b2o3b2o5b2o4b2obo4bo2bo2bo2bo4b2o5b2o6bo2bo7bob2obob2obo9b4o50b3obo5bobo5bo8bo8b2o3bo3bo3bo4bob2o2b2obo4b2o6b2o17b2o21b8o9b5o19bo3b3obo2bo15bo56bo9b3obo2b3obo$46bo3bo79b3o2b3o81bob4ob4obo5bo5bo22b2obob3o5b3o2bo5bo2b3o7bo2b4o2bo11bo3bo2bo3bo14b2o31b2o4bo3b2o3bo4bo5bo4b2o8bo2b2o2bo6bo5bo7bo10bo4bo4bo64bobo5b2ob2o22bo5bobobobo7b6o5bo10bo17bob2o18b2ob2ob2o9bo3bo17b2ob3o3b4o17b2o52b2obo16b4o$47b3o80b8o68b2o5b2o4bo2b2o3b2o2bo6b5o23bo6bo6b3o9b3o7bo10bo10bo2bob2obo2bo15b4o30bo4b2o4b2o4bobo3bobo4b4o4bobo4bobo4bobo3bobo6bobo9b2ob3ob2o10b4o49b3ob3o2b2o3b2o3b3o4b3o7bo9bo9bo6bo7bo4bo21bo19b2o6b2o7b2obob2o16bo2b2o2b2o2bo15b2o50b3obob2o8b2o3b2o3bo$47bobo80bobo2bobo68b2o5b2o5b2o2bobo2b2o6b2o3b2o23bobo10bo13bo6bo3bo4bo3bo8b3o8b3o15b3o27b3o6bo4bo4b2o7b2o4b3o8b2o7b2o7b2o3b2o2b2o7bo9bo9bo2bo51bob2o5bobo6b2o4b2o7b2o19bo6bo7b2o2b2o23bo16b3o2b2o2b3o7bo3bo19bobo2bob2o16b3o48bo3bo2bo9b2o4b2ob2o$131b6o69bobo3bobo5b2o3bo3b2o6b2o3b2o26bo7b4o11b4o4b3ob2o2b2ob3o8bo2b8o2bo13bo3bo27bo6bo8bo2bo9bo2bo3bo5bob4obo4bo9bo3b5obo8bo5bo11b4o50b2o3bo13bobo2bobo5b2obo18b2obo2bob2o4b2obo2bob2o19bo36bobobobo19bo6bo16b2ob3o45b2o16b2o2b3o$130bo6bo83bobobobobo8bobobo26bo3bo4b3obo9bob3o6bo2b4o2bo10bobob2o2b2obobo14bobo36b2o4b2o4bobo3bobo4bobo7b6o6bobo3bobo6bob2obo5b4o3b4o8bo4bo52bobo3b2ob2o6bo4bo7b2o20bob4obo5bo2bo2bo2bo21bo32b3o5b3o14b2o2b2obobo16b2o2bo44b5o11bobo2bobo2b2o$131bo4bo86b2ob2o9bo5bo24b2ob2o7bo2bo7bo2bo8b2obo2bob2o11b2ob2o2b2ob2o67b2obob2o14b2o4b2o6b2obob2o11bo6b4o3b4o6b2ob4ob2o47b4o5bobobo6bo4bo8b2o18bobob2obobo3bobo6bobo58bo19bobo2b3o17bo4bobo42b2o2b2o9bo3b2ob3ob2o$221bob2ob2obo8b5o36bobo2bo5bo2bobo10b4o12bo2bob2o2b2obo2bo13b3o37bo4bo5bo3bo3bo3bob2o6b3o2b3o5bo3bo3bo4b2ob2o2b2o20b2o3b2o3b2o45bo2bo7b3o8b4o8b3o31bo2bo4bo2bo18b2obo31bobob3obobo18bo19b2obo3bobo41b2ob2o9bob2o3bo4bo$222bob3obo8b2o3b2o23bo3bob2o5bo3bo5bo3bo8bob6obo9b6o4b6o13bo39bo4bo7bobobo5b5o6bo4bo8bobobo6b2obo4bo5b3o3b3o7b2ob4ob2o47bo21b2o9bo22b6o7b3o2b3o18b2o37bobobobo18b2obobo16bo3bo3bo40bo2b2o11b3o5bo$222bo2bo2bo8bo5bo22b2o2bobobo8bo7bo10b2o3b2o3b2o8bob4o4b4obo12b3ob2o33bobo4bobo5b2ob2o5bob2o6b3o2b3o7b2ob2o5b2obo3bo7b3o3b3o8b2ob2ob2o49bobo7bo10b2o9bo3bo15b4o4b4o5bob2obo19bobo35b2o2bo2b2o17bobobo20bo61bob4obo$222bobobobo8bo5bo23b4o2bo9b2o5b2o9b2obo6bob2o8bob2o2b2o2b2obo15bobo34bo8bo4b2o3b2o5b3o6bo2b2o2bo6b2o3b2o5b2ob4o5b5o3b5o5b4o2b4o49b2o5bobobo19b4o18bob4obo6bo2b2o2bo57b2obob2o16bob2obo18b2ob2o43b3o14bob6o$225bo11b7o23bob3o2bo28b2ob4ob2o13bo2b2o2bo19b3o34b2o4b2o15b2obo6bo2b4o2bo6b2ob2o9bob2o6bo3bobo3bo8bo4bo68bobo2bobo5bob2ob2o16bob4obo6b2o4b2o20b2o33bo2bo3bo2bo13bobo2bo20b2obo42b2o16b5obo$224bobo8bobob3obobo28bo10bo3bo13b2o2b2o2b2o9b2o4b4o4b2o51bobo4bobo5b5o7bobo5bo6bo5b2o5b2o6bob2o6bo3b2ob2o3bo4b2o2bo2bo2b2o47bobo15bo2b2o2bo6bobob2o18b4o8bobo2bobo21b3o54bobob3o19bo2bo40b2obo18bo2b3o$222b7o5b2o2bobobo2b2o27bo29b2ob2ob2o16bo2bo20b2o38bo2bo6bobo3bobo5bob2o4b2o4b2o6b3ob3o8b2o6bo4bo3bo4bo3b2obob2obob2o46b2o17bo2b2o2bo9b2o32bo4bo22b2o34b2o3b2o15bob2o22b2obo35b2ob2o17bo4b2o$221bo2bobo2bo4bob2o5b2obo27b3o6b2ob3ob2o8b2obo8bob2o13b2o72b3ob3o6bobo4b3ob2ob3o5b3ob3o7bo10bob2o3b2obo5bo2b2o2b2o2bo46bo2bo18b2o10bob3o29b2ob4ob2o19bobo56b2o24b3o34b5o19bobobobo$220bobobobobobo4bobo5bobo28bob2o7bo3bo11bo3bo4bo3bo9bobo6bobo14b2o51b3ob3o8bo4bo2b4o2bo4bobo3bobo5b3obo7b3o5b3o8bo4bo51bo18b4o10b4o17bob2obo9b4o22b2o36b2ob2o15b2o23b3ob3o32b5o18bo2b2o$221bobo3bobo39b6obo5bo3b3o3bo6b2o3bobo2bobo3b2o8b2ob4ob2o17bo50bo5bo5b2o7b8o7b2ob2o8bob2o6b2o9b2o3bob4o2b4obo45bob2o15b3o2b3o8bo19bobo2bobo8b4o23b2o34bo5bo13b3o23b2o2b3o32b3o19b2o$222bo5bo5bobo7bobo24b4o2bo5bo2bobo2bo7b3o3bo4bo3b3o7bobob4obobo14bob2o48bobo3bobo5bo7b8o7bo3bo8bobo24b2o8b2o46b2o18b2o2b2o7bobo18bob6obo5b2o4b2o20bo38bobo14b2o2bo21bobo2b2o49bo$234bo2bo5bo2bo25bo2bo7bo2b3o2bo8bo3b2o4b2o3bo7b6o2b6o14bo51bo5bo6b2o5b2o6b2o19b2obo6bobo7bobo7bo4bo48b2o19bo4bo7b3o17b4o4b4o3b2o2b2o2b2o17bob2o36bo3bo14b5o21bo2bobo50b4ob2o$238b2ob2o30bo12bobo11b3obob4obob3o7bo12bo14b2o69b2o2bo2bo2b2o4b3ob3o11bo7b2o5b2o8b2o4b2o66b3o4b3o4b3ob3o14b12o4b2o4b2o19bo35bo2bo3bo2bo35bo3bobo49bo2b2obo$237bobobobo30bo8bob2ob2obo9bo2bob4obo2bo9b12o15bo64bob2o3bo8bo5b3ob3o8bobo8b3o3b3o9b2o2b2o67bob2o2b2obo4b4o32b10o20bo32b2o9b2o7bob2o23bobob2o51b3o3bo$236b2ob3ob2o26b5obo4b2ob5ob2o10bobo4bobo12b4o2b4o15b2obo64bo3bobo6bobo5b2ob2o9b2o10bobobobo9b2o4b2o67b2o4b2o7b3o18bob4obo5b3ob2ob3o20b2o32b3o5b3o6b2ob3o21b2o2bobo51b3o3b2o$238b5o29bob2obo5b2o5b2o11bobo4bobo11bo2bo4bo2bo16b2o63bo5b2o6b2o6b2ob2o20b4ob4o7b2o6b2o67b6o7bo2bo20bo2bo9bob2obo20b3o32bob2o5b2obo4b3o24bob2ob2obo49b2o2bo3bo$238b2ob2o28b2o3bo4b2o9b2o29b3ob2o2b2ob3o13bo2bo63bo6b8o6b7o8bo12b2ob2o9b4o2b4o66b2o4b2o7bo19b3ob2ob3o4bobob2obobo19b2o35b3ob3o5b2o4bo20bo2b2o2bobo48bo5bob3o$238bo3bo27b3o8b2o9b2o8b3o6b3o13bob2obo18b2o63bo7b2ob2ob2o6bobobobo7b3o10b2o3b2o85b6o8bo21b6o9b4o58bob2ob2obo3bo3b4o21b2ob2o2bo50b2o3b2o$238bobobo27bobo8b2o2b2ob2o2b2o9b10o8b3o2bob4obo2b3o12b2o64b2o4bobo4bobo20b2o12bobo12b6o69bo4bo7b2o21bo4bo7b2ob2ob2o19bo39b3o8b2o2bobo19b2o3bo51bob3obo$237bo2bo2bo26b3o13b3o13bo2b6o2bo7bo2bobobo2bobobo2bo14bo64b2o3bob2o2b2obo7b3o11b3o8b3ob3o9b8o68bo4bo8bobo17bo2bo2bo2bo73bo8bo2bobo23bo4bo51bo3bo$269bo12bob3ob3obo9b3ob4ob3o11bob2o2b2obo18bo65bo4b2o4b2o34b5o10bob4obo68bo4bo7bo3bo18bo4bo6b3o4b3o17bobo38b3o12bo19b2ob2o55b4o$238bobobo25bo2bo2bo8b2obobob2o12bobo2bobo15bob2obo19bobo62bo8bo2bo8bobobobo9b2o9bo2bo2bo10bob2obo82bobo22b2o9bob4obo19bo50b2obobo19bo3bobo47bo3bo3bo$239bobo26bo15bobobobo11b4o4b4o12b2ob2ob2o18bo63b3o33b2o11bo2bo2bo9bobo2bobo68bo4bo8bob2o15bob3o2b3obo3b2o2b2o2b2o17b3o47b4obobo19bobo2bo47bob2obo$268bo2b2o9bo2bo3bo2bo10bobo4bobo14b2o2b2o17b3o71b2ob2ob2o5b2obobob2o5b2obobo8bo5bo9b3o2b3o67b3o2b3o7bo18bo2b2o2b2o2bo3bo8bo17b3o46bobo2b3o25bo45bo4b2o$270b2o10b4o3b4o12bo4bo15b2o4b2o17bo63bo8b8o6bo5bo7bo12bobobobo9b3o2b3o67bo6bo10bo20b2o12b2o21b3o47bo29bobo46b2o3bo$270b2o11bobo3bobo11b3o4b3o12b4o2b4o15b2o64b2o6b8o18b3o12b2obob2o7b4o4b4o64bob2o2b2obo6b2obo20b2o10bob2obo20bo47bob3o24b4o46bo2bo2bo$282b2obo3bob2o9b2o3b2o3b2o10b2o2b4o2b2o16bo60b2o2bo50bo9b4ob4ob4o64bo2b2o2bo10b2o16bobo2bobo9b2o68b4o26bob3o44b6o2bo$283b2o5b2o10b4o4b4o11bob6obo17bo61bo2b2o31b4o10b2obobob2o5b2o2bob2obo2b2o65b2o2b2o7bobo22b2o11bo2bo68bobo24bobo2b2o43b2obo3bo$282b5ob5o11bo2b2o2bo11b4o2b2o2b4o17bo62bo33bo2b2o8bo7bo10bo2bo71bo2bo8bo2b2o32b2o2b2o67b2o25bo2b3o45bo3b3o$282bo2bo3bo2bo11bo2b2o2bo12bo2b2o2b2o2bo15b2ob2o95bo2b3o7bobo3bobo6bo2bo4bo2bo68b2o48b2o67b2o2bo22b4ob4o41b2o3b4obo$283bobo3bobo12bo6bo12bobobo2bobobo18b2o59bobo34bo3bo7b2obobob2o6b2ob2o2b2ob2o78b2o37bo2bo66b3obo21b4o2bobo43bo2bo2bo$283bobo3bobo12bo2b2o2bo12bob3o2b3obo79b2o33bo3bo12bobo9b2o2bo2bo2b2o117bo2bo66bob2o23bo51bo2b3o$284bo5bo13b2o4b2o13b2o6b2o17bobo58b2o36b4obo6bo3b3o3bo5b5o2b5o78bobo35bob2obo68bo21bo2bo47bob2o$282bobo5bobo12bo4bo16bo4bo19b2o60b2o33bob2o11b9o5b5ob2ob5o116b4o61b4obo24bobobo44b2obob2obo$284bo5bo15bo2bo41bo62bo37bo10b2o3bo3b2o8bob2obo81b4o34b2o2b2o60bo2b2o2bo22b5o43bo2bo$305b2o2b2o14bo2bo2bo2bo115bobobo8bob3ob3obo7bobo2bobo183bo2b3o2bo22bobo45bo3b3o$282bobo5bobo12bob2obo13b2ob2o2b2ob2o118bo9bo7bo9b2o2b2o183bo2bo3b2o21bob2obo43b2ob2o$283bo7bo12b2o4b2o12b2obo4bob2o118bo9bobo3bobo9bo4bo81bo102b2o3bo23bo5b2o38b3ob4o$282bo9bo11b2o4b2o11b3o8b3o115bo2bo9b2o3b2o12b2o82b2o38b4o61b2obo25bobo2bo43bobo$283bo7bo13bob2obo15bo6bo119bo13bobo13bo2bo82b2o36b6o57bobo3bo25b2ob4o40b2ob2o$299b3ob3o4b3ob3o7bo2bo4bo2bo116bobo10bo5bo9bobo2bobo79b2o37b2o2b2o61bo25bo2bo2bo40b3ob3o$283b2o5b2o7bobo4bo2bo4bobo7bo10bo118bo12bobo10b4o2b4o79bo36b3o2b3o57bo2bo25bob3o2bo38b2obob2o$282bo9bo5bobobob8obobobo8bo6bo123b2o6bo5bo7b2o2bo2bo2b2o80bo99b3o28b2ob2o40b2o$282b2o7b2o6b2ob2obo4bob2ob2o6b2o10b2o117bob3o6bo5bo11bo2bo84b2o35b4o57bobo2bo26b3ob2o36b2o2b2o$300b4obob2obob4o5bobobo8bobobo115bob4o4bobo3bobo5bo3b2o2b2o3bo78bo37b4o58bobo27bob2o2bo35bo2b2o$281bobobo3bobobo7b6o2b6o7bo2bo8bo2bo117b3o5bob2o3b2obo5bob2o4b2obo79b3o35b4o57bo31b3obo37b3o$282bobo5bobo7bo2bo2bo2bo2bo2bo6b2obo8bob2o116bo4bo4b2o5b2o5b3o8b3o78b3o35b4o59b2o28bobo36b6o$281b3o7b3o9bobo4bobo9bo14bo125bob2o3b2obo95bo2bo35b4o56b4o30b2o38b2o$303bobo4bobo11bob2o4b2obo120b2o6bobo3bobo6bo4b2o4bo78b3o35bo4bo55b2ob2o65bobo2bo$302bo3bo2bo3bo11b2o6b2o121bo9b2ob2o10b2ob2ob2o80b5o33b2o2b2o52bo5bo32b2o35bo$301bobo2bo2bo2bobo9bobo6bobo119bo7bo9bo7b2o4b2o84bo33b2o2b2o50bob3obo35bo31b2obo$301b2obo6bob2o9bobob4obobo118bobo4b2obo7bob2o4b2ob4ob2o78b2o3b3o30b3o2b3o46b2o3bob2obo31b2o30bob3o$303b2ob4ob2o10b2o3bo2bo3b2o117bo6b2obo7bob2o92b8o31bob2obo47b3obo4bo34bobo26b3ob3o$303bo2b4o2bo10b3ob2o2b2ob3o117b2o7bob2o3b2obo8b2o2b2o81b6o33b4o48b4o4bo33b2obo26bob2ob2o$305bo4bo17b4o122b2o7b2ob2ob2ob2o5b2o2bo2bo2b2o117bo2bo46b6o39b5o21b2o6bo$307b2o15bo4b2o4bo130bo3bo9bo3b2o3bo80b2o35bo4bo44bo4bobo36b2obo24bo2bob2obo$305b6o14b3o4b3o132bobo9b4o4b4o78bob2o35b4o44bobo3b2o36bo3b3o20b2o7bo$305b2o2b2o12b2ob2ob2ob2ob2o114b4o10bo5bo7b5o2b5o80b2o82b2obo2bo37b2o3bo22b3o4bo$304b2o4b2o10b2o5b2o5b2o113b2o2b3o6bo2bobo2bo6b2o3b2o3b2o79b2o81bob2obo39b2obo32bo$303bob6obo9bob2o8b2obo115b3o7b2o2b3o2b2o6b3ob2ob3o79bob2o79bob2o3b2o36bo3bo24bo3bo2bobo$302bo3b4o3bo8bo14bo118b3o5bo7bo6bo2bob2obo2bo81bo79bobo2bo41b3o23bo2bob3o$301bo12bo6bob2o10b2obo116b2o7b2o2bo2b2o6b2obo4bob2o80bobo77b2obobobo39bo2bo23bob2o2b2o$302bo10bo7bobobo8bobobo117b3o6bo5bo7b4o4b4o81b3o76bob3obo40b3o2b2o17bo3b2o$301bo12bo7bob3o6b3obo118bo21b2obob4obob2o78bobo78bo2bobo42bo3bo19b2ob2obo$301bo12bo10b2o6b2o121bo7b3o3b3o6bo10bo80bo3bo75b4o44bo2bo19b2obo$301bobo8bobo10b2o6b2o121bo8b2obob2o6bo2b8o2bo78bobo75b3obo43b3o3b2o17b2o3bo$300b2obo3b2o3bob2o8b3o6b3o119b2o8b2o3b2o6b2o10b2o79bo126b3o19bo3b2o$301b3o2b4o2b3o139bo3bo19bo12bo78bo76bo2b2o47b2o2b2o14bob2o2bo$300bob4ob2ob4obo7b2o10b2o119b3o6b3ob3o6b2o3b4o3b2o78b2obo71b2obo2bo46b2o3b2o16b2o$301b14o8bobo8bobo117bo2bo8bo3bo9bob2o2b2obo81bo76bob2o47b4o13bob2obo$303bobo4bobo8b2ob2o8b2ob2o116b4o6b3ob3o9bobo2bobo156bo3bo47b3obo14b6o$303bo8bo8b2o2b3o4b3o2b2o117b3o7bobobo10bobo2bobo82b3o72b2o48bob2o16bobobo$302bob8obo9b3o8b3o117bo10b3ob3o99b2obo67b4obo48bo18b2obo$304bo2b2o2bo11bob3o4b3obo117bo9bob2ob2obo96bo4bo66b4o2b2o44bo4bo16b2o2bo$304bo2b2o2bo12bo10bo116bobo6b3obo5bob3o94b3o67bo7bo43b3ob2o15bobo$307b2o15bo2bo4bo2bo114b3o2bo5b2o11b2o93b2obo68bo5bo43bob6o9b2o2bob2o$305b6o11bo3bo6bo3bo113bo3b3o7b2o3b2o98bo70bo3bobo43bo2b2obo11b3obo$306bo2bo13b2obo6bob2o114bo3b2o7bob2ob2obo96b4o65bo6bo46b2o13bo2b2obo$305bob2obo10b3o12b3o111b2o2b2obo6bobo3bobo95bob2ob2o64b2o4bo45b3o14bob3o$305b6o12b3o8b3o114bobo11b3ob3o98b2o66b3o3b2o45bo2bo11b3o3bo$305bob2obo12b2o10b2o116bo118b2o64b3o50b4o10b4o3bo$304bo6bo10b2o12b2o114bo119b3o65b2o52bo8bobobo4bo$305b6o11b2obo8bob2o113b4o183bobo48bob4o7bo2b2o2bo$307b2o14bob2o6b2obo114b3o234bob2o2bo5b3o4bob2o$305bo4bo11bo2b2o6b2o2bo113bo2bo117bobo61bob2o47bo3b3o6b2ob2ob3obo$304bo2b2o2bo11bo2bo6bo2bo117bo117b3o63b2o49bo3bo4b2ob2obobobo$305b6o12bo2bo6bo2bo114bobobo114bo2bo62bob2o45bob5o5bo$304bo2b2o2bo11b2o10b2o115bo2b2o112b5o63bo46bobobob2o4bo8b2o$305bob2obo12bobo8bobo116b2o114bo2b2o62b3o44bob2o2bo5b3o7bo$304b2o4b2o9b2obo2b2o2b2o2bob2o113b2o114b2ob3o109bo10bobo6bo$305b2o2b2o11bo4b2o2b2o4bo114bo116b2o62bob2o45b2ob2o7b2o7bo$306bo2bo12b5o6b5o112bob4o112bo3bo61bo46bobo3bo8bo6bo$305bo4bo11bo3bo2b2o2bo3bo116bo114bo2bo61bo44b6o8b2o2bo4bo$323b2obobo2bobob2o115b2obo116bo61bo43b2o2bobob2o5bo2bob2ob2o$322b2o4bo2bo4b2o115b2obo115bo59bobo43b3obo2bo8bobo3bo$327b2o2b2o119b3obo114bo60bo2bo41bobo6bo5b2obo3bo$452b3o176bo3bo42b2o10bobobo$325b2o6b2o116bo179b3o45bo11b3o$325b2o6b2o117b3o177b2o46bo4b3obobo$631bo56b4o$324bo2b6o2bo118b2o172b2o53b2o3b3o$324b3o6b3o118b3o170bo2bo52bobobo$325b2o2b2o2b2o119b2o170bo3bo50b2obo4bo$323bo3b2o2b2o3bo115bo2bo169bobo2bo51bo7bo$324bo3bo2bo3bo116bo2bo169b3o51bobo7bo$323bo4bo2bo4bo116bo2bo171bo50bobo4b3o$325bobo4bobo120b2o167b2o2b2o48b2o6b2o$326bobo2bobo119bo2bo167bo3b2o51b2obob3o$325bo8bo117bo2bo167b3obo53bobo2bo$326bo6bo120bo167b2o2b2o50bo4b2o$324bo3bo2bo3bo286bo3bo52bobo$324bo4b2o4bo116b2o169bo54bo$324bo10bo117bo169b3o48bo2bo$324bo3b4o3bo115bobo170bo50b2o$324bob3o2b3obo114bo171b2o$324bo2b2o2b2o2bo114b4o165b2obo49b3o$323bo3bob2obo3bo114b2o165bo2b2o45bo2b2o$322bo3bob4obo3bo113bo2b3o162bo47bo2b3o$323bo2b8o2bo113b7o161b2o46b2o2b3o$323b2o10b2o114b2obo211b2o4b2o$323bobobo4bobobo113b2o2b2o216bo$322bob2o2bo2bo2b2obo116bo210bobo2bo$323bo2b3o2b3o2bo117bo209bob2o2b2o$322b5o6b5o324bob5o2bo$322b2o2bo6bo2b2o115b2o207bo2b6o$322b2ob3o4b3ob2o117bobo207b2o$324bobo6bobo117b2o2b2o202b2obobo$452b3obo199b2obo2bo$452bo205bobobo$323bo12bo116b2o201bo2bobo$323b4o6b4o118bo198bobo2bob2o$322bo4bo4bo4bo116bobo197b3o4b2o$321b4o10b4o116b2o199bobob3o$322b3o10b3o116bo199bob3o$455bo197bob5o$322bobo10bobo115b2o198b2ob4o$320bo2b2o10b2o2bo311bobobobo$322b4o8b4o312b2o$324bo10bo314b3o$323bo12bo314b2o$321bo2bo10bo2bo306b4obo$323b2o10b2o306bo2b2ob2o$325b2o6b2o307bo2b4o$325bo8bo308bobo2bo$322b3o10b3o303b2o2b2o2bo$325bo8bo308b4obo$328b4o310bo$327b2o2b2o$326b2o4b2o$325b3ob2ob3o$323bobobob2obobobo$322b2o2bo6bo2b2o$321b2o3b2o4b2o3b2o$320bobo4b6o4bobo$320b2o2bobob4obobo2b2o$327b2o2b2o2$326b3o2b3o$324bo2b2o2b2o2bo$324b2ob6ob2o$327b6o$324bo10bo$325bobo4bobo$327bob2obo$325bo8bo$328b4o$328b4o$328bo2bo$327bo4bo$327bob2obo$326bo2b2o2bo$325bo2bo2bo2bo$325b2o6b2o$324bo10bo$326bo6bo$327bo4bo$323bobo8bobo$322bob2o8b2obo$322bobobo6bobobo$322bobo10bobo$324bo10bo$323bo12bo$322b3o10b3o$325b2o6b2o2$324b2o3b2o3b2o$324bo2b6o2bo$323bo2bob4obo2bo$323b2o2bo4bo2b2o$324b4ob2ob4o$324b2o3b2o3b2o$324bob8obo$323b3ob6ob3o$323bo12bo$324bobo6bobo$320b2o2bo10bo2b2o$323bobobo4bobobo$321bobo2bo6bo2bobo$324b2o8b2o2$323bo3bo4bo3bo$323bo12bo$325bo8bo$321bob2o10b2obo$321b3obo8bob3o$323bo12bo$323bo12bo$321b2o14b2o$323bo12bo$321b3o12b3o$321bo16bo$324bo10bo$323bo12bo$324bobo2b2o2bobo$323b2o2b6o2b2o$324bo2bo4bo2bo$326bobo2bobo$323b2obobo2bobob2o$323bo3b2o2b2o3bo$323bo2b3o2b3o2bo$326bo6bo$325bob2o2b2obo$327bob2obo$327b2o2b2o2$327bo4bo3$329b2o$329b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 WIDTH 3500 HEIGHT 1085 ZOOM 4 ]]
(click above to open LifeViewer)

