User:DroneBetter/qfind results
I had long assumed that openmp was simply not yet supported on macOS until I learned that the gcc command in fact uses Clang albeit named misleadingly
as such, having used Homebrew, I am now able to compile qfind, and finally create tables of bounds upon spaceship widths (which I will do here :-)
all links included are to the minimal spaceship found (first outputted, only minimal by bounding box, not population), however (where a table cell is split) the second subrow excludes members of a subset of the symmetry and those comprised of two smaller noninteracting spaceships, choosing the first nontrivial output instead to maximise information content
note that alike its gfind ancestor of yore, qfind is restricted to orthogonal searches, however it is very fast at them
you may add your own results (disproofs for lower bounds and spaceship examples for upper), however (to avoid confusion) I would like others to include citations of forum posts in which they explicitly state their results, so that those uncited can be attributed to me by default without having to go through the page's history
no gutter column is included for rules that are not gutter-preserving
thank you very dearly to ascendantDreamweaver for using a 48-core computer with 512GB of RAM to which they had access, for increasing logical widths for 2c/5 and 3c/7 to 12 in the first four rules (except for B36/S12, in which 2c/5's are small enough that I managed on my own)
all results labelled as JLS are due to wwei23
non-orthogonal spaceships are of course found with other programs, widths are measured with the scheme of a line of cells parallel to the diirection of movement replacing a column (ie. half-diagonals (1√2-units) for diagonal spaceships, 1√5-units for knightships)[1]
B36/S245 (sqrt replicator rule)
(I like the name a lot for some reason)
ascendantDreamweaver did the searches that led to finding the asymmetrical 2c/5 and 2c/7, as well as obtaining the present best lower bounds for 3c/7, 3c/8 (except for the 3c/8 even, which they found!), 2c/9 asymmetric, 4c/9, 5c/10 asymmetric and 5c/11
| Velocity | Asymmetric | Symmetric | Glide-symmetric | ||
|---|---|---|---|---|---|
| odd | even | odd | even | ||
| (1,0)c/2 | 6 | 13 | 14 | ||
| (1,0)c/3 | 6 | 11[n 1] | 6 | ||
| 6 | |||||
| (1,1)c/3 | 13[n 2] | 13[n 3] | |||
| (1,0)c/4 | 4 | 9 | 10 | ||
| 12 | |||||
| (2,0)c/4 | 7 | 13 | 14 | 11 (gfind) | 12 (gfind) |
| (1,1)c/4 | 10[n 4] | 17[n 5] | 12[n 6] | ||
| (1,0)c/5 | 8 | 11 | 12 | ||
| (2,0)c/5 | 12 | 19 | 20 | ||
| (1,1)c/5 | 12[3] | 15[n 7] | |||
| (2,1)c/5 | w ≤ 67 | ||||
| (1,0)c/6 | 9 | 13 | 14 | ||
| (2,0)c/6 | 7[n 8] | 11 | 10 | 9 (gfind) | 6 |
| (3,0)c/6 | 7 | 13 | 14 | ||
| (1,1)c/6 | 7 (gfind) | 13 (gfind) | 16[6] | ||
| (2,2)c/6 | 9 (gfind) | 11 (gfind) | 16 (gfind) | ||
| (2,1)c/6 | w ≤ 58[7] | ||||
| (1,0)c/7 | 9[n 9] | 13 | 14 | ||
| (2,0)c/7 | 11[n 10] | 17[n 11] | 16 | ||
| (3,0)c/7 | 12 | 23 | 24 | ||
| (1,1)c/7 | 7 | 7 | |||
| 6 | |||||
| (2,2)c/7 | 8 (gfind) | 15 (gfind) | |||
| (1,0)c/8 | 7[n 12] | 13[n 13] | 14[n 14] | ||
| (2,0)c/8 | 7 | 9 | 5 | 6 | |
| (3,0)c/8 | 10[n 15] | 19[n 16] | 20 | ||
| (4,0)c/8 | 7 | 13 | 14 | 9 (gfind) | 10 (gfind) |
| (1,1)c/8 | 5 (gfind) | 9 (gfind) | 12[6] | ||
| (2,2)c/8 | 6 (gfind) | 11 (gfind) | 10 (gfind) | ||
| (1,0)c/9 | 7[n 17] | 11[n 18] | 12[n 19] | ||
| (2,0)c/9 | 8[n 20] | 13[n 21] | 14[n 22] | ||
| (3,0)c/9 | 7 | 11 | 12 | ||
| (4,0)c/9 | 11 | 21[n 23] | 22[n 24] | ||
| (1,0)c/10 | 6 | 11[n 25] | 12[n 26] | ||
| (2,0)c/10 | 7[n 27] | 11 | 12 | 7 | 6 |
| (3,0)c/10 | 8 | 13 | 14 | ||
| (4,0)c/10 | 8 | 15 | 16 | 7 | 8 |
| (5,0)c/10 | 8 | 13 | 14 | ||
| (1,1)c/10 | 5 (gfind) | 7 (gfind) | 8 (gfind) | ||
| (3,3)c/10 | 6 (gfind) | 9 (gfind) | 10 (gfind) | ||
| (1,0)c/11 | 5 | 9 | 10 | ||
| (2,0)c/11 | 6 | 11 | 12[n 28] | ||
| (3,0)c/11 | 7 | 11 | 12 | ||
| (4,0)c/11 | 9 | 15 | 16[n 29] | ||
| (5,0)c/11 | 10 | 19[n 30] | 20[n 31] | ||
| (1,0)c/12 | 5 | 9 | 10 | ||
| (2,0)c/12 | 5 | 9 | 10 | 5 | 4 |
| (3,0)c/12 | 5 | 9 | 10 | ||
| (4,0)c/12 | 6 | 9 | 10 | 5 | 6 |
| (5,0)c/12 | 7 | 13 | 14 | ||
| (6,0)c/12 | 7 | 13 | 14 | 7 (gfind) | 8 (gfind) |
| (2,0)c/14 | 4 | 7 | 8 | 3 | 4 |
| (4,0)c/14 | 5 | 9 | 12 | 5 | 4 |
| (7,0)c/14 | 6 < w ≤ 10 | 11 | 12 | ||