the flocks

thank you to for Lapintra/TrollDu13EtDu14/Lapin Acharné for finding a surprisingly small 2c/8 in apgsearch,[8] which works in all three rules and has been proven to be minimal-width by ascendantDreamweaver

the dreamweaver also increased c/5 to logical width 11 (except in B36/S12, where my laptop's 10 was sufficient in odd and even, and they have not done asymmetrical yet), 4c/9 to 11 and 2c/8 even (in which none were known previously) to 18, 16 (found), and 18, respectively

B3/S12 (Flock)

all partials for c/2 seem to be single-row irrespective of period, I conjecture there are no c/2's in this rule

Velocity Asymmetric Symmetric Gutter-preserving Glide-symmetric
odd even odd even
(1,0)c/3 11
20 (JLS)[9]
24 (ikpx2)[10]
21
39 (JLS)[9]
47 (ikpx2)[10]
22
40 (JLS)[9]
48 (ikpx2)[10]
23 < w ≤ 71[11]
41 (JLS)[9]
49 (ikpx2)[10]
38 (LLSSS)[12]
(1,0)c/4 11 17 22 17
13 (JLS)[10]
(1,1)c/4 13 (gfind) 25 (gfind) 25 (gfind) 24 (gfind) < w ≤ 36
(1,0)c/5 11 < w ≤ 18 21 24[n 32] 23
(2,0)c/5 12 25[n 32] 24 < w ≤ 34 25
(1,1)c/5 11 (gfind) 19 (gfind)
17 (JLS)[10]
19 (gfind)
(1,0)c/6 10 17 < w ≤ 21 18 19
(2,0)c/6 10 19 20 21 11 (gfind) 10
(1,1)c/6 9 (gfind) 17 (gfind) 17 (gfind) 16 (gfind) < w ≤ 24
(1,0)c/7 9 15[n 33] 16 17
(2,0)c/7 10 19 20 21
(3,0)c/7 12 23 24 25
(1,1)c/7 7 (gfind) 11 (gfind) 11 (gfind)
(1,0)c/8 7 13 14 15
(2,0)c/8 10[n 32] 17[n 32] 18 17 9 < w ≤ 17 8
(1,1)c/8 7 (gfind) 13 (gfind) 13 (gfind) 12 (gfind)
(2,2)c/8 8 (gfind) 15 (gfind) 15 (gfind) < w ≤ 21 14 (gfind)
(3,0)c/8 10 19 20 21
(1,0)c/9 7 11 12 13
(2,0)c/9 8 13 14 15
(3,0)c/9 9 17 18 19
(4,0)c/9 11 21 22 23

B36/S12 (HighFlock)

Velocity Asymmetric Symmetric Glide-symmetric
odd even odd even
(1,0)c/3 11 21 22
14 (JLS)[13] 29 (JLS) 30 (JLS)
(1,0)c/4 10 15 16
(1,1)c/4 13 (gfind) 25 (gfind) 26[6]
(1,0)c/5 10[n 34] < w ≤ 14
11 (gfind)[14]
19 20
(2,0)c/5 11[n 32] 17 20
(1,1)c/5 9 (gfind) 17 (gfind) 19 (gfind)
(1,0)c/6 10[n 35] 17[n 36] 18
(2,0)c/6 10 < w ≤ 15 19 20 9 10
(1,1)c/6 9 (gfind) 15 (gfind) 16 (gfind) < w ≤ 24
(1,0)c/7 9 15 16
(2,0)c/7 10 19 20[n 37]
(3,0)c/7 12 23 24
(1,0)c/8 7 11 12
(2,0)c/8 10[n 32] 17 16[n 38]
(3,0)c/8 10 19 20
(1,1)c/8 6 (gfind) 9 (gfind) 10 (gfind)
(2,2)c/8 8 (gfind) 13 (gfind) < w ≤ 21 14 (gfind)
(1,0)c/9 6 11 12
(2,0)c/9 8 13 14
(3,0)c/9 9 15 16
(4,0)c/9 11 21 22
(1,0)c/10 6 11 12
(2,0)c/10 6 11 12
(3,0)c/10 7 13 14
(4,0)c/10 8[n 39] 17[n 39] 18[n 39] 7 8[n 39]
17 18
(3,0)c/15 4 9 8

B38/S12 (Pedestrian Flock)

Velocity Asymmetric Symmetric Gutter-preserving Glide-symmetric
odd even odd even
(1,0)c/3 11 < w ≤ 38[12]
20 (JLS)
21
27 (JLS)
22
28 (JLS)
23 < w ≤ 71[11]
27 (JLS)
(1,0)c/4 11 < w ≤ 13 17 22 17
13 (gfind)[15]
(1,1)c/4 13 (gfind) 25 (gfind) < w ≤ 33 25 (gfind) 24 (gfind) < w ≤ 36
(1,0)c/5 11
13 (gfind)[16]
21 24[n 32] 23
(2,0)c/5 12 25[n 32] 24 < w ≤ 34 25
(1,1)c/5 11 (gfind) 19 (gfind) 19 (gfind)
(1,0)c/6 10 17 < w ≤ 21 18 19
(2,0)c/6 10 19 20 21
(1,1)c/6 9 (gfind) 17 (gfind) 17 (gfind) 16 (gfind) < w ≤ 24
(1,0)c/7 9 15[n 33] 16 17
(2,0)c/7 10 19 20 21
(3,0)c/7 12 23 24 25
(1,0)c/8 7 13 14 15
(2,0)c/8 10[n 32] 17[n 32] 18 17 9 < w ≤ 17 8
(3,0)c/8 10 19 20 21
(2,2)c/8 w ≤ 21
(4,0)c/9 11 21 22 23

B3ai4/S23

thank you to the dreamweaver once more for improving the 2c/5 and 3c/7 bounds (and thereby finding the surprisingly small 2c/5 asymmetrical)

Velocity Asymmetric Odd-symmetric Even-symmetric
(1,0)c/2 12 23 24
(1,0)c/3 10 21 22
(1,0)c/4 10 19 20
(2,0)c/4 11 21 22
(1,0)c/5 10[n 40] 17 18
(2,0)c/5 11 21 22
(1,0)c/6 9 15 16
(2,0)c/6 10 < w ≤ 15 21 20
(1,0)c/7 7 13 14
(2,0)c/7 9 15 16
(3,0)c/7 11 21 22

B34kz5e7c8/S23-a4ityz5k (yujh rule :-)