| (3,0)c/15 | 4 | 7 | 8 | ||
| (5,0)c/15 | 5 | 9 | 10 | ||
| (4,0)c/16 | 4 | 7 | 8 | 3 | 4 |
| (6,0)c/16 | 6 | 9 | 10 | 5 | 6 |
| (8,0)c/16 | 6 | 11 | 12 | 5 | 6 |
| (10,0)c/20 | 5 < w ≤ 10 | 9 | 10 | 5 | 4 |
| (4,0)c/23 | 3 | 5 | 6 < w ≤ 10 | ||
| (26,0)c/52 | w ≤ 17 | ||||
I found the 4c/14 with ikpx2 as a new speed before performing qfind searches up to width 10 that proved its minimality, then found the true-period 2c/7's
| (click above to open LifeViewer) |
the flocks
thank you to for Lapintra/TrollDu13EtDu14/Lapin Acharné for finding a surprisingly small 2c/8 in apgsearch,[8] which works in all three rules and has been proven to be minimal-width by ascendantDreamweaver
the dreamweaver also increased c/5 to logical width 11 (except in B36/S12, where my laptop's 10 was sufficient in odd and even, and they have not done asymmetrical yet), 4c/9 to 11 and 2c/8 even (in which none were known previously) to 18, 16 (found), and 18, respectively
B3/S12 (Flock)
all partials for c/2 seem to be single-row irrespective of period, I conjecture there are no c/2's in this rule
| Velocity | Asymmetric | Symmetric | Gutter-preserving | Glide-symmetric | ||
|---|---|---|---|---|---|---|
| odd | even | odd | even | |||
| (1,0)c/3 | 11 20 (JLS)[9] 24 (ikpx2)[10] |
21 39 (JLS)[9] 47 (ikpx2)[10] |
22 40 (JLS)[9] 48 (ikpx2)[10] |
23 < w ≤ 71[11] 41 (JLS)[9] 49 (ikpx2)[10] | ||
| 38 (LLSSS)[12] | ||||||
| (1,0)c/4 | 11 | 17 | 22 | 17 | ||
| 13 (JLS)[10] | ||||||
| (1,1)c/4 | 13 (gfind) | 25 (gfind) | 25 (gfind) | 24 (gfind) < w ≤ 36 | ||
| (1,0)c/5 | 11 < w ≤ 18 | 21 | 24[n 32] | 23 | ||
| (2,0)c/5 | 12 | 25[n 32] | 24 < w ≤ 34 | 25 | ||
| (1,1)c/5 | 11 (gfind) | 19 (gfind) 17 (JLS)[10] |
19 (gfind) | |||
| (1,0)c/6 | 10 | 17 < w ≤ 21 | 18 | 19 | ||
| (2,0)c/6 | 10 | 19 | 20 | 21 | 11 (gfind) | 10 |
| (1,1)c/6 | 9 (gfind) | 17 (gfind) | 17 (gfind) | 16 (gfind) < w ≤ 24 | ||
| (1,0)c/7 | 9 | 15[n 33] | 16 | 17 | ||
| (2,0)c/7 | 10 | 19 | 20 | 21 | ||
| (3,0)c/7 | 12 | 23 | 24 | 25 | ||
| (1,1)c/7 | 7 (gfind) | 11 (gfind) | 11 (gfind) | |||
| (1,0)c/8 | 7 | 13 | 14 | 15 | ||
| (2,0)c/8 | 10[n 32] | 17[n 32] | 18 | 17 | 9 < w ≤ 17 | 8 |
| (1,1)c/8 | 7 (gfind) | 13 (gfind) | 13 (gfind) | 12 (gfind) | ||
| (2,2)c/8 | 8 (gfind) | 15 (gfind) | 15 (gfind) < w ≤ 21 | 14 (gfind) | ||
| (3,0)c/8 | 10 | 19 | 20 | 21 | ||
| (1,0)c/9 | 7 | 11 | 12 | 13 | ||
| (2,0)c/9 | 8 | 13 | 14 | 15 | ||
| (3,0)c/9 | 9 | 17 | 18 | 19 | ||
| (4,0)c/9 | 11 | 21 | 22 | 23 | ||
B36/S12 (HighFlock)
| Velocity | Asymmetric | Symmetric | Glide-symmetric | ||
|---|---|---|---|---|---|
| odd | even | odd | even | ||
| (1,0)c/3 | 11 | 21 | 22 | ||
| 14 (JLS)[13] | 29 (JLS) | 30 (JLS) | |||
| (1,0)c/4 | 10 | 15 | 16 | ||
| (1,1)c/4 | 13 (gfind) | 25 (gfind) | 26[6] | ||
| (1,0)c/5 | 10[n 34] < w ≤ 14 11 (gfind)[14] |
19 | 20 | ||
| (2,0)c/5 | 11[n 32] | 17 | 20 | ||
| (1,1)c/5 | 9 (gfind) | 17 (gfind) | 19 (gfind) | ||
| (1,0)c/6 | 10[n 35] | 17[n 36] | 18 | ||
| (2,0)c/6 | 10 < w ≤ 15 | 19 | 20 | 9 | 10 |
| (1,1)c/6 | 9 (gfind) | 15 (gfind) | 16 (gfind) < w ≤ 24 | ||
| (1,0)c/7 | 9 | 15 | 16 | ||
| (2,0)c/7 | 10 | 19 | 20[n 37] | ||
| (3,0)c/7 | 12 | 23 | 24 | ||
| (1,0)c/8 | 7 | 11 | 12 | ||
| (2,0)c/8 | 10[n 32] | 17 | 16[n 38] | ||
| (3,0)c/8 | 10 | 19 | 20 | ||
| (1,1)c/8 | 6 (gfind) | 9 (gfind) | 10 (gfind) | ||
| (2,2)c/8 | 8 (gfind) | 13 (gfind) < w ≤ 21 | 14 (gfind) | ||
| (1,0)c/9 | 6 | 11 | 12 | ||
| (2,0)c/9 | 8 | 13 | 14 | ||
| (3,0)c/9 | 9 | 15 | 16 | ||
| (4,0)c/9 | 11 | 21 | 22 | ||
| (1,0)c/10 | 6 | 11 | 12 | ||
| (2,0)c/10 | 6 | 11 | 12 | ||
| (3,0)c/10 | 7 | 13 | 14 | ||
| (4,0)c/10 | 8[n 39] | 17[n 39] | 18[n 39] | 7 | 8[n 39] |
| 17 | 18 | ||||
| (3,0)c/15 | 4 | 9 | 8 | ||
B38/S12 (Pedestrian Flock)
| Velocity | Asymmetric | Symmetric | Gutter-preserving | Glide-symmetric | ||
|---|---|---|---|---|---|---|
| odd | even | odd | even | |||
| (1,0)c/3 | 11 < w ≤ 38[12] 20 (JLS) |
21 27 (JLS) |
22 28 (JLS) |
23 < w ≤ 71[11] 27 (JLS) | ||
| (1,0)c/4 | 11 < w ≤ 13 | 17 | 22 | 17 | ||
| 13 (gfind)[15] | ||||||
| (1,1)c/4 | 13 (gfind) | 25 (gfind) < w ≤ 33 | 25 (gfind) | 24 (gfind) < w ≤ 36 | ||
| (1,0)c/5 | 11 13 (gfind)[16] |
21 | 24[n 32] | 23 | ||
| (2,0)c/5 | 12 | 25[n 32] | 24 < w ≤ 34 | 25 | ||
| (1,1)c/5 | 11 (gfind) | 19 (gfind) | 19 (gfind) | |||
| (1,0)c/6 | 10 | 17 < w ≤ 21 | 18 | 19 | ||
| (2,0)c/6 | 10 | 19 | 20 | 21 | ||
| (1,1)c/6 | 9 (gfind) | 17 (gfind) | 17 (gfind) | 16 (gfind) < w ≤ 24 | ||
| (1,0)c/7 | 9 | 15[n 33] | 16 | 17 | ||
| (2,0)c/7 | 10 | 19 | 20 | 21 | ||
| (3,0)c/7 | 12 | 23 | 24 | 25 | ||
| (1,0)c/8 | 7 | 13 | 14 | 15 | ||
| (2,0)c/8 | 10[n 32] | 17[n 32] | 18 | 17 | 9 < w ≤ 17 | 8 |
| (3,0)c/8 | 10 | 19 | 20 | 21 | ||
| (2,2)c/8 | w ≤ 21 | |||||
| (4,0)c/9 | 11 | 21 | 22 | 23 | ||
B3ai4/S23
thank you to the dreamweaver once more for improving the 2c/5 and 3c/7 bounds (and thereby finding the surprisingly small 2c/5 asymmetrical)
| Velocity | Asymmetric | Odd-symmetric | Even-symmetric |
|---|---|---|---|
| (1,0)c/2 | 12 | 23 | 24 |
| (1,0)c/3 | 10 | 21 | 22 |
| (1,0)c/4 | 10 | 19 | 20 |
| (2,0)c/4 | 11 | 21 | 22 |
| (1,0)c/5 | 10[n 40] | 17 | 18 |
| (2,0)c/5 | 11 | 21 | 22 |
| (1,0)c/6 | 9 | 15 | 16 |
| (2,0)c/6 | 10 < w ≤ 15 | 21 | 20 |
| (1,0)c/7 | 7 | 13 | 14 |
| (2,0)c/7 | 9 | 15 | 16 |
| (3,0)c/7 | 11 | 21 | 22 |
B34kz5e7c8/S23-a4ityz5k (yujh rule :-)
| Velocity | Asymmetric | Odd-symmetric | Even-symmetric | Gutter-preserving |
|---|---|---|---|---|
| (1,0)c/2 | 11 | 11 | 24 | 11 |
| 15 | 24 | |||
| (1,0)c/3 | 11 | 11 | 20 | 11 |
| 11 | 17 | |||
| (1,0)c/4 | 9 | 9 | 16 | 13 |
| (2,0)c/4 | 5 | 11 | 12 | 11 |
| 14 | 13 | |||
| (1,0)c/5 | 8 | 17 | 18 | 17 |
| 20 | 19 | |||
| (2,0)c/5 | 11 | 19 | 20 < w ≤ 26 | 21 |
| (1,0)c/6 | 10 | 17 | 18 | 19 |
| (2,0)c/6 | 10 | 17 | 20 | 19 |
| (3,0)c/6 | 10 | 15 | 20 | 19 |
| (1,0)c/7 | 9 | 15 | 16 | 17 |
| (2,0)c/7 | 9 | 17 | 18 | 19 |
| (3,0)c/7 | 10 | 19 | 20 | 21 |
| (1,0)c/8 | 7 | 13 | 14 | 15 |
| (2,0)c/8 | 8 | 15 | 16 | 17 |
| (3,0)c/8 | 10 | 19 | 20 | 21 |
| (4,0)c/8 | 7 | 11 | 14 | 13 |
| (3,0)c/9 | 8 < w ≤ 17 | 13 | 16 | 15 |
| (5,0)c/10 | 8 | 15 < w ≤ 21 | 16 | 15 |
| (6,0)c/12 | 7 | 11 | 14 | 13 |
| (7,0)c/14 | 6 | 11 < w ≤ 19 | 12 | 13 |
| (11,0)c/22 | 5 | 7 < w ≤ 17 | 8 | 9 |
| (12,0)c/24 | 4 | 7 < w ≤ 21 | 8 < w ≤ 24 | 9 |
| (10,0)c/26 | 4 < w ≤ 7 | 7 | 8 | 9 |
| (click above to open LifeViewer) |
self-complementaries
B35678/S4678 (Holstein)
c/2 up to width 14 reports no partial results are found in any symmetry
c/4 w24e searched by dreamweaver
| Velocity | Asymmetric | Symmetric | Glide-symmetric | ||
|---|---|---|---|---|---|
| odd | even | odd | even | ||
| (1,0)c/3 | 13 | 19[n 41] | 20 | ||
| 15 (JLS)[17] | |||||
| (1,1)c/3 | 18 (gfind) | 33 (gfind) | |||
| (1,0)c/4 | 11 | 21[n 42] | 24[n 43] | ||
| (1,1)c/4 | 12 (gfind) | 23 (gfind) | 24 (gfind) | ||
| (1,0)c/5 | 10 | 15 | 14 | ||
| (2,0)c/5 | 12 | 23 | 24 | ||
| (1,0)c/6 | 10 | 19 | 20[n 44] | ||
| (2,0)c/6 | 10 | 19 | 20 | ||
| (1,0)c/7 | 9 | 15 | 16 | ||
| (2,0)c/7 | 10 | 19 | 20 | ||
| (3,0)c/7 | 11 | 21 | 22 | ||
| (1,0)c/8 | 8 | 13 | 14 | ||
| (2,0)c/8 | 8 | 15 | 16 | ||
| (3,0)c/8 | 11 | 19 | 20 | ||
| (1,0)c/9 | 7 | 13 | 14 | ||
| (2,0)c/9 | 8 | 15 | 16 | ||
| (3,0)c/9 | 10 | 17 | 18 | ||
| (4,0)c/9 | 11 | 21 | 22 | ||
B3578/S24678 (Geology)
| Velocity | Asymmetric | Symmetric | Gutter-preserving | Glide-symmetric | ||
|---|---|---|---|---|---|---|
| odd | even | odd | even | |||
| (1,0)c/2 | 7 | 11 | 10 | 11 | ||
| (1,0)c/3 | 7 | 11 | 10 | 13 | ||
| (1,1)c/3 | 9 (gfind) | 17 (gfind) | 19 (gfind) | |||
| (1,0)c/4 | 7 | 11 | 12 | 13 | ||
| (2,0)c/4 | 7 | 11 | 10 | 11 | ||
| (1,1)c/4 | 10 (gfind) | 13 (gfind)[n 45] | 17 (gfind) | 12 (gfind) | ||
| (1,0)c/5 | 8 | 11 | 12 | 13[n 39] | ||
| (2,0)c/5 | 10 | 13 | 16 | 19 | ||
| (1,1)c/5 | 8 (gfind) | 13 (gfind) | 17 (gfind) | |||
| (1,0)c/6 | 7 | 11 | 10 | 15 | ||
| 15 | ||||||
| (2,0)c/6 | 7 | 11 | 10 | 13 | ||
| (3,0)c/6 | 7 | 11 | 10 | 13 | ||
| (1,1)c/6 | 7 (gfind) | 11 (gfind) | 13 (gfind) | 12 (gfind) | ||
| (1,0)c/7 | 7 | 11 | 12 | 15[18] | ||
| (2,0)c/7 | 8 | 13 | 14[19] | 17 | ||
| (3,0)c/7 | 9 | 17[20] | 18 | 19 | ||
| (1,0)c/8 | 6 | 9 | 10 | 11 | ||
| (2,0)c/8 | 6 | 9 | 10 | 13 | ||
| (3,0)c/8 | 9 | 15 | 16 | 19 | ||
| (4,0)c/8 | 7 | 11 | 10 | 11 | ||
| (1,0)c/9 | 6 | 9 | 10 | 11 | ||
| (2,0)c/9 | 6 | 11 | 12 | 13 | ||
| (3,0)c/9 | 6 | 9 | 10 | 13 | ||
| (4,0)c/9 | 9 | 17 | 18 | 19 | ||
| (2,0)c/10 | 5 | 9 | 10 | 11 | ||
| (5,0)c/10 | 7 | 11 | 10 | 13 | ||
| (4,0)c/11 | 7 | 13 | 12 | 13 | ||
| (6,0)c/12 | 6 | 11 | 10 | 13 | ||
notes
- ↑ non-monotonic!