Velocity Asymmetric Odd-symmetric Even-symmetric Gutter-preserving
(1,0)c/2 11 11 24 11
15 24
(1,0)c/3 11 11 20 11
11 17
(1,0)c/4 9 9 16 13
(2,0)c/4 5 11 12 11
14 13
(1,0)c/5 8 17 18 17
20 19
(2,0)c/5 11 19 20 < w ≤ 26 21
(1,0)c/6 10 17 18 19
(2,0)c/6 10 17 20 19
(3,0)c/6 10 15 20 19
(1,0)c/7 9 15 16 17
(2,0)c/7 9 17 18 19
(3,0)c/7 10 19 20 21
(1,0)c/8 7 13 14 15
(2,0)c/8 8 15 16 17
(3,0)c/8 10 19 20 21
(4,0)c/8 7 11 14 13
(3,0)c/9 8 < w ≤ 17 13 16 15
(5,0)c/10 8 15 < w ≤ 21 16 15
(6,0)c/12 7 11 14 13
(7,0)c/14 6 11 < w ≤ 19 12 13
(11,0)c/22 5 7 < w ≤ 17 8 9
(12,0)c/24 4 7 < w ≤ 21 8 < w ≤ 24 9
(10,0)c/26 4 < w ≤ 7 7 8 9
x = 495, y = 70, rule = B34kz5e7c8/S23-a4ityz5k 76bo9b3o6b3o5b3o3b3o5b3o5b3o5b3o11b3o5b3o4b3o3b3o4b3o4b3o4b3o3b3o7b3o14b3o6b3o3b3o8b3ob3o13b3o2b3o7b3o7b3o9b3o2b3o13b3ob3o11b3o7b3o8b3o2b3o9b3ob3o10b3o6b3o11b3o4b3o7b3o5b3o7b3o10b3o8b3o3b3o$6b3o5b3ob3o5b3o5b3o5b3o14b3o5bo7b3o8bobo6bobo4bo2bo3bo2bo3bo2bo5bo2bo4bob4o5b4obo5bo2bo3bo2bobo2bo4bo2bo2bo2bo3bo2bo3bo2bo6bob2o12b2obo6bob2ob2obo7b2obobob2o11bo8bo5bo2b3o3b3o2bo7bo8bo11b2obobob2o11bo9bo11b4o13bobo13bo8bo13bo4bo2b2o5b2o2bo3bo2b2o5bo2b2o8b2o2bo4bo3bo5bo3bo$6bo2bo3bo2bobo2bo3bo2bo5bo2bo3bo2bo14bo2bo3b3o4bo2bo2bo6bob2o4b2obo6b2o3b2o4bo3bob3obo3bo2b2o2bo2bo3bo2bo2b2o4bob2o3b2o5b2o4bo8bo5b2o3b2o8bo2b2ob2o4b2ob2o2bo5b2o2bobo2b2o4b2obo5bob2o8b2o8b2o5bo3b2ob2o3bo7b2o8b2o8b2obo5bob2o27bo2bob2obo2bo5bo2bo3bo2bo21bo7bo7bo2bo7bo2bo3bo2bo6bo2bo10bo2bo2b3o13b3o$2b3obo3bobo3bobo3bobo3bob3obo3bobo3bob3o6b3obo3bob2obo4b3ob3o5bobob2o2b2obobo6bo3bo5bo2b2obobob2o2bo2bobobo3bobo3bobobo3bo7bo7bo6bo4bo8bo3bo9b3o4b2o2b2o4b3o5bobo5bobo2b2obobo5bobob2o3b4obob4obob4o7bobo9b4obob4obob4o3b2obobo5bobob2o4b2o3b2o3b2o3b2o4b3o6b3o5b3o5b3o6b2o3b2o5bo2bo7bo2bo4b2o3bo3bo3b2o3b2o3bo4b2o3bo6bo3b2o4bo13bo$bo2bob2o2bobo2b2ob2o2bobo2b2obobob2o2bobo2b2obo2bo4bo2bob2o2bob3o5bobobobo6bo3bo2bo3bo4bo9bo4b2o2bobo2b2o6bobobobobobobobo17bo21bo9bo7bob2o3bo2bo3b2obo24bo5bo8bo3b2o2b2o2b2o3bo3b2o2bobo2b2o5bo3b2o2b2o2b2o3bo8bo5bo9bo2bo2bo3bo2bo2bo2b2o12b2ob2o11b2o4bo2bo2bo8bo7bo9b2o7b2o7b2o8b2o10b2o6bo2bo7bo2bo$o3bo2b2o5b2o3b2o5b2o2bobo2b2o5b2o2bo3bo2bo3bo2b2o4bobo17bobobo2bobobo6bo5bo5bobo2bobo2bobo5bob2o2bobo2b2obo15b5o21bo5bo10b4o2bo2bo2b4o22b2o2b2ob2o2b2o5bo3bo8bo3bo6b2ob2o8bo3bo8bo3bo5b2o2b2ob2o2b2o7bo3bo5bo3bo5bo10bo5bo9bo5b2o5b2o4bobo9bobo5b3o7b3o5b3o7b3o10b3o5bo4b2ob2o4bo$o2b2o2bobo3bobo3bobo3bobo2bobo2bobo3bobo2b2o2bo2bo2b2o2bobo24b2ob4ob2o7bo5bo7bob2ob2obo6b2ob2ob2ob2ob2ob2o40bo5bo10bo14bo20bob3o2bobo2b3obo3bo2b2o8b2o2bo5b2o3b2o7bo2b2o8b2o2bo3bob3o2bobo2b3obo58bo7bo23bo3b3ob3o3bo3bo3b3o3bo3b3o4b3o3bo4bo5bobo5bo$2b2o23bob2ob2obo11b2o6b2o29b5o2b5o5b2o5b2o5bobobobobobo6bob2ob2ob2ob2obo15bo3bo20b2o5b2o7b2o3b4o2b4o3b2o19bo5bobo5bo25bo2bo3bo2bo27bo5bobo5bo4b2obobob2ob2obobob2o34bo2b2obob2o2bo2bo2bo7bo2bo4bo13bo3bo9bo16bo4b2o2bobobobo2b2o$bobo22bobobobobobo10bobo4bobo29b2o8b2o5b2o5b2o5bob2o3b2obo7b3o7b3o16bo3bo20b2o5b2o7b2obo5b2o5bob2o21b2o7b2o8bo12bo5bo2bo3bo2bo7bo12bo8b2o7b2o9bobo7bobo40b2obob2o5b2obo7bob2o53b3ob2obobob2ob3o$26bob2o3b2obo9b2o8b2o45bo7bo7bo5bo9b2o9b2o16b2ob2o20bo7bo7b2o2b2obo4bob2o2b2o20b2o9b2o25bo3bo3bo3bo27b2o9b2o7b2ob2o5b2ob2o37bobo2bo2bobo5b2o7b2o19bo5bo13b2o4b2o9b2o4bobo4b2o$28bo5bo10bo2bo6bo2bo28b3o4b3o5bo2b2ob2o2bo6bo5bo10bo9bo19bo21bo2b2ob2o2bo10b3o6b3o62b3o7b3o7b2o8b2o30bo9bo40bo7bo6bo9bo19b2o3b2o31bo2bobobobo2bo$28bo5bo9b2o12b2o28bo6bo6b3obobob3o5bobo3bobo7b3o9b3o14b7o18b3obobob3o47bo9bo29bo5bo9bobo8bobo8bo9bo60b2o7b2o5b2o7b2o20b2ob2o15bo4bo11b4obobob4o$27bobo3bobo6b2obob2o6b2obob2o41b2obobob2o8bo3bo13b3ob3o17b2o5b2o18b2obobob2o10b4o6b4o24bo9bo26bo2bo5bo2bo6bob2o6b2obo8bo9bo7b2o3b2o3b2o3b2o37b4ob4o6bo9bo21bobo14bobo4bobo9b2obobobobob2o$27bobo3bobo7bobo12bobo41bo3bobo3bo7b2ob2o13bobobobo17b2ob3ob2o17bo3bobo3bo7b3o12b3o20bo13bo23b2o3bo3bo3b2o3bo3bobo4bobo3bo4bo13bo6bo3bo5bo3bo38bobo3bobo7b4ob4o21bo3bo12bo3bo2bo3bo9bo3bobo3bo$41b3obobo8bobob3o39bo2bo3bo2bo8bobo14bobobobo18b2obob2o18bo2bo3bo2bo6b2o16b2o20bo11bo25b4obobob4o4bo3b3o4b3o3bo5bo11bo5b4ob4ob4ob4o40bo11bo2bobo2bo18b2o2bobo2b2o8b2o2b2o2b2o2b2o7bobob2ob2obobo$40bo8bo4bo8bo39b3o3b3o8bo3bo15bobo21b5o20b3o3b3o7b2o16b2o21bo9bo26bo4bobo4bo6b2obobo2bobob2o8bo9bo59b2o9b2o7b2ob2o19bo11bo7b3o2bo2bo2b3o5bobo2b2o3b2o2bobo$44b4ob2o2b2ob4o44b2o3b2o7b2o5b2o63b2o3b2o8b2o16b2o58bo11bo11bo2bo34bo9bo37b2o3bobobo3b2o6bo3bo18bo6bo6bo25bo5bo3bo5bo$42bo3b3obo2bob3o3bo44bobo9bo7bo38b3o24bobo9bo20bo20b2o7b2o26bob2o5b2obo11bo2bo12b3o7b3o57b2o11b2o4b2obobob2o17bo11bo8bo10bo$49b2o2b2o48bob2ob2obo6bo7bo62bob2ob2obo9bo14bo60b4ob3ob4o9bo6bo11b2o7b2o8bo52b2o5b2o7b2obobob2o18b3o5b3o9bo10bo6b2ob2o7b2ob2o$47bob2o2b2obo44b2o2b2ob2o2b2o4b2obobob2o60b2o2b2ob2o2b2o3bo22bo18bo11bo27bo7bo12bo4bo11bo11bo8bo10bo40b2o5b2o9b2ob2o20bo2bo3bo2bo9bo10bo$101bo4bobo4bo8bo64bo4bobo4bo3b2ob2o14b2ob2o19b3o5b3o49b2o2b2o9b2o13b2o5bobo50bo7bo7bo7bo19b3o3b3o$121b3o79bobobo14bobobo21b2o3b2o50bob4obo8b2ob2ob2ob2ob2ob2o5bob2o48bo9bo7bo5bo20b3o3b3o$103bo2bobo2bo10bo66bo2bobo2bo5bo22bo22bo3bo35bo15bo6bo9b4o2bobo2b4o10bo45b2o11b2o4b3o3b3o$104bobobobo9bobobo65bobobobo7bobo16bobo19b3o2bobo2b3o29b2ob2o14bob2obo12bo3bobo3bo9b5o46b3o5b3o7b2o3b2o$104b3ob3o8b7o64b3ob3o9b2o14b2o20bob3o5b3obo28b2ob2o13b3o2b3o12bo7bo12bobo44b2o11b2o$103b2obobob2o7b2obob2o63b2obobob2o5bob2o16b2obo17bobob3ob3obobo27bobobobo12b2o4b2o11bo9bo60bo2bo3bo2bo5bo2bo3bo2bo$106bobo10bobobobo63bob2ob2obo4b2obo18bob2o15b2o4bobobo4b2o26bo5bo30b6ob6o57bo13bo7bobo$105b2ob2o8bo2bobo2bo63bobobobo6bobo18bobo16bo15bo26bo5bo33bobobobo61b2ob2o3b2ob2o5b4ob4o$105bo3bo80bobobobo6b3obo14bob3o17bo13bo28b2ob2o31bob2obobob2obo58b3obo3bob3o8bobo$103b3o3b3o77bo2bobo2bo6bobo16bobo58b2o2bobo2b2o29b2o2bobo2b2o61b2o5b2o5bo2bobobobo2bo$103bo2bobo2bo79b2ob2o8b2o18b2o58b5ob5o31bobobobo64bo5bo5bo3bobobobo3bo$103bo7bo80bobo9bo2bo14bo2bo56b2o4bobo4b2o25b3obobobobob3o58b11o3bobo2bo3bo2bobo$191b2ob2o11bo14bo58bo3b4ob4o3bo97bob7obo6bo7bo$105bo3bo95b3o14b3o56b2ob2o2bobo2b2ob2o23bo6bobo6bo62bo8bo2bo7bo2bo$285b4ob4o27bo2bobobobobobo2bo74bo7bo$207bo14bo62bo7bo27bo3b2obobob2o3bo$206b3o12b3o64b3o35bobobobo77b3o7b3o$205b5o10b5o62b5o36bobo82bo5bo$206b3o12b3o100bo3bobo3bo76bo9bo$206bobo12bobo63bo3bo31b2ob3ob3ob2o$323b2o9b2o75b2ob2ob2ob2o$207bo14bo62b3o3b3o29b2o9b2o74bo4bobo4bo$207b3o10b3o62bo3bo3bo29b2o9b2o73bo2b2obobob2o2bo$209bobo6bobo64bo2b3o2bo29b5o3b5o$207b5o6b5o62b2o5b2o29bo2b3ob3o2bo74bo11bo$207bo14bo64b5o29b2o2b2obobob2o2b2o$208b5o4b5o66bobo30b3ob2o5b2ob3o70b2o13b2o$208b2o2bo4bo2b2o99b2o13b2o71b2o11b2o$212b2o2b2o195b3ob3o$213bo2bo195b2obobob2o$412b2obobob2o$214b2o197b3ob3o$408b3ob2obobob2ob3o$411bob3ob3obo$410bobob2ob2obobo$409b6o3b6o$408bo5bo3bo5bo$408bobo11bobo$409b2o11b2o$410bo2b2o3b2o2bo$409bob2o2bobo2b2obo$409bobo3bobo3bobo$410b4obobob4o$411bobobobobobo$412b2obobob2o$413bobobobo$412b2obobob2o$411b2ob2ob2ob2o$412b2obobob2o$413b3ob3o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 WIDTH 2030 HEIGHT 350 ZOOM 4 ]]
(click above to open LifeViewer)


self-complementaries

B35678/S4678 (Holstein)

c/2 up to width 14 reports no partial results are found in any symmetry

c/4 w24e searched by dreamweaver

Velocity Asymmetric Symmetric Glide-symmetric
odd even odd even
(1,0)c/3 13 19[n 41] 20
15 (JLS)[17]
(1,1)c/3 18 (gfind) 33 (gfind)
(1,0)c/4 11 21[n 42] 24[n 43]
(1,1)c/4 12 (gfind) 23 (gfind) 24 (gfind)
(1,0)c/5 10 15 14
(2,0)c/5 12 23 24
(1,0)c/6 10 19 20[n 44]
(2,0)c/6 10 19 20
(1,0)c/7 9 15 16
(2,0)c/7 10 19 20
(3,0)c/7 11 21 22
(1,0)c/8 8 13 14
(2,0)c/8 8 15 16
(3,0)c/8 11 19 20
(1,0)c/9 7 13 14
(2,0)c/9 8 15 16
(3,0)c/9 10 17 18
(4,0)c/9 11 21 22

B3578/S24678 (Geology)

Velocity Asymmetric Symmetric Gutter-preserving Glide-symmetric
odd even odd even
(1,0)c/2 7 11 10 11
(1,0)c/3 7 11 10 13
(1,1)c/3 9 (gfind) 17 (gfind) 19 (gfind)
(1,0)c/4 7 11 12 13
(2,0)c/4 7 11 10 11
(1,1)c/4 10 (gfind) 13 (gfind)[n 45] 17 (gfind) 12 (gfind)
(1,0)c/5 8 11 12 13[n 39]
(2,0)c/5 10 13 16 19
(1,1)c/5 8 (gfind) 13 (gfind) 17 (gfind)
(1,0)c/6 7 11 10 15
15
(2,0)c/6 7 11 10 13
(3,0)c/6 7 11 10 13
(1,1)c/6 7 (gfind) 11 (gfind) 13 (gfind) 12 (gfind)
(1,0)c/7 7 11 12 15[18]
(2,0)c/7 8 13 14[19] 17
(3,0)c/7 9 17[20] 18 19
(1,0)c/8 6 9 10 11
(2,0)c/8 6 9 10 13
(3,0)c/8 9 15 16 19
(4,0)c/8 7 11 10 11
(1,0)c/9 6 9 10 11
(2,0)c/9 6 11 12 13
(3,0)c/9 6 9 10 13
(4,0)c/9 9 17 18 19
(2,0)c/10 5 9 10 11
(5,0)c/10 7 11 10 13
(4,0)c/11 7 13 12 13
(6,0)c/12 6 11 10 13