- ↑ [2] found a 71-cell version, gfind found a 68-cell
however, at width 14, the shortest is 72 cells - ↑ first found in [2], 106 cells, shortest at width 15 is 84 cells, at 17 is 78, at 19 and 21 is 60, at 23, 25 and 27 is 82
- ↑ first found in [2], also the first spaceship to be found in a width-10 or 11 gfind search
- ↑ first found in [2], 107 cells, shortest at width 19 and 21 is this 46-cell one
- ↑ 60 cells, shortest at width 14 and 16 is this 62-cell one, at 18 and 20 is this 54-cell one
- ↑ 184 cells, first found in [4], gfind agrees
gfind reports the same spaceship for width 17
Note the smallest known is a 152-cell width-19 found by May13[5] - ↑ 71 cells, width 8 reduces to 61 cells
- ↑ 9*654 partial
4b3o$3bob3o$4bo$3bo3b2o$4b2o$6b3o$3b2obo$2bob2obo$2bob2o$5obo$3o3bo$2bob3o$3bob2o$b2ob2o$o2b3o$3b3o$2bobo$bob3o$4b2obo$5b3o$5bobo$o2b4o$b2o2bo$bobo2$2b3o$3bo$2bob3o$5b2o$7bo$5bobo3$3b
2o$2b4o$5bo$2b2o2bo$2bobo$3b2o$4b2o$3b2obo$3bo3bo$2bobo2bo$2b3obo$4bobo$3bob2o$4bo2$6bobo$5b3o$8bo$2b3ob3o$3b3o$2bo3bo$2b2obo$5bobo$2o2bo2$2b6o$4bob2o$bo$bo$2b3o$5b2o$3b4o$3b2obo$4b3o
$6bo$4b3o$5bo$2bo$b2o$2b2o$o2b2o2$2obo$2bo2bo$bob3obo$4bobo$5b2o$5bo$6bo$4bo$4bo$2b2o$2b2obo$bo2b2o$b3o$5b3o$2ob2obobo$3o2bobo$2b6o$2b2o2b3o$2bo2bobo$o2b3o2bo$o2b3obo$b5o2bo$obo3bo$4b
o2bo$3b3o$4b3o$2b3o$bob2o$2bob2o$2bob2o$2bobobo$b2obo$b2o2b2o$b3o$2bo$2bobo$bo3bo$3bo$3b3o$6bo$5b3o$4b2obo$o2bob2o$b2o$2bobo2$bo$2bo$2b3o$2bobo$3b3o$4b2o$5bo$4bo$5b2o$3b4o$2bob4o$3bo2
b2o$3bobo$3bo$3bob2o$5bo$3b2o$3bobo$5b2o2$6bo2$4bob2o$3bo$4b2o$3bo2bo$2bo2b2o$3b3o$4b2o2$4bo2bo$5b2o$3bo3bo$2b2o$2bo$3bobo$2b4o$2bo2bo$b3obo$bo2bo$3bo2b2o$3bo2bo$4b4o$4bo$5bo$bo2bo$2b
3o$bo2b2o$bo2bobo$2b4o$b3o$6bo$6bo$5bo$5b2o$5bobo$6b3o$7bo$3b4o$b2o$b2o$2bob2o$2bo$o$2o2$2b2o$2bo$3b5o$6bo$6bo$2bo3bo$b2obo$bobobo$2b2obo2$b2obo$4bo$3bo$bo2b2o$3b2o2bo$3b2obo$3bo2$2b2
o$3bo$3bo$b2o$b2o$2bobo2$5b3o$7bo$4b2o$4bo$4bobo2$2b2o3b2o$2bob4o$4bo$4b2o$bo$3o$o2b2o$3bo$bo2$2b3o$3b2o$2bo$2bobo$4bo2$3b2o$3b3o$3bob2o$3bo$4b2o$3b3o$3b3o$2bob2o$5b2o$b3o$b4o$7bo$5bo
b2o$b2o3b3o$obo$obo2bo2bo$7bo$7bo2$5b2o2$6bo$4bo$2b3o$2bobo$2bo4bo$3bo2b2o$3bo$3bo$6bo$5bo$2b3o$2bobob2o$bob2obo$2obob2o$2o3bo$5bo$2b4o$2bob3o$2bo$4bo$2bo$4bobo$bobobo$4b3o$4bo2bo$3b5
o$4bobo$4b2o$5b2o$4b2o$4bo$6bo$3b2o2bo$4b2obo$5o$3bo2bo$4obo$2b4o$bo$3bobo$4b2o$3b3o$3bo3bo$6b2o$6bo$4bo$2b3o$b3o$3bobo$5bo$7bo$5b2o$3b3obo$5b2o$2bobo$2b2o2bo$4bo2$3bobo$5b2o$4b2o$4b3
o$4b2o$4bo2$2bobo$3b2o$b2o$2o2bob2o$o2b2o2bo$bo3bo$6bo$7b2o2$5b3o2$3b2o$2bo$2b3o$3b2obo$3bobo3$3b2o$3b2o2bo$3bo2b3o$2bob3obo$4bo$3b2o$b3o$2b3o3$2b3o$2b3o$2bo3bo$2bobobo$3b2o$bob2o$obo
$4bobo$2bo$3b4o$3b2obo2$4b2o$3bo2bo$4bob2o$4bobo$3b2ob2o$4bob2o$4b2obo$4bo$4bobo$3b3obo$4b3o$3bo$5b2o$4b3o$4bo$bo2b2o$2o4bo$b4o$obo2bo$b2o$2bo3b2o$2b5o$2b2o3bo$5b2o$5bo$7bo$5b2o$5bo$5
bobo$4bob2o$3b3obo$2b3obo$2bob2obo$bob2ob2o$2b4obo$6bo$3bo$4bo$4b2obo$5bobo2$4bobo$5b2o2$4b2o$4bo$3b2o$4bo2$4b2o$3b3obo$3bo2b2o$3bobo$3bobobo$4bo2bo$4bo2bo$5b2o$3b2o2b2o$4b2o2bo$4bob2
o$5b3o$5b3o$5b2o$6bobo$3b2ob2o2$6b2o$5b4o$6b2o$5b3o$3b2obo$b3obo$b4o$2b2o2bo$2bo$bo4bo$4b3o3$3b3o2$3bo$2b2o$b2obo$bo2bobo$2b3obo2$2bob3o$4b2o$5b2o3$2bo$2ob2o$bobo$o3bo$bobo$3bo$2bobo$