notes

collapsed due to considerable length
  1. non-monotonic!
  2. [2] found a 71-cell version, gfind found a 68-cell
    however, at width 14, the shortest is 72 cells
  3. first found in [2], 106 cells, shortest at width 15 is 84 cells, at 17 is 78, at 19 and 21 is 60, at 23, 25 and 27 is 82
  4. first found in [2], also the first spaceship to be found in a width-10 or 11 gfind search
  5. first found in [2], 107 cells, shortest at width 19 and 21 is this 46-cell one
  6. 60 cells, shortest at width 14 and 16 is this 62-cell one, at 18 and 20 is this 54-cell one
  7. 184 cells, first found in [4], gfind agrees
    gfind reports the same spaceship for width 17
    Note the smallest known is a 152-cell width-19 found by May13[5]
  8. 71 cells, width 8 reduces to 61 cells
  9. 9*654 partial
    4b3o$3bob3o$4bo$3bo3b2o$4b2o$6b3o$3b2obo$2bob2obo$2bob2o$5obo$3o3bo$2bob3o$3bob2o$b2ob2o$o2b3o$3b3o$2bobo$bob3o$4b2obo$5b3o$5bobo$o2b4o$b2o2bo$bobo2$2b3o$3bo$2bob3o$5b2o$7bo$5bobo3$3b
    2o$2b4o$5bo$2b2o2bo$2bobo$3b2o$4b2o$3b2obo$3bo3bo$2bobo2bo$2b3obo$4bobo$3bob2o$4bo2$6bobo$5b3o$8bo$2b3ob3o$3b3o$2bo3bo$2b2obo$5bobo$2o2bo2$2b6o$4bob2o$bo$bo$2b3o$5b2o$3b4o$3b2obo$4b3o
    $6bo$4b3o$5bo$2bo$b2o$2b2o$o2b2o2$2obo$2bo2bo$bob3obo$4bobo$5b2o$5bo$6bo$4bo$4bo$2b2o$2b2obo$bo2b2o$b3o$5b3o$2ob2obobo$3o2bobo$2b6o$2b2o2b3o$2bo2bobo$o2b3o2bo$o2b3obo$b5o2bo$obo3bo$4b
    o2bo$3b3o$4b3o$2b3o$bob2o$2bob2o$2bob2o$2bobobo$b2obo$b2o2b2o$b3o$2bo$2bobo$bo3bo$3bo$3b3o$6bo$5b3o$4b2obo$o2bob2o$b2o$2bobo2$bo$2bo$2b3o$2bobo$3b3o$4b2o$5bo$4bo$5b2o$3b4o$2bob4o$3bo2
    b2o$3bobo$3bo$3bob2o$5bo$3b2o$3bobo$5b2o2$6bo2$4bob2o$3bo$4b2o$3bo2bo$2bo2b2o$3b3o$4b2o2$4bo2bo$5b2o$3bo3bo$2b2o$2bo$3bobo$2b4o$2bo2bo$b3obo$bo2bo$3bo2b2o$3bo2bo$4b4o$4bo$5bo$bo2bo$2b
    3o$bo2b2o$bo2bobo$2b4o$b3o$6bo$6bo$5bo$5b2o$5bobo$6b3o$7bo$3b4o$b2o$b2o$2bob2o$2bo$o$2o2$2b2o$2bo$3b5o$6bo$6bo$2bo3bo$b2obo$bobobo$2b2obo2$b2obo$4bo$3bo$bo2b2o$3b2o2bo$3b2obo$3bo2$2b2
    o$3bo$3bo$b2o$b2o$2bobo2$5b3o$7bo$4b2o$4bo$4bobo2$2b2o3b2o$2bob4o$4bo$4b2o$bo$3o$o2b2o$3bo$bo2$2b3o$3b2o$2bo$2bobo$4bo2$3b2o$3b3o$3bob2o$3bo$4b2o$3b3o$3b3o$2bob2o$5b2o$b3o$b4o$7bo$5bo
    b2o$b2o3b3o$obo$obo2bo2bo$7bo$7bo2$5b2o2$6bo$4bo$2b3o$2bobo$2bo4bo$3bo2b2o$3bo$3bo$6bo$5bo$2b3o$2bobob2o$bob2obo$2obob2o$2o3bo$5bo$2b4o$2bob3o$2bo$4bo$2bo$4bobo$bobobo$4b3o$4bo2bo$3b5
    o$4bobo$4b2o$5b2o$4b2o$4bo$6bo$3b2o2bo$4b2obo$5o$3bo2bo$4obo$2b4o$bo$3bobo$4b2o$3b3o$3bo3bo$6b2o$6bo$4bo$2b3o$b3o$3bobo$5bo$7bo$5b2o$3b3obo$5b2o$2bobo$2b2o2bo$4bo2$3bobo$5b2o$4b2o$4b3
    o$4b2o$4bo2$2bobo$3b2o$b2o$2o2bob2o$o2b2o2bo$bo3bo$6bo$7b2o2$5b3o2$3b2o$2bo$2b3o$3b2obo$3bobo3$3b2o$3b2o2bo$3bo2b3o$2bob3obo$4bo$3b2o$b3o$2b3o3$2b3o$2b3o$2bo3bo$2bobobo$3b2o$bob2o$obo
    $4bobo$2bo$3b4o$3b2obo2$4b2o$3bo2bo$4bob2o$4bobo$3b2ob2o$4bob2o$4b2obo$4bo$4bobo$3b3obo$4b3o$3bo$5b2o$4b3o$4bo$bo2b2o$2o4bo$b4o$obo2bo$b2o$2bo3b2o$2b5o$2b2o3bo$5b2o$5bo$7bo$5b2o$5bo$5
    bobo$4bob2o$3b3obo$2b3obo$2bob2obo$bob2ob2o$2b4obo$6bo$3bo$4bo$4b2obo$5bobo2$4bobo$5b2o2$4b2o$4bo$3b2o$4bo2$4b2o$3b3obo$3bo2b2o$3bobo$3bobobo$4bo2bo$4bo2bo$5b2o$3b2o2b2o$4b2o2bo$4bob2
    o$5b3o$5b3o$5b2o$6bobo$3b2ob2o2$6b2o$5b4o$6b2o$5b3o$3b2obo$b3obo$b4o$2b2o2bo$2bo$bo4bo$4b3o3$3b3o2$3bo$2b2o$b2obo$bo2bobo$2b3obo2$2bob3o$4b2o$5b2o3$2bo$2ob2o$bobo$o3bo$bobo$3bo$2bobo$
    2b4o$3b5o$3bo3b2o$5bobo$6bobo$6bo$3b2o$3bobo$2b3obo$4b2obo$b4ob2o2$4bo$2bob3o$2b6o$2b2obobo$3b3ob2o$3b2o2bo$2bo4bo$2b2o$bo2b2o$2b2obo$bo2$2bo$2b4o$bo3bo$4b2o$4b3o$5b2o$5b2o$6bo$2bob2o
    $3b2obo$3bob2o$3b2o$3b2o$2b2o$3bo$2bobo$bo$2b2o$3bo$bo$2bo$2b4o$2bo2bo$b2ob2o$bo2bo$3o2b2o$bobo$bo2b3o$b4o$ob3o$3o2b2o$b2ob2o$2b2o2bo$2b2o$2ob3o$2bob2o$2bob2o$3b4o$4bo$2b3o2$2b4o$3bo$
    3bob3o$3b2o3bo$5bobo$6bo$3b2o2bo$2bobo$3bo2$4b2o$3b2o$3b2o$3bo$bo2bo$bo2bo$3o$bo$ob4o$4b2o$b3obo$3b2o$2bob2o$3b3o$2bo3bo$2b4o$4b3o$bo$o2bo$ob2o$4b2o$5bo$2b2o$5b3o$4bo2bo$3b4o$bo2bo$b3
    o$2o2b2o$2o2bo$3bo2bo$b2obo$o2bo$5b2o$6b2o$2b4o$3bobo$4bo$3bo$5bo$5b2o$5b2o$5bob2o$7b2o$6bo$6bo2$3bob2o$3bo3bo$5o2b2o$bo2b2o$o2bobo$2b3o$3bo3bo$3bobo$3b2o$3b2obo2$b4obo$b2obo$3bo$3bo$
    4bobo$4b2ob2o2$3b3obo$3bob3o$5b2o$4b3o$4b3o$3b2ob2o$6bo$4b3o$5bo$3b3o$3b3obo$4b3obo$4bobo$2bob3o$3bobo$3b4o$2bob2o$2b6o$2b2o2bo$7b2o$3bo3bo$2bob2obo$3bob2obo$3b2ob3o$5b2o$4b2o$2b2o$3b
    ob2o$3o2b2o$b4ob2o$2obob2o$2b2o$2bo2bo$5o$bob5o$bob5o$bobobo$ob4o$4bobo$b5o$b2o2bo$3bobobo$5bobo$4bob2o$2bobobo$2b2o$2b2o$bo4b2o$4b2o2bo$3b5o$2b2obobo$2bobo2b2o$o5b3o$3b2obo$2ob2o2bo!
  10. found by the dreamweaver, who specified that it is not guaranteedly minimal-length for a width-11 since the search split and only one branch was necessary to search to find it, but shows that 11 is the minimum
    shares frontend with the longest width-10 (10*65) partial
    5bobo$5b3o$4bob2o$2b4o2bo$2b4o$6bobo$9bo$5bobo$4b4o$3bobobo$3b2o$5bobo$5b4o$4bobo$4b2obobo$4b2o$4b5o$3b2o$4bo3bo$2b2ob4o$2bobob2o$3bobobo$3b2o$2b2
    obo$b2o2b2o$7bo$3bo$2bo3b3o$2bob2obobo$2bobobob2o$4b2o2bo$6b4o$4b2obo$4b3o$5b2o2$3b2obo$2bo3b3o$3b2obobo$3b2obobo$3b2obobo$o2b5o$7b2o$2b3o2bo$2bo4
    bo$3bo3bo$3b2o2b2o$2bo2b3obo$b2obo$b2obo$o4bo$b2ob2o$3b5o$b4obo$bo2bo2bo$9o$bob4obo$2bo2bo2b2o$2bo2bobo$5bo3bo$2bobo$bobo$b3o2b4o$2obobob2o$3b4obo!
  11. this spaceship (with a forked tail) is in fact shorter, but higher-population
  12. 7*39 partial
    2b4o$2b4o3$4b2o$4bo2$b3o$bobo$3b3o$2b2obo$2bobo2$bobobo$2b2o2$bobo$obobo$bobo$o$3bo$3b2o$4bo
    $3b3o$o3bo$bobobo$3o3bo$2bo$bo2b2o$b2o2$b2ob2o$3o3bo$bob3o$bob2o$bobob2o$b2ob2o$2bo2bo$3b2o!
  13. 13*143 partial
    2bo7bo$b3obobob3o$ob4ob4obo$5bobo$4b2ob2o$4bo3bo$5bobo$4b5o$2b3o3b3o$3bobobobo$3b2obob2o$bob2o3b2obo$4bo3bo$4bo3bo$3b2o3b2o$5bobo$3b2o3b2o$2b2o5b2o$3
    b2obob2o$2bo2b3o2bo$4b2ob2o3$3b2obob2o$4bo3bo$3bobobobo$3b2o3b2o$4bobobo$3bo5bo$4bo3bo$4b5o2$5b3o$4b2ob2o$4b2ob2o$4b2ob2o$2bob2ob2obo$2bo3bo3bo$3bobo
    bobo$2b2o5b2o$2b2ob3ob2o$b4obob4o$3b7o$bo2bobobo2bo$b5ob5o$2b3o3b3o$3b2o3b2o$bob2o3b2obo$2bobo3bobo$6bo$4bobobo$3bob3obo$3bo2bo2bo$2bobo3bobo$2bobobo
    bobo$bo9bo$o2b2o3b2o2bo$2b2obobob2o$3b2o3b2o3$2b2o5b2o$bob2o3b2obo$2b3o3b3o$b2ob2ob2ob2o$4b5o$5b3o$3bobobobo$b2o3bo3b2o$b11o$bo3bobo3bo2$4bo3bo$4bo3b
    o$3bo2bo2bo$3bo5bo$4bobobo$2b2obobob2o$2bobo3bobo$b3obobob3o$3obobobob3o$bo3b3o3bo$2bobo3bobo2$3bo5bo$4b2ob2o$6bo2$2b3o3b3o$2b2o2bo2b2o$b4obob4o$bo3b
    obo3bo$3b3ob3o$4bo3bo$3b2obob2o$6bo$3bobobobo$5bobo$3bo5bo$4b2ob2o$2b9o$b3o5b3o$3bo5bo2$5bobo$3ob5ob3o$b2o7b2o$bob2o3b2obo$2o9b2o$b4obob4o$6bo$3bo5bo
    $5b3o$b2o3bo3b2o$ob4ob4obo$4ob3ob4o$bo3bobo3bo$2b3obob3o$6bo$5bobo$3b3ob3o$2bobo3bobo$b2obo3bob2o$5bobo$2b3o3b3o$4bobobo$3b2o3b2o$2bobo3bobo$2bob2ob2
    obo$2obo2bo2bob2o$b2obobobob2o$2obo2bo2bob2o$2bo2b3o2bo$b4o3b4o$4bo3bo$bo2b5o2bo$b2o2bobo2b2o$2b9o$3bo5bo$5b3o$obobo3bobobo$2obobobobob2o$bobob3obobo!
  14. 14*194 partial
    6b2o$5bo2bo$4bo4bo$6b2o$6b2o2$3b3o2b3o$4b6o$4bob2obo$3b2o4b2o$3b2ob2ob2o$5bo2bo$3b3o2b3o$3b3o2b3o$5bo2bo$4b2o2b2o2$3b2ob2ob2o$6b2o$5b4o$5b4o2$4bo4
    bo$3bo2b2o2bo$4bo4bo$4bo4bo$6b2o$5b4o2$4bo4bo$2b2obo2bob2o$2bob2o2b2obo$5bo2bo$2b3ob2ob3o$2b2o2b2o2b2o$3b2ob2ob2o$b2o8b2o$5b4o$3b8o$3bobo2bobo$3b2
    o4b2o$3b8o$2bo8bo$2b3o4b3o$4bob2obo$4b2o2b2o$4b2o2b2o$4b2o2b2o$6b2o$5bo2bo$4bo4bo$4bo4bo$3bo6bo$5b4o$4b6o2$3bo2b2o2bo$4bob2obo$4b2o2b2o$3bobo2bobo
    $3b2o4b2o$2b2o2b2o2b2o$4bo4bo$3b3o2b3o$o2bo6bo2bo$b3o2b2o2b3o$bob2ob2ob2obo$6b2o$4bo4bo$2bo8bo$2b4o2b4o$b2o2bo2bo2b2o$3b3o2b3o$3bobo2bobo$2b3ob2ob
    3o$4bob2obo$4bo4bo2$6b2o$4bo4bo$3b2o4b2o$3b2ob2ob2o$5b4o$5b4o$4b2o2b2o$2bobo4bobo$6b2o$3bo2b2o2bo$4bob2obo$4bo4bo$4bo4bo$6b2o2$5bo2bo$3b3o2b3o$2b3
    ob2ob3o$2bobo4bobo$4b6o$4b6o$4bo4bo$4bo4bo2$3bo6bo$bob2ob2ob2obo$3b3o2b3o$bo3b4o3bo$2bobo4bobo$2bo8bo$6b2o$5bo2bo$2bo3b2o3bo$3b8o$4b2o2b2o$4bob2ob
    o2$4b2o2b2o$4b2o2b2o$4b2o2b2o2$2bob2o2b2obo$3bo6bo$2bobob2obobo$6b2o$3b2o4b2o$3b3o2b3o$3b2o4b2o$4b2o2b2o$5b4o$3bob4obo$4b2o2b2o$2b3o4b3o$3b3o2b3o$
    bob3o2b3obo$2bo2bo2bo2bo$3bob4obo$3b8o$6b2o$3bo6bo$6b2o$2b10o$3b2ob2ob2o$2bo3b2o3bo$4b6o$3b2o4b2o$4bo4bo$3b2o4b2o$3b2o4b2o$3bob4obo$3bobo2bobo$3b2
    o4b2o$3b2ob2ob2o$3b2ob2ob2o$2b2ob4ob2o$2b3o4b3o$3bob4obo$2bobob2obobo$b2o8b2o$2bobo4bobo2$2bobob2obobo$b2o8b2o$2b3o4b3o$2b2o6b2o2$3bob4obo$2bo2b4o
    2bo$2b2o6b2o$b2o8b2o$2bob2o2b2obo$3bo6bo$b4o4b4o$2b2o2b2o2b2o$o3b6o3bo$o2b2o4b2o2bo$bo3b4o3bo$2o4b2o4b2o$bobo2b2o2bobo$4bob2obo$3b2ob2ob2o$4b2o2b2
    o$2b2o6b2o$3b2ob2ob2o$bobobo2bobobo$obo2bo2bo2bobo$b3o2b2o2b3o$o2bo6bo2bo$2bo2bo2bo2bo$3b3o2b3o$bo2b6o2bo$b3o6b3o$b2o8b2o$2b2ob4ob2o$4b6o$3bob4obo!
  15. 10*30 partial
    5b2o$4b3o$7b2o$4b3obo$4bo3bo$5b3o$7bo$6bo$3bo3b2o$3b2o$3b6o$4bobob2o$5b5o$4bo$5bo$3b5o$2bobo3bo$5b2
    o2bo$b2o2bo$2b2o2bo$obobo$3obobo$b2obob2o$o2b6o$b2ob2o2b2o$2bo4b2o$bob3ob2o$2b2o3bobo$3b3o3bo$ob2o!
  16. 19*86 partial
    b4o9b4o$2b2o11b2o$2bobo9bobo$b5o7b5o$4bo9bo$b2o13b2o$bobo11bobo$2bob2o7b2obo$3b
    obo2b3o2bobo$3b3o7b3o$3b2o9b2o$3bob2o5b2obo$8b3o$9bo$7bobobo$5b2o2bo2b2o$5bo2b3
    o2bo$4bo2bo3bo2bo$4bob2o3b2obo$3bob2ob3ob2obo$6b7o$8bobo$3bo2bob3obo2bo$3b4obob
    ob4o$4b3o5b3o$4b2ob2ob2ob2o$6b2o3b2o$6b2o3b2o$6b3ob3o$5bobo3bobo$4bo2b5o2bo$4b2
    o7b2o$3b3o7b3o$4b5ob5o$6bob3obo$4bo2bobobo2bo$4b2obobobob2o$3bobo2b3o2bobo$4b4o
    bob4o$4b2obo3bob2o$3b2o2bo3bo2b2o$3bob3o3b3obo$4b2o7b2o$4b2ob2ob2ob2o$6b2o3b2o$
    4b2o2bobo2b2o$4bo9bo$4bobo5bobo$5b2o5b2o$3b3o2bobo2b3o$2bo2b2o5b2o2bo$3bo3bo3bo
    3bo$2o3bo7bo3b2o$bo3b2o5b2o3bo$2ob3o7b3ob2o$bob3o3bo3b3obo$b3obobobobobob3o$2bo
    4bobobo4bo$2b4o3bo3b4o$2b3o9b3o$4b5ob5o$2b2o3bo3bo3b2o$2bo2b4ob4o2bo$bobob2obob
    ob2obobo$3bobob5obobo$bobo2bobobobo2bobo$o2bobo2bobo2bobo2bo$b2o2bo3bo3bo2b2o$2
    o4bobobobo4b2o$ob2o2b2obob2o2b2obo$6b7o$4b3o5b3o$4b2o7b2o$4b5ob5o$2bo3bobobobo3
    bo$4bo2b5o2bo$b4obo5bob4o$4bo2bobobo2bo$bo3bobo3bobo3bo$b2obobob3obobob2o$b2obo
    b3ob3obob2o$b2o2b3o3b3o2b2o$2bob2o3bo3b2obo$4b2o2b3o2b2o$b3o11b3o$3bo3bo3bo3bo!
  17. 7*51 partial
    3b2o$3bo2bo$bo2bo$2b3obo$2o2b2o$o$b2o$bo$bob2o$2bobo$4bo2$3bobo$3b3o$4bo$3b2o$2b2o$2bo$bo2$bobo$o3bo$bobobo$o3bo$2b2o$2b2o$2b
    o$4b2o$b3ob2o$2b3obo$2b3o$bobobo$2bo$2b3o$2b3o$4bo$4bo$3bobo$b2o$ob2o$3bo$4b2o$4ob2o$7o$2bo$2bob2o$2bo$2b5o$2b5o$b2ob2o$o4bo!
  18. 11*61 partial
    3b2ob2o$2b3ob3o$2b3ob3o$2b2o3b2o$2bobobobo$3bobobo$3b2ob2o$3b5o$3bo3bo$b3obob3o$b3o3b3o$2bo5bo$2b2o3b2o$bobo3bobo2$4b3o$4bobo$4b3o$4bobo$4bobo$4b3o
    $5bo$5bo$2bob3obo$2b2o3b2o$2b7o$5bo$4b3o$3bobobo$4b3o$2b2obob2o$2bobobobo$4bobo$2bob3obo$3b5o$2bob3obo$b2o5b2o$4bobo$2b2o3b2o$4b3o$2b2obob2o$bobo3b
    obo$2bobobobo$b3o3b3o$3b2ob2o$4bobo$5bo2$b3obob3o$b3o3b3o$4bobo$3b2ob2o$bo7bo$o3bobo3bo$b4ob4o$4b3o$2bobobobo$5bo$bo2b3o2bo$2obobobob2o$b2obobob2o!
  19. 12*91 partial
    5b2o$5b2o$4bo2bo$5b2o$4b4o$3bo4bo$4bo2bo$3b6o2$2b2o4b2o$2bobo2bobo$b2ob4ob2o$b2o6b2o$b2o6b2o$3b6o$3b6o2$5b2o$3bo4bo$3bo4bo$2bobo2
    bobo$2bobo2bobo$5b2o$3b2o2b2o$2o8b2o$b3o4b3o$b2o6b2o$2o3b2o3b2o$2b8o$bo8bo2$4b4o$5b2o$4b4o2$4bo2bo$4b4o$3bob2obo$2bo2b2o2bo$b2o2b
    2o2b2o$5b2o$3b2o2b2o$2bobo2bobo2$2b2o4b2o$3b6o$b2ob4ob2o$2bobo2bobo$bob2o2b2obo$4b4o3$2bob4obo$bob6obo$b2ob4ob2o$b3ob2ob3o$3b2o2b
    2o$b4o2b4o$3b2o2b2o$4bo2bo$4bo2bo$b4o2b4o$bo8bo2$o4b2o4bo$2b8o$3b6o$2o2b4o2b2o$o10bo$b3o4b3o$b3o4b3o$5b2o$2b8o$2b2o4b2o$3b2o2b2o$
    5o2b5o$ob2o4b2obo$3b6o$2bobo2bobo$3b2o2b2o$4bo2bo$2b2o4b2o$3b2o2b2o$4bo2bo2$3bob2obo$2b2o4b2o$4bo2bo$2bobo2bobo$4ob2ob4o$o4b2o4bo!
  20. 8*51 partial
    3b2o$3b2o$2bo2bo$2b4o3$b2o2b2o$2bo2bo$ob4obo2$bo4bo$b6o$bo4bo$2b4o$2b4o$2b4o2$3b2o$3b3o$b2o3bo$2bobobo$3bob2o$2b2obo$2bob2o$4b2o$2bo2bo2$2b
    5o$bob2o$2ob2o$2bobo$2b4o2$b2o2b2o$bo2b3o$2bobo$3bo3bo$bo2b2obo$bob3o$2b3o$3b2o$2bo$b3o$4b2o$2bo2bo$2b2ob2o$2b3ob2o$2bob4o$bo3bo$b3obo$6bo!
  21. 13*71 partial
    b3o5b3o$o2bobobobo2bo$obobo3bobobo$b2obo3bob2o$3b3ob3o$3b3ob3o2$5b3o$4b2ob2o$4b5o$4bo3bo$4bobobo$5bobo$2bob2ob2obo$2bo2bobo2bo$2bob
    2ob2obo$2bobo3bobo$3b2o3b2o$2b9o$bo2b5o2bo$2b2o5b2o$bo2bo3bo2bo$bob2o3b2obo$bobo5bobo$3obo3bob3o$bobo2bo2bobo$2b2o2bo2b2o$2b2obobob
    2o$2bo2b3o2bo$4bo3bo$4b2ob2o$b3o5b3o$2b2o5b2o$2b2o5b2o$2bo7bo$4bo3bo$3b3ob3o$4bo3bo$3bo2bo2bo$5bobo2$3b2o3b2o$2b4ob4o$4b5o$3b3ob3o$
    b3o5b3o$2bo2b3o2bo$b2o3bo3b2o$2bob2ob2obo$3b2obob2o$2bo3bo3bo$2b2o5b2o$bobob3obobo$2b2o2bo2b2o$b3o2bo2b3o$4b5o$2b4ob4o$b2ob5ob2o$b2