2b4o$3b5o$3bo3b2o$5bobo$6bobo$6bo$3b2o$3bobo$2b3obo$4b2obo$b4ob2o2$4bo$2bob3o$2b6o$2b2obobo$3b3ob2o$3b2o2bo$2bo4bo$2b2o$bo2b2o$2b2obo$bo2$2bo$2b4o$bo3bo$4b2o$4b3o$5b2o$5b2o$6bo$2bob2o
$3b2obo$3bob2o$3b2o$3b2o$2b2o$3bo$2bobo$bo$2b2o$3bo$bo$2bo$2b4o$2bo2bo$b2ob2o$bo2bo$3o2b2o$bobo$bo2b3o$b4o$ob3o$3o2b2o$b2ob2o$2b2o2bo$2b2o$2ob3o$2bob2o$2bob2o$3b4o$4bo$2b3o2$2b4o$3bo$
3bob3o$3b2o3bo$5bobo$6bo$3b2o2bo$2bobo$3bo2$4b2o$3b2o$3b2o$3bo$bo2bo$bo2bo$3o$bo$ob4o$4b2o$b3obo$3b2o$2bob2o$3b3o$2bo3bo$2b4o$4b3o$bo$o2bo$ob2o$4b2o$5bo$2b2o$5b3o$4bo2bo$3b4o$bo2bo$b3
o$2o2b2o$2o2bo$3bo2bo$b2obo$o2bo$5b2o$6b2o$2b4o$3bobo$4bo$3bo$5bo$5b2o$5b2o$5bob2o$7b2o$6bo$6bo2$3bob2o$3bo3bo$5o2b2o$bo2b2o$o2bobo$2b3o$3bo3bo$3bobo$3b2o$3b2obo2$b4obo$b2obo$3bo$3bo$
4bobo$4b2ob2o2$3b3obo$3bob3o$5b2o$4b3o$4b3o$3b2ob2o$6bo$4b3o$5bo$3b3o$3b3obo$4b3obo$4bobo$2bob3o$3bobo$3b4o$2bob2o$2b6o$2b2o2bo$7b2o$3bo3bo$2bob2obo$3bob2obo$3b2ob3o$5b2o$4b2o$2b2o$3b
ob2o$3o2b2o$b4ob2o$2obob2o$2b2o$2bo2bo$5o$bob5o$bob5o$bobobo$ob4o$4bobo$b5o$b2o2bo$3bobobo$5bobo$4bob2o$2bobobo$2b2o$2b2o$bo4b2o$4b2o2bo$3b5o$2b2obobo$2bobo2b2o$o5b3o$3b2obo$2ob2o2bo! - ↑ found by the dreamweaver, who specified that it is not guaranteedly minimal-length for a width-11 since the search split and only one branch was necessary to search to find it, but shows that 11 is the minimum
shares frontend with the longest width-10 (10*65) partial
5bobo$5b3o$4bob2o$2b4o2bo$2b4o$6bobo$9bo$5bobo$4b4o$3bobobo$3b2o$5bobo$5b4o$4bobo$4b2obobo$4b2o$4b5o$3b2o$4bo3bo$2b2ob4o$2bobob2o$3bobobo$3b2o$2b2
obo$b2o2b2o$7bo$3bo$2bo3b3o$2bob2obobo$2bobobob2o$4b2o2bo$6b4o$4b2obo$4b3o$5b2o2$3b2obo$2bo3b3o$3b2obobo$3b2obobo$3b2obobo$o2b5o$7b2o$2b3o2bo$2bo4
bo$3bo3bo$3b2o2b2o$2bo2b3obo$b2obo$b2obo$o4bo$b2ob2o$3b5o$b4obo$bo2bo2bo$9o$bob4obo$2bo2bo2b2o$2bo2bobo$5bo3bo$2bobo$bobo$b3o2b4o$2obobob2o$3b4obo! - ↑ this spaceship (with a forked tail) is in fact shorter, but higher-population
- ↑ 7*39 partial
2b4o$2b4o3$4b2o$4bo2$b3o$bobo$3b3o$2b2obo$2bobo2$bobobo$2b2o2$bobo$obobo$bobo$o$3bo$3b2o$4bo
$3b3o$o3bo$bobobo$3o3bo$2bo$bo2b2o$b2o2$b2ob2o$3o3bo$bob3o$bob2o$bobob2o$b2ob2o$2bo2bo$3b2o! - ↑ 13*143 partial
2bo7bo$b3obobob3o$ob4ob4obo$5bobo$4b2ob2o$4bo3bo$5bobo$4b5o$2b3o3b3o$3bobobobo$3b2obob2o$bob2o3b2obo$4bo3bo$4bo3bo$3b2o3b2o$5bobo$3b2o3b2o$2b2o5b2o$3
b2obob2o$2bo2b3o2bo$4b2ob2o3$3b2obob2o$4bo3bo$3bobobobo$3b2o3b2o$4bobobo$3bo5bo$4bo3bo$4b5o2$5b3o$4b2ob2o$4b2ob2o$4b2ob2o$2bob2ob2obo$2bo3bo3bo$3bobo
bobo$2b2o5b2o$2b2ob3ob2o$b4obob4o$3b7o$bo2bobobo2bo$b5ob5o$2b3o3b3o$3b2o3b2o$bob2o3b2obo$2bobo3bobo$6bo$4bobobo$3bob3obo$3bo2bo2bo$2bobo3bobo$2bobobo
bobo$bo9bo$o2b2o3b2o2bo$2b2obobob2o$3b2o3b2o3$2b2o5b2o$bob2o3b2obo$2b3o3b3o$b2ob2ob2ob2o$4b5o$5b3o$3bobobobo$b2o3bo3b2o$b11o$bo3bobo3bo2$4bo3bo$4bo3b
o$3bo2bo2bo$3bo5bo$4bobobo$2b2obobob2o$2bobo3bobo$b3obobob3o$3obobobob3o$bo3b3o3bo$2bobo3bobo2$3bo5bo$4b2ob2o$6bo2$2b3o3b3o$2b2o2bo2b2o$b4obob4o$bo3b
obo3bo$3b3ob3o$4bo3bo$3b2obob2o$6bo$3bobobobo$5bobo$3bo5bo$4b2ob2o$2b9o$b3o5b3o$3bo5bo2$5bobo$3ob5ob3o$b2o7b2o$bob2o3b2obo$2o9b2o$b4obob4o$6bo$3bo5bo
$5b3o$b2o3bo3b2o$ob4ob4obo$4ob3ob4o$bo3bobo3bo$2b3obob3o$6bo$5bobo$3b3ob3o$2bobo3bobo$b2obo3bob2o$5bobo$2b3o3b3o$4bobobo$3b2o3b2o$2bobo3bobo$2bob2ob2
obo$2obo2bo2bob2o$b2obobobob2o$2obo2bo2bob2o$2bo2b3o2bo$b4o3b4o$4bo3bo$bo2b5o2bo$b2o2bobo2b2o$2b9o$3bo5bo$5b3o$obobo3bobobo$2obobobobob2o$bobob3obobo! - ↑ 14*194 partial
6b2o$5bo2bo$4bo4bo$6b2o$6b2o2$3b3o2b3o$4b6o$4bob2obo$3b2o4b2o$3b2ob2ob2o$5bo2bo$3b3o2b3o$3b3o2b3o$5bo2bo$4b2o2b2o2$3b2ob2ob2o$6b2o$5b4o$5b4o2$4bo4
bo$3bo2b2o2bo$4bo4bo$4bo4bo$6b2o$5b4o2$4bo4bo$2b2obo2bob2o$2bob2o2b2obo$5bo2bo$2b3ob2ob3o$2b2o2b2o2b2o$3b2ob2ob2o$b2o8b2o$5b4o$3b8o$3bobo2bobo$3b2
o4b2o$3b8o$2bo8bo$2b3o4b3o$4bob2obo$4b2o2b2o$4b2o2b2o$4b2o2b2o$6b2o$5bo2bo$4bo4bo$4bo4bo$3bo6bo$5b4o$4b6o2$3bo2b2o2bo$4bob2obo$4b2o2b2o$3bobo2bobo
$3b2o4b2o$2b2o2b2o2b2o$4bo4bo$3b3o2b3o$o2bo6bo2bo$b3o2b2o2b3o$bob2ob2ob2obo$6b2o$4bo4bo$2bo8bo$2b4o2b4o$b2o2bo2bo2b2o$3b3o2b3o$3bobo2bobo$2b3ob2ob
3o$4bob2obo$4bo4bo2$6b2o$4bo4bo$3b2o4b2o$3b2ob2ob2o$5b4o$5b4o$4b2o2b2o$2bobo4bobo$6b2o$3bo2b2o2bo$4bob2obo$4bo4bo$4bo4bo$6b2o2$5bo2bo$3b3o2b3o$2b3
ob2ob3o$2bobo4bobo$4b6o$4b6o$4bo4bo$4bo4bo2$3bo6bo$bob2ob2ob2obo$3b3o2b3o$bo3b4o3bo$2bobo4bobo$2bo8bo$6b2o$5bo2bo$2bo3b2o3bo$3b8o$4b2o2b2o$4bob2ob
o2$4b2o2b2o$4b2o2b2o$4b2o2b2o2$2bob2o2b2obo$3bo6bo$2bobob2obobo$6b2o$3b2o4b2o$3b3o2b3o$3b2o4b2o$4b2o2b2o$5b4o$3bob4obo$4b2o2b2o$2b3o4b3o$3b3o2b3o$
bob3o2b3obo$2bo2bo2bo2bo$3bob4obo$3b8o$6b2o$3bo6bo$6b2o$2b10o$3b2ob2ob2o$2bo3b2o3bo$4b6o$3b2o4b2o$4bo4bo$3b2o4b2o$3b2o4b2o$3bob4obo$3bobo2bobo$3b2
o4b2o$3b2ob2ob2o$3b2ob2ob2o$2b2ob4ob2o$2b3o4b3o$3bob4obo$2bobob2obobo$b2o8b2o$2bobo4bobo2$2bobob2obobo$b2o8b2o$2b3o4b3o$2b2o6b2o2$3bob4obo$2bo2b4o
2bo$2b2o6b2o$b2o8b2o$2bob2o2b2obo$3bo6bo$b4o4b4o$2b2o2b2o2b2o$o3b6o3bo$o2b2o4b2o2bo$bo3b4o3bo$2o4b2o4b2o$bobo2b2o2bobo$4bob2obo$3b2ob2ob2o$4b2o2b2
o$2b2o6b2o$3b2ob2ob2o$bobobo2bobobo$obo2bo2bo2bobo$b3o2b2o2b3o$o2bo6bo2bo$2bo2bo2bo2bo$3b3o2b3o$bo2b6o2bo$b3o6b3o$b2o8b2o$2b2ob4ob2o$4b6o$3bob4obo! - ↑ 10*30 partial
5b2o$4b3o$7b2o$4b3obo$4bo3bo$5b3o$7bo$6bo$3bo3b2o$3b2o$3b6o$4bobob2o$5b5o$4bo$5bo$3b5o$2bobo3bo$5b2
o2bo$b2o2bo$2b2o2bo$obobo$3obobo$b2obob2o$o2b6o$b2ob2o2b2o$2bo4b2o$bob3ob2o$2b2o3bobo$3b3o3bo$ob2o! - ↑ 19*86 partial
b4o9b4o$2b2o11b2o$2bobo9bobo$b5o7b5o$4bo9bo$b2o13b2o$bobo11bobo$2bob2o7b2obo$3b
obo2b3o2bobo$3b3o7b3o$3b2o9b2o$3bob2o5b2obo$8b3o$9bo$7bobobo$5b2o2bo2b2o$5bo2b3
o2bo$4bo2bo3bo2bo$4bob2o3b2obo$3bob2ob3ob2obo$6b7o$8bobo$3bo2bob3obo2bo$3b4obob
ob4o$4b3o5b3o$4b2ob2ob2ob2o$6b2o3b2o$6b2o3b2o$6b3ob3o$5bobo3bobo$4bo2b5o2bo$4b2
o7b2o$3b3o7b3o$4b5ob5o$6bob3obo$4bo2bobobo2bo$4b2obobobob2o$3bobo2b3o2bobo$4b4o
bob4o$4b2obo3bob2o$3b2o2bo3bo2b2o$3bob3o3b3obo$4b2o7b2o$4b2ob2ob2ob2o$6b2o3b2o$
4b2o2bobo2b2o$4bo9bo$4bobo5bobo$5b2o5b2o$3b3o2bobo2b3o$2bo2b2o5b2o2bo$3bo3bo3bo
3bo$2o3bo7bo3b2o$bo3b2o5b2o3bo$2ob3o7b3ob2o$bob3o3bo3b3obo$b3obobobobobob3o$2bo
4bobobo4bo$2b4o3bo3b4o$2b3o9b3o$4b5ob5o$2b2o3bo3bo3b2o$2bo2b4ob4o2bo$bobob2obob
ob2obobo$3bobob5obobo$bobo2bobobobo2bobo$o2bobo2bobo2bobo2bo$b2o2bo3bo3bo2b2o$2
o4bobobobo4b2o$ob2o2b2obob2o2b2obo$6b7o$4b3o5b3o$4b2o7b2o$4b5ob5o$2bo3bobobobo3
bo$4bo2b5o2bo$b4obo5bob4o$4bo2bobobo2bo$bo3bobo3bobo3bo$b2obobob3obobob2o$b2obo
b3ob3obob2o$b2o2b3o3b3o2b2o$2bob2o3bo3b2obo$4b2o2b3o2b2o$b3o11b3o$3bo3bo3bo3bo! - ↑ 7*51 partial
3b2o$3bo2bo$bo2bo$2b3obo$2o2b2o$o$b2o$bo$bob2o$2bobo$4bo2$3bobo$3b3o$4bo$3b2o$2b2o$2bo$bo2$bobo$o3bo$bobobo$o3bo$2b2o$2b2o$2b