    ob2ob2ob2o$o2bobobobo2bo$2b2o2bo2b2o$b2obo3bob2o$b3o5b3o$bobo2bo2bobo$3bo2bo2bo$2b4ob4o$bo9bo$bo9bo$b2o2bobo2b2o$2o4bo4b2o$4b2ob2o!
  22. 14*98 partial
    6b2o$5b4o3$5bo2bo$4bo4bo$4bo4bo$6b2o$4b2o2b2o$3bo2b2o2bo$4bob2obo$4b2o2b2o$4b2o2b2o$5bo2bo2$4b2o2b2o$5bo2bo$4b2o2b2o$3bo6bo$3bob4obo$3b2o4b2o$
    6b2o$4b6o$4bo4bo$2b3ob2ob3o$3bob4obo$2b3o4b3o$b4o4b4o$2b2o6b2o$2bo8bo$obobo4bobobo$3b3o2b3o$2bo3b2o3bo$4b6o$3bo6bo$3b2o4b2o$4b2o2b2o2$4bob2obo
    $5b4o$4b6o$6b2o$2bo3b2o3bo$2b3o4b3o$bo3bo2bo3bo$bo2b2o2b2o2bo$2o10b2o$b2o3b2o3b2o$3bo6bo$3b8o$5bo2bo$4bob2obo$3bo2b2o2bo$2bob2o2b2obo$2b3ob2ob
    3o$3bo6bo$2b4o2b4o$4b2o2b2o$2bobob2obobo$b3o2b2o2b3o2$2bobo4bobo$4b2o2b2o$4bob2obo$4bo4bo$5bo2bo$3bob4obo$3bo6bo2$2bo2bo2bo2bo$6b2o$2b2obo2bob
    2o$3bob4obo$o2bob4obo2bo$b2ob2o2b2ob2o$4b2o2b2o$4b6o$2b3ob2ob3o$b3obo2bob3o$2b2obo2bob2o$b2obo4bob2o$3bobo2bobo$bobobo2bobobo$5bo2bo$2o2b6o2b2
    o$3bobo2bobo$5bo2bo$bob3o2b3obo$b2o3b2o3b2o$o4bo2bo4bo$3o2b4o2b3o$2bo3b2o3bo$3b2o4b2o$6b2o$3b2ob2ob2o$bo4b2o4bo$2o2bob2obo2b2o$o2bo2b2o2bo2bo!
  23. 19*33 partial
    7b7o$5b2o2b3o2b2o$5bobobobobobo$4b2o2b5o2b2o$5bob7obo$5b2o7b2o$3bo2bo7bo2bo$6bobobobobo$4bo
    3b2ob2o3bo$4b3ob2ob2ob3o$4b3ob5ob3o$3bo3b7o3bo$4bob2o5b2obo$2b3o11b3o$3b3obo5bob3o$3bo3b2o3
    b2o3bo$b2o4b2o3b2o4b2o$b2obo11bob2o$4bob2o5b2obo$2bob2o2b5o2b2obo$3bobo3bobo3bobo$bo5b2o3b2
    o5bo$2bob2ob2obob2ob2obo$bobo2b3o3b3o2bobo$6bobobobobo$3bo13bo$b3ob2o3bo3b2ob3o$bo2bo3b2ob2
    o3bo2bo$5bob3ob3obo$2bo3bobo3bobo3bo$b3obob2o3b2obob3o$bo4bo3bo3bo4bo$2obo3b2o3b2o3bob2o$b2
    o4bobobobo4b2o$5bobo2bo2bobo$3bob2obobobob2obo$b3obo2bobobo2bob3o$o2b3ob7ob3o2bo$6bo3bo3bo!
  24. 20*39 partial
    6bo2b4o2bo$5b2ob6ob2o$4b2obo6bob2o$4b5ob2ob5o$4bo2b2ob2ob2o2bo$7b2o4b2o$5b2ob2o2b2ob2o$5b2ob2o2b2ob2o$4b2ob2ob2ob2ob2o$3bob2obob2obob2obo$3b3obo6bo
    b3o$4b5o4b5o$6b4o2b4o$3b5obo2bob5o$2bobo2b2o4b2o2bobo$3bo2bo8bo2bo$2bobo12bobo$2b5obo4bob5o$3b2obo8bob2o$b2obobo8bobob2o$2b2ob3o6b3ob2o$6b3o4b3o$6b
    2o6b2o$4b5o4b5o$2bo2bob2o4b2obo2bo$bobobo10bobobo$2b2ob2ob2o2b2ob2ob2o$4bob3o4b3obo$2b2o2b3o4b3o2b2o$4bo2bo6bo2bo$6bo8bo$7b2o4b2o$4b2o2b2o2b2o2b2o$
    2b7ob2ob7o$3bo2bo2b4o2bo2bo$5b3o6b3o$4bobobob2obobobo$5b5o2b5o$4bo3bo4bo3bo$2b6ob4ob6o$4bo4b4o4bo$3bo4b6o4bo$5bo2b2o2b2o2bo$3bobo2bob2obo2bobo$3b5o
    6b5o$3bob2obo4bob2obo$5b2o3b2o3b2o$4bob10obo$9bo2bo$2b4o2b2o2b2o2b4o$2b2o2b4o2b4o2b2o$2bo4bo6bo4bo$3bobo10bobo$4bo12bo$4bo2b8o2bo$5bobo6bobo$4bo12b
    o$6b2ob4ob2o$4b3o2b4o2b3o$6bo2b4o2bo$2bob2obo6bob2obo$3o16b3o$3bo5b4o5bo$4bob2ob4ob2obo$6b10o$6b3ob2ob3o$3bob4o4b4obo$2b2o2bob6obo2b2o$2b2obo3bo2bo
    3bob2o$3bo2b2o6b2o2bo$3bob4o4b4obo$4b3o8b3o$3b2o5b2o5b2o$5bo3b4o3bo$2b2obo2b6o2bob2o$bo4b2o6b2o4bo$2b2o4b6o4b2o$b5o2bo4bo2b5o$2b4ob2o4b2ob4o$2b2ob2
    o3b2o3b2ob2o$2bo2bobo6bobo2bo$3bo2bo3b2o3bo2bo$3b2ob2obo2bob2ob2o$4bo2b8o2bo$2b4o3b4o3b4o$4bo2bobo2bobo2bo$2bo4b8o4bo$2b3ob3o4b3ob3o$ob3ob2obo2bob2
    ob3obo$b3o2b4o2b4o2b3o$o2bo2bo8bo2bo2bo$4obobobo2bobobob4o$3b2ob10ob2o$4bob3ob2ob3obo$2bo2bob3o2b3obo2bo$o2bo3bo6bo3bo2bo$bobob3ob4ob3obobo$4bo12bo!
  25. 11*101 partial
    3bo3bo$3b5o$2b2obob2o$3bobobo$2bobobobo$3bo3bo$4bobo$4b3o$3obobob3o$4bobo$4b3o2$3bobobo$3b5o$4bobo$3bo3bo$3b2ob2o2$4b3
    o$5bo$3b5o$3b5o$3bo3bo$bobo3bobo$2b2o3b2o$b3obob3o$b4ob4o$4bobo2$5bo$2bo5bo$2b2obob2o$bob5obo$4bobo$bo2b3o2bo$2b2obob2
    o$bob2ob2obo$b4ob4o$bo7bo$bobo3bobo$3bo3bo$3b2ob2o$3b2ob2o$4bobo$5bo2$4b3o$3bo3bo$2b2o3b2o$2b3ob3o$3b2ob2o$4bobo$3bo3b
    o$3bo3bo$4bobo$3b5o$5bo$2bo2bo2bo$3b2ob2o$2b2o3b2o$2bo5bo$3b2ob2o$3b2ob2o$3b5o$3b5o$4bobo$b3obob3o$2b2obob2o$2bobobobo
    $ob2o3b2obo$obo5bobo$4bobo$3bo3bo$5bo$2b3ob3o$2b2o3b2o$2bo5bo$bo3bo3bo$2b7o$2b7o$3b5o$4bobo2$3bo3bo$2b7o$bobobobobo$b9
    o$2b3ob3o$b2o5b2o$5bo$bo7bo$2o2bobo2b2o$bo2b3o2bo$2b7o$bo7bo$2ob2ob2ob2o$bobo3bobo$b2obobob2o$o3b3o3bo$bo3bo3bo$4bobo!
  26. 12*120 partial
    4b4o$5b2o$4bo2bo$2b2o4b2o$3bo4bo$2bo6bo$b2o6b2o$b10o2$3bo4bo$4bo2bo$2b3o2b3o$3bob2obo$2bo6bo$3b2o2b2o$3
    bo4bo$bo8bo$4b4o$b2obo2bob2o$2bobo2bobo$bobob2obobo2$o4b2o4bo$bo2bo2bo2bo$2b2ob2ob2o$4b4o2$3b6o$3b2o2b2
    o$4ob2ob4o$o2b2o2b2o2bo$b10o$ob3o2b3obo2$2b2o4b2o$bob2o2b2obo$bo8bo$4bo2bo$3b2o2b2o$4bo2bo$2b2o4b2o$b4o
    2b4o$o2b6o2bo$2o2b4o2b2o$bob6obo$2bo6bo$3bo4bo2$3b2o2b2o$3b2o2b2o$3b2o2b2o$4bo2bo$3bo4bo$4b4o$3bo4bo$3b
    ob2obo$3b2o2b2o$3b2o2b2o$5b2o$4bo2bo$4b4o$2b3o2b3o$3bob2obo$3b6o$3b6o$b4o2b4o2$2bobo2bobo$2bo2b2o2bo$2b
    8o$b2o6b2o$2bob4obo$4b4o2$bo8bo$ob8obo$3bo4bo$4bo2bo$4bo2bo$5b2o$4bo2bo$2bo2b2o2bo$3b2o2b2o$3b6o$3b2o2b
    2o$2b8o$bo8bo$obobo2bobobo$bobo4bobo$bo2bo2bo2bo$2b2o4b2o$2b3o2b3o$3b2o2b2o$2b8o$2bobo2bobo$b2o6b2o$b2o
    6b2o$bob6obo$4bo2bo$3b2o2b2o$2bob4obo$3bo4bo$bob2o2b2obo$bo3b2o3bo$bo2b4o2bo$bo2b4o2bo$2bo6bo2$2bobo2bo
    bo$b10o$2b3o2b3o$bo8bo$bo2b4o2bo$bo2bo2bo2bo$b4o2b4o$2obo4bob2o$obob4obobo$bo2bo2bo2bo$12o$b2o2b2o2b2o!
  27. 7*34 partial
    4b2o$3b4o2$5b2o$5bo$5bo$3bo$2b3o$2b4o$3bo2$2bo$ob2o$bo2b3o$2o$4bo$5bo$2b2obo$5b2o$3
    b2obo$3b3o$2bob2o$3bo$3b2o$2b3o$5o$o2b2o$b2o2bo$bob3o$3b2o$2bobo$2bo3bo$bo$ob2ob2o!
  28. 12*70 partial
    5b2o$4b4o$5b2o$4bo2bo$4bo2bo$3b6o$2b2o4b2o$3b6o$3b2o2b2o$3b6o$4b4o2$4b4o$4bo2bo$5b2o$3b6o$4bo2bo$4bo2bo$4b4o$4bo2bo$4bo2bo$5b2o$4b
    4o$4b4o$bobo4bobo$3bo4bo$b3o4b3o$2b2o4b2o$b2o6b2o$ob3o2b3obo$b2o2b2o2b2o$12o$2b8o$3b6o2$2b2o4b2o$bobo4bobo$2ob2o2b2ob2o$bo2bo2bo2b
    o$b3o4b3o$b2obo2bob2o$3b2o2b2o$3bob2obo$2bo2b2o2bo$5b2o$2b8o$4bo2bo$5b2o$b2obo2bob2o$2bo6bo$3bob2obo$3bo4bo$2bo2b2o2bo$4bo2bo2$3b2
    o2b2o$3bob2obo$5b2o2$2b8o$bo3b2o3bo$bo3b2o3bo$bo2bo2bo2bo$2bo2b2o2bo$2bo2b2o2bo$b4o2b4o$b2obo2bob2o$b2obo2bob2o$2bob4obo$3bob2obo!
  29. 12*48 partial
    4b4o$2b8o$4b4o$b2obo2bob2o$3bo4bo$3bob2obo$2b2o4b2o$2b2o4b2o$3b2o2b2o$4bo2bo$3b6o$5b2o$2bo6bo$2o8b2o$bobo4bobo2$3b2o2b2o$b2o6b2o$2bo6bo$3bo4bo$bo3b2o3bo2$2o8b2o$12o$b10o$2b2o4b2o$
    3bo4bo$4b4o$4bo2bo$2b2ob2ob2o$2bo6bo$3bob2obo$ob2o4b2obo$ob3o2b3obo$b10o$2bo2b2o2bo$2obob2obob2o$b4o2b4o$bob6obo$5b2o$bo8bo$3bob2obo$2b2o4b2o$5o2b5o$4o4b4o$bo3b2o3bo$3b6o$b2o6b2o!