o$4b2o$b3ob2o$2b3obo$2b3o$bobobo$2bo$2b3o$2b3o$4bo$4bo$3bobo$b2o$ob2o$3bo$4b2o$4ob2o$7o$2bo$2bob2o$2bo$2b5o$2b5o$b2ob2o$o4bo! - ↑ 11*61 partial
3b2ob2o$2b3ob3o$2b3ob3o$2b2o3b2o$2bobobobo$3bobobo$3b2ob2o$3b5o$3bo3bo$b3obob3o$b3o3b3o$2bo5bo$2b2o3b2o$bobo3bobo2$4b3o$4bobo$4b3o$4bobo$4bobo$4b3o
$5bo$5bo$2bob3obo$2b2o3b2o$2b7o$5bo$4b3o$3bobobo$4b3o$2b2obob2o$2bobobobo$4bobo$2bob3obo$3b5o$2bob3obo$b2o5b2o$4bobo$2b2o3b2o$4b3o$2b2obob2o$bobo3b
obo$2bobobobo$b3o3b3o$3b2ob2o$4bobo$5bo2$b3obob3o$b3o3b3o$4bobo$3b2ob2o$bo7bo$o3bobo3bo$b4ob4o$4b3o$2bobobobo$5bo$bo2b3o2bo$2obobobob2o$b2obobob2o! - ↑ 12*91 partial
5b2o$5b2o$4bo2bo$5b2o$4b4o$3bo4bo$4bo2bo$3b6o2$2b2o4b2o$2bobo2bobo$b2ob4ob2o$b2o6b2o$b2o6b2o$3b6o$3b6o2$5b2o$3bo4bo$3bo4bo$2bobo2
bobo$2bobo2bobo$5b2o$3b2o2b2o$2o8b2o$b3o4b3o$b2o6b2o$2o3b2o3b2o$2b8o$bo8bo2$4b4o$5b2o$4b4o2$4bo2bo$4b4o$3bob2obo$2bo2b2o2bo$b2o2b
2o2b2o$5b2o$3b2o2b2o$2bobo2bobo2$2b2o4b2o$3b6o$b2ob4ob2o$2bobo2bobo$bob2o2b2obo$4b4o3$2bob4obo$bob6obo$b2ob4ob2o$b3ob2ob3o$3b2o2b
2o$b4o2b4o$3b2o2b2o$4bo2bo$4bo2bo$b4o2b4o$bo8bo2$o4b2o4bo$2b8o$3b6o$2o2b4o2b2o$o10bo$b3o4b3o$b3o4b3o$5b2o$2b8o$2b2o4b2o$3b2o2b2o$
5o2b5o$ob2o4b2obo$3b6o$2bobo2bobo$3b2o2b2o$4bo2bo$2b2o4b2o$3b2o2b2o$4bo2bo2$3bob2obo$2b2o4b2o$4bo2bo$2bobo2bobo$4ob2ob4o$o4b2o4bo! - ↑ 8*51 partial
3b2o$3b2o$2bo2bo$2b4o3$b2o2b2o$2bo2bo$ob4obo2$bo4bo$b6o$bo4bo$2b4o$2b4o$2b4o2$3b2o$3b3o$b2o3bo$2bobobo$3bob2o$2b2obo$2bob2o$4b2o$2bo2bo2$2b
5o$bob2o$2ob2o$2bobo$2b4o2$b2o2b2o$bo2b3o$2bobo$3bo3bo$bo2b2obo$bob3o$2b3o$3b2o$2bo$b3o$4b2o$2bo2bo$2b2ob2o$2b3ob2o$2bob4o$bo3bo$b3obo$6bo! - ↑ 13*71 partial
b3o5b3o$o2bobobobo2bo$obobo3bobobo$b2obo3bob2o$3b3ob3o$3b3ob3o2$5b3o$4b2ob2o$4b5o$4bo3bo$4bobobo$5bobo$2bob2ob2obo$2bo2bobo2bo$2bob
2ob2obo$2bobo3bobo$3b2o3b2o$2b9o$bo2b5o2bo$2b2o5b2o$bo2bo3bo2bo$bob2o3b2obo$bobo5bobo$3obo3bob3o$bobo2bo2bobo$2b2o2bo2b2o$2b2obobob
2o$2bo2b3o2bo$4bo3bo$4b2ob2o$b3o5b3o$2b2o5b2o$2b2o5b2o$2bo7bo$4bo3bo$3b3ob3o$4bo3bo$3bo2bo2bo$5bobo2$3b2o3b2o$2b4ob4o$4b5o$3b3ob3o$
b3o5b3o$2bo2b3o2bo$b2o3bo3b2o$2bob2ob2obo$3b2obob2o$2bo3bo3bo$2b2o5b2o$bobob3obobo$2b2o2bo2b2o$b3o2bo2b3o$4b5o$2b4ob4o$b2ob5ob2o$b2
ob2ob2ob2o$o2bobobobo2bo$2b2o2bo2b2o$b2obo3bob2o$b3o5b3o$bobo2bo2bobo$3bo2bo2bo$2b4ob4o$bo9bo$bo9bo$b2o2bobo2b2o$2o4bo4b2o$4b2ob2o! - ↑ 14*98 partial
6b2o$5b4o3$5bo2bo$4bo4bo$4bo4bo$6b2o$4b2o2b2o$3bo2b2o2bo$4bob2obo$4b2o2b2o$4b2o2b2o$5bo2bo2$4b2o2b2o$5bo2bo$4b2o2b2o$3bo6bo$3bob4obo$3b2o4b2o$
6b2o$4b6o$4bo4bo$2b3ob2ob3o$3bob4obo$2b3o4b3o$b4o4b4o$2b2o6b2o$2bo8bo$obobo4bobobo$3b3o2b3o$2bo3b2o3bo$4b6o$3bo6bo$3b2o4b2o$4b2o2b2o2$4bob2obo
$5b4o$4b6o$6b2o$2bo3b2o3bo$2b3o4b3o$bo3bo2bo3bo$bo2b2o2b2o2bo$2o10b2o$b2o3b2o3b2o$3bo6bo$3b8o$5bo2bo$4bob2obo$3bo2b2o2bo$2bob2o2b2obo$2b3ob2ob
3o$3bo6bo$2b4o2b4o$4b2o2b2o$2bobob2obobo$b3o2b2o2b3o2$2bobo4bobo$4b2o2b2o$4bob2obo$4bo4bo$5bo2bo$3bob4obo$3bo6bo2$2bo2bo2bo2bo$6b2o$2b2obo2bob
2o$3bob4obo$o2bob4obo2bo$b2ob2o2b2ob2o$4b2o2b2o$4b6o$2b3ob2ob3o$b3obo2bob3o$2b2obo2bob2o$b2obo4bob2o$3bobo2bobo$bobobo2bobobo$5bo2bo$2o2b6o2b2
o$3bobo2bobo$5bo2bo$bob3o2b3obo$b2o3b2o3b2o$o4bo2bo4bo$3o2b4o2b3o$2bo3b2o3bo$3b2o4b2o$6b2o$3b2ob2ob2o$bo4b2o4bo$2o2bob2obo2b2o$o2bo2b2o2bo2bo! - ↑ 19*33 partial