    14*54
    6b2o$4b2o2b2o$3b8o$3bobo2bobo$3b2o4b2o$4b6o$4b6o$4b2o2b2o$4b2o2b2o$5b4o$5b4o$4bo4bo$2b3o4b3o$2b2o6b2o$2b3o4b3o$3b2o4b2o$3b3o2b3o2$3bo6bo$b2obo4bob2o$b4o4b4o$2ob2o
    4b2ob2o$2b3o4b3o$2bo2b4o2bo$3bo2b2o2bo$2bo2bo2bo2bo$4b6o$bo4b2o4bo$5bo2bo$3b3o2b3o$4b2o2b2o$4bo4bo$2bo2bo2bo2bo$2bo2bo2bo2bo$2bo2bo2bo2bo$2b2obo2bob2o$5b4o$3bo6bo
    $4b2o2b2o$2b2obo2bob2o$bobob4obobo$bo4b2o4bo$b5o2b5o$4bob2obo$3b2ob2ob2o$2b3o4b3o$3b3o2b3o$2ob8ob2o$o3b2o2b2o3bo$2bob2o2b2obo$2bo2b4o2bo$3bo2b2o2bo$o12bo$bob8obo!

    16*70
    6b4o$4b8o$6b4o$3b2obo2bob2o$5bo4bo$5bob2obo$4b2o4b2o$4b2o4b2o$5b2o2b2o$6bo2bo$5b6o$7b2o$4bo6bo$2b2o8b2o$3bobo4bobo2$
    5b2o2b2o$4bo6bo$3b2o6b2o$3b2o6b2o$2bo2b2o2b2o2bo$b2o2b2o2b2o2b2o$3b3ob2ob3o$7b2o$3b2o2b2o2b2o$3b3ob2ob3o$3b2o6b2o$3b
    obo4bobo$3b3o4b3o$2bobob4obobo$3bob2o2b2obo$5b6o$4bo6bo$3bo3b2o3bo$2b2o2bo2bo2b2o$4b3o2b3o$3b2o6b2o$3b3ob2ob3o$7b2o$
    4b2o4b2o$3bo2bo2bo2bo$3b2o2b2o2b2o$5b2o2b2o$4bo2b2o2bo$5b6o$4b3o2b3o$bob2obo2bob2obo$o3bobo2bobo3bo$2o3bob2obo3b2o$2
    b3o2b2o2b3o$4b3o2b3o$3bo2bo2bo2bo$3bob2o2b2obo$2bob8obo$b2o3bo2bo3b2o$b2o4b2o4b2o$bo2b2o4b2o2bo$bobobob2obobobo$2b2o
    8b2o$5bo4bo$b2o3b4o3b2o$2b12o$b4o6b4o$ob3o6b3obo$3b2o6b2o$b2o3bo2bo3b2o$b14o$b2o2b6o2b2o$2b2obo4bob2o$2bob2ob2ob2obo!
  30. 19*47 partial
    2b15o$b4o4bo4b4o$5b2obobob2o$b2obob2o3b2obob2o$2b2o2b2o3b2o2b2o$bo4b3ob3o4bo$4bobob3obobo$6bob3obo$bobo2b3ob3o2bobo$b3obo2bobo2bob3o$b2o2bobo3bobo2b2o$3bob
    2o5b2obo$6b3ob3o$5bobo3bobo$2bo2bo2bobo2bo2bo$bo2bobo5bobo2bo$b2ob2o7b2ob2o$b4ob7ob4o$bob2obob3obob2obo$2bo6bo6bo$b2ob11ob2o$bo2bo9bo2bo$3b2ob7ob2o$b3o2b2o
    3b2o2b3o$bo2bobo5bobo2bo$b2o2bobo3bobo2b2o$b2o5bobo5b2o$3bo2bobobobo2bo$bob5o3b5obo$7bo3bo$2o4bo5bo4b2o$b3o11b3o$bo3bob2ob2obo3bo$bob2o2bo3bo2b2obo$2bo3bo5b
    o3bo$b3obo7bob3o$b3o11b3o$2bo4bo3bo4bo$7ob3ob7o$bob4o5b4obo$2ob5o3b5ob2o$5bobo3bobo$3b2o3bobo3b2o$3b3o2bobo2b3o$3bob2o2bo2b2obo$3b3o2bobo2b3o$3o3b3ob3o3b3o!
  31. 20*30 partial
    8b4o$6b8o$5b3o4b3o$8bo2bo$3bo3bob2obo3bo$4b2o2bo2bo2b2o$2b2o2bo2b2o2bo2b2o$2b2ob2obo2bob2ob
    2o$3bob10obo$3bo3bo4bo3bo$3bobo2bo2bo2bobo$5bo8bo$5b3ob2ob3o$5b4o2b4o$5bobo4bobo$7b6o$6bo6b
    o$2b3ob3o2b3ob3o$4bob2ob2ob2obo$b3ob3ob2ob3ob3o$bob3o8b3obo$2b2o2b2o4b2o2b2o$5b2o6b2o$3bobo
    bo4bobobo$b3obobob2obobob3o$bo2bo3bo2bo3bo2bo$o5bobo2bobo5bo2$ob3obo6bob3obo$bo4b3o2b3o4bo!
  32. 32.0 32.1 32.2 32.3 32.4 32.5 32.6 32.7 32.8 32.9 though preceding width has been disproven, this was not found with qfind so is not guaranteed to be of minimal height
  33. 33.0 33.1 15*44 partial
    6b3o$5bo3bo$5bo3bo$3bob5obo$3bobo3bobo2$5b2ob2o$2bo9bo$2bo2b2ob2o2bo$4bobobobo$4b2o3b2o
    $3b3o3b3o3$6bobo$7bo$7bo$4b3ob3o2$3b4ob4o$2b4o3b4o$3b2o5b2o$7bo$6bobo$6bobo$2bobo5bobo
    $2bobo5bobo$2b2o7b2o$5b2ob2o$3bo2bobo2bo$4bobobobo$bo11bo$3o9b3o2$3o9b3o$2b2ob2ob2ob2o$
    2bo3bobo3bo$obo2b2ob2o2bobo$3ob2o3b2ob3o$3bobo3bobo$3bo3bo3bo$3bo3bo3bo$7bo$2bobo5bobo!
  34. 10*32 partial
    4b2o$4bo2bo$5bo2bo$4bo$3b2obobo$3bo$3b2o2bo$3bo$4bo2bo$5b2o2$2b3o$bo2b5o$b4o3bo$2b2obo2bo$3bobo$2bo
    2b2o$bo4bo2$bo2b2obo$5bobo$2b5o$bo$b3obo2b2o$4bo$o3bo$2b2o2bo$3b2o2b2o$bo6bo$2bo3b2o$2b3o$bo3bo2bo!
  35. 10*42 partial
    4bo2b2o$3bob2obo$2bo2b3o$5b2o$5bo$4bo2$3b4o$3o$2bo$5bob2o$3b2obobo$7bo$2b3obo$2b5o$b3o2bo$4b2o$6bo$6bo$3bo2bo$3bo2bo$5b3
    o$2bo3bo$2bobo$7bo$3bobo2bo$4b2o$3b2ob2o$3bo5bo$3bo4bo$5bo$2bo$2bo$6b2o$3b3o$3bo3bo$6b3o$2bo6bo$3b5obo$2b2o4bo$b9o$o6b3o!
  36. 17*47 partial
    b4o7b4o$bobobo5bobobo$2b2o9b2o$2bo11bo$b2o11b2o$3bo9bo$2b2o9b2o$2b2o9b2o2$2bo11bo$bobo2bo3bo2bobo$o3b2obobob2o3bo$o4b2o
    3b2o4bo$5bo5bo2$bo13bo$2b3o7b3o$4b2o5b2o$3bobo5bobo$2bo2bo5bo2bo$5bo5bo$bo3bo5bo3bo$o2bobo5bobo2bo$b4o3bo3b4o$3bo4bo4bo
    $2bo11bo$bo2bo7bo2bo2$2ob2obo3bob2ob2o$o4b7o4bo$b2o2bo5bo2b2o$2bo2b2o3b2o2bo$3b2o7b2o$2bo3bo3bo3bo$2bob3o3b3obo$2bo4bob
    o4bo$4bo7bo$4bo7bo$b2ob2o5b2ob2o$bobo9bobo$b2o3bo3bo3b2o$4bo2bobo2bo$4b2obobob2o$4bo7bo$5bobobobo$3b2o7b2o$2bob3o3b3obo!
  37. 20*62 partial
    8b4o$7b6o$6b2o4b2o$7bo4bo$7bo4bo$7bob2obo$9b2o$5bo8bo$5b2o6b2o$5bo3b2o3bo2$9b2o$6b2o4b2o$4bo10bo$4bo10bo2$8bo2bo$6bobo2bob
    o$7b2o2b2o$4b2o8b2o$5bo3b2o3bo$5bo3b2o3bo$3bo12bo$2bo14bo2$bo2b4o4b4o2bo$4b2obo4bob2o$4bo3b4o3bo$bobobob6obobobo$5bobob2ob
    obo$7bo4bo$3bo3bo4bo3bo$4bo10bo$5bo2b4o2bo$6bo6bo$7bo4bo$7bo4bo$7bo4bo2$3b2o3bo2bo3b2o$2bo2b3o4b3o2bo$6bo6bo$2bo4bo4bo4bo$
    2bo4bo4bo4bo$7bo4bo$2bo3bo6bo3bo$b5obo4bob5o$2b2o2b2o4b2o2b2o$3b4o6b4o$b3o2bo6bo2b3o$ob2obo8bob2obo$2o7b2o7b2o$3bo2bo6bo2b
    o$2b2o3bo4bo3b2o$2bob2o2bo2bo2b2obo$2bobob2ob2ob2obobo$3b5o4b5o$4bo10bo$4bo3b4o3bo$3b2o2b2o2b2o2b2o$bo3bo8bo3bo$bo7b2o7bo!
  38. there is also a width-18 version which has the same backend as the w17o (and as such can be considered its even variant)
  39. 39.0 39.1 39.2 39.3 39.4 unique thinnest
  40. 10*33 partial
    5bo$4bobo$5bo$5bo$5bo$4bo2bo2$5bob2o$5bobobo$6b3o$6b2o$5bo$4b2o$4b2o$4bo2bo$4bo2bo$7bo$3bob3o$3b
    obobo$3b3o2bo$4b2o$4bobo$3bo2bo$3bo2bo$2b2o$2b2o3bo$2bobob2o$2b4o$bobobo2bo$o4bo2bo$5o3bo2$o8bo!

    looks alike the Statue of Liberty
  41. this one has a smaller population but a backspark that increases its bounding box
  42. not sure of minimality of length, also is 466 cells and beaten in population by a 299-cell w23o (by dreamweaver)
  43. 24*19 partial
    10b4o$8bobo2bobo$8b8o$8b8o$4b4ob6ob4o$4b6ob2ob6o$2bobob2obo4bob2obobo$2b3obo2bo4bo2bob3o$2bobobo2bo4bo2bobobo$b2obob4o4b4obob2o$ob3obo2bo4
    bo2bob3obo$2bobob4ob2ob4obobo$3obobo3b4o3bobob3o$6bo3b4o3bo$bo6bo2b2o2bo6bo$b2obobo2b6o2bobob2o$b2o3bobo2b2o2bobo3b2o$bobo6b4o6bobo$10b4o!
  44. 20*46 partial
    7b6o$5bob2o2b2obo$3bobob6obobo$bob3ob6ob3obo$bob14obo$ob4obob2obob4obo$b5ob6ob5o$b18o$b4obo6bob4o$3b3o8b3o$bobobo8bobobo$bob3o8b3obo$2b2o5b2o5b2o
    $ob5o2b2o2b5obo$obobobobo2bobobobobo$2bobobob4obobobo$4bob8obo$2b5ob4ob5o$2bobob2o4b2obobo$3b5ob2ob5o$2b5o6b5o$2bob4o4b4obo$4b2o8b2o$2b3obobo2bo
    bob3o$3b4o2b2o2b4o$b8o2b8o$4bobob4obobo$3b4ob4ob4o$bob2obob4obob2obo$bob14obo$bob5o4b5obo$4b4o4b4o$b7o4b7o$4bo2b2o2b2o2bo$2b3obo6bob3o$4bobo6bob
    o$2b2o12b2o$2b16o$2bobo2b2o2b2o2bobo$2bo2bobob2obobo2bo$4b2ob6ob2o$b2o3b3o2b3o3b2o$2b4o3b2o3b4o$4o2bo2b2o2bo2b4o$ob3ob8ob3obo$2bobob2ob2ob2obobo!
  45. 235 cells, shortest width-15 is 146 cells

other such tables alike this

references

  1. wwei47 (May 14, 2024). Re: Thread for your miscellaneous posts and discussions, in which the scheme for non-orthogonal width notation was specified
  2. 2.0 2.1 2.2 2.3 2.4 wwei47 (May 21, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which various results were found for diagonal spaceships in B36/S245
  3. wwei47 (May 24, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which a minimal-width[2] c/5 diagonal was found in B36/S245
  4. wwei47 (June 1, 2024). Re: B36/S245, in which a minimal-width symmetric c/5 diagonal was found
  5. May13 (March 3, 2024). Re: B36/S245, in which a symmetrical width-19 c/5d was found
  6. 6.0 6.1 6.2 found by ikpx2, disproof of lower widths by gfind
  7. LaundryPizza03 (December 21, 2020). Re: B36/S245, in which a (2,1)c/6 was found (the first knightship)
  8. LaundryPizza03 (March 25, 2024). Re:B3/S12 (Flock), noting Lapin Acharné's 2c/8
  9. 9.0 9.1 9.2 9.3 wwei47 (May 13, 2024). Re: B3/S12 (Flock), in which bounds upon c/3 widths were found with JLS
  10. 10.0 10.1 10.2 10.3 10.4 10.5 wwei47 (May 14, 2024). Re: B3/S12 (Flock), in which considerably improved bounds were found with ikpx2
  11. 11.0 11.1 May13 (May 17, 2024). Re: B3/S12 (Flock), in which a width-71 gutter-preserving c/3 was found with LSSS (which also works in Pedestrian Flock)
  12. 12.0 12.1 amling (May 18, 2024). Re: amling questionable searches/ideas firehose, in which dark magic was utilised to achieve the impossible of finding a minimal-width w38a c/3
  13. wwei47 (April 27, 2024). Re:RLE copy/paste thread - everyone else, in which minimal-width c/3's were found in HighFlock with JLS
  14. wwei47 (June 9, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which the existence of a width-11 c/5 in HighFlock was disproven with gfind
  15. wwei47 (June 5, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which a negative gfind search was completed for B38/S12 c/4 w12a (meaning the w13a from wwei's B3/S12 search is minimal-width in B38/S12 as well)
  16. wwei47 (June 7, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which a negative gfind search was completed for B38/S12 c/5 w13a
  17. wwei47 (April 25, 2024). Re:RLE copy/paste thread - everyone else, in which width-15 c/3's were found in Holstein (per personal correspondence, with JLS and also disproving lower widths)
  18. H. H. P. M. P. Cole (May 31, 2024). Re: Spaceships in Life-like cellular automata, in which a c/7 w15g in Geology was disproven (with qfind, per personal correspondence)
  19. LaundryPizza03 (September 11, 2020). Re: B3578/S24678, in which the smallest w14e 2c/7 was first found (apparently they didn't remember to do w13o otherwise they would have a considerably smaller one)
    verified with qfind, next shortest w14e is this one
  20. saka (March 5, 2021). Message in #naturalistic on the Conwaylife Lounge Discord server (further down they explain it was found with qfind)