7b7o$5b2o2b3o2b2o$5bobobobobobo$4b2o2b5o2b2o$5bob7obo$5b2o7b2o$3bo2bo7bo2bo$6bobobobobo$4bo
3b2ob2o3bo$4b3ob2ob2ob3o$4b3ob5ob3o$3bo3b7o3bo$4bob2o5b2obo$2b3o11b3o$3b3obo5bob3o$3bo3b2o3
b2o3bo$b2o4b2o3b2o4b2o$b2obo11bob2o$4bob2o5b2obo$2bob2o2b5o2b2obo$3bobo3bobo3bobo$bo5b2o3b2
o5bo$2bob2ob2obob2ob2obo$bobo2b3o3b3o2bobo$6bobobobobo$3bo13bo$b3ob2o3bo3b2ob3o$bo2bo3b2ob2
o3bo2bo$5bob3ob3obo$2bo3bobo3bobo3bo$b3obob2o3b2obob3o$bo4bo3bo3bo4bo$2obo3b2o3b2o3bob2o$b2
o4bobobobo4b2o$5bobo2bo2bobo$3bob2obobobob2obo$b3obo2bobobo2bob3o$o2b3ob7ob3o2bo$6bo3bo3bo! - ↑ 20*39 partial
6bo2b4o2bo$5b2ob6ob2o$4b2obo6bob2o$4b5ob2ob5o$4bo2b2ob2ob2o2bo$7b2o4b2o$5b2ob2o2b2ob2o$5b2ob2o2b2ob2o$4b2ob2ob2ob2ob2o$3bob2obob2obob2obo$3b3obo6bo
b3o$4b5o4b5o$6b4o2b4o$3b5obo2bob5o$2bobo2b2o4b2o2bobo$3bo2bo8bo2bo$2bobo12bobo$2b5obo4bob5o$3b2obo8bob2o$b2obobo8bobob2o$2b2ob3o6b3ob2o$6b3o4b3o$6b
2o6b2o$4b5o4b5o$2bo2bob2o4b2obo2bo$bobobo10bobobo$2b2ob2ob2o2b2ob2ob2o$4bob3o4b3obo$2b2o2b3o4b3o2b2o$4bo2bo6bo2bo$6bo8bo$7b2o4b2o$4b2o2b2o2b2o2b2o$
2b7ob2ob7o$3bo2bo2b4o2bo2bo$5b3o6b3o$4bobobob2obobobo$5b5o2b5o$4bo3bo4bo3bo$2b6ob4ob6o$4bo4b4o4bo$3bo4b6o4bo$5bo2b2o2b2o2bo$3bobo2bob2obo2bobo$3b5o
6b5o$3bob2obo4bob2obo$5b2o3b2o3b2o$4bob10obo$9bo2bo$2b4o2b2o2b2o2b4o$2b2o2b4o2b4o2b2o$2bo4bo6bo4bo$3bobo10bobo$4bo12bo$4bo2b8o2bo$5bobo6bobo$4bo12b
o$6b2ob4ob2o$4b3o2b4o2b3o$6bo2b4o2bo$2bob2obo6bob2obo$3o16b3o$3bo5b4o5bo$4bob2ob4ob2obo$6b10o$6b3ob2ob3o$3bob4o4b4obo$2b2o2bob6obo2b2o$2b2obo3bo2bo
3bob2o$3bo2b2o6b2o2bo$3bob4o4b4obo$4b3o8b3o$3b2o5b2o5b2o$5bo3b4o3bo$2b2obo2b6o2bob2o$bo4b2o6b2o4bo$2b2o4b6o4b2o$b5o2bo4bo2b5o$2b4ob2o4b2ob4o$2b2ob2
o3b2o3b2ob2o$2bo2bobo6bobo2bo$3bo2bo3b2o3bo2bo$3b2ob2obo2bob2ob2o$4bo2b8o2bo$2b4o3b4o3b4o$4bo2bobo2bobo2bo$2bo4b8o4bo$2b3ob3o4b3ob3o$ob3ob2obo2bob2
ob3obo$b3o2b4o2b4o2b3o$o2bo2bo8bo2bo2bo$4obobobo2bobobob4o$3b2ob10ob2o$4bob3ob2ob3obo$2bo2bob3o2b3obo2bo$o2bo3bo6bo3bo2bo$bobob3ob4ob3obobo$4bo12bo! - ↑ 11*101 partial
3bo3bo$3b5o$2b2obob2o$3bobobo$2bobobobo$3bo3bo$4bobo$4b3o$3obobob3o$4bobo$4b3o2$3bobobo$3b5o$4bobo$3bo3bo$3b2ob2o2$4b3
o$5bo$3b5o$3b5o$3bo3bo$bobo3bobo$2b2o3b2o$b3obob3o$b4ob4o$4bobo2$5bo$2bo5bo$2b2obob2o$bob5obo$4bobo$bo2b3o2bo$2b2obob2
o$bob2ob2obo$b4ob4o$bo7bo$bobo3bobo$3bo3bo$3b2ob2o$3b2ob2o$4bobo$5bo2$4b3o$3bo3bo$2b2o3b2o$2b3ob3o$3b2ob2o$4bobo$3bo3b
o$3bo3bo$4bobo$3b5o$5bo$2bo2bo2bo$3b2ob2o$2b2o3b2o$2bo5bo$3b2ob2o$3b2ob2o$3b5o$3b5o$4bobo$b3obob3o$2b2obob2o$2bobobobo
$ob2o3b2obo$obo5bobo$4bobo$3bo3bo$5bo$2b3ob3o$2b2o3b2o$2bo5bo$bo3bo3bo$2b7o$2b7o$3b5o$4bobo2$3bo3bo$2b7o$bobobobobo$b9
o$2b3ob3o$b2o5b2o$5bo$bo7bo$2o2bobo2b2o$bo2b3o2bo$2b7o$bo7bo$2ob2ob2ob2o$bobo3bobo$b2obobob2o$o3b3o3bo$bo3bo3bo$4bobo! - ↑ 12*120 partial
4b4o$5b2o$4bo2bo$2b2o4b2o$3bo4bo$2bo6bo$b2o6b2o$b10o2$3bo4bo$4bo2bo$2b3o2b3o$3bob2obo$2bo6bo$3b2o2b2o$3
bo4bo$bo8bo$4b4o$b2obo2bob2o$2bobo2bobo$bobob2obobo2$o4b2o4bo$bo2bo2bo2bo$2b2ob2ob2o$4b4o2$3b6o$3b2o2b2
o$4ob2ob4o$o2b2o2b2o2bo$b10o$ob3o2b3obo2$2b2o4b2o$bob2o2b2obo$bo8bo$4bo2bo$3b2o2b2o$4bo2bo$2b2o4b2o$b4o
2b4o$o2b6o2bo$2o2b4o2b2o$bob6obo$2bo6bo$3bo4bo2$3b2o2b2o$3b2o2b2o$3b2o2b2o$4bo2bo$3bo4bo$4b4o$3bo4bo$3b
ob2obo$3b2o2b2o$3b2o2b2o$5b2o$4bo2bo$4b4o$2b3o2b3o$3bob2obo$3b6o$3b6o$b4o2b4o2$2bobo2bobo$2bo2b2o2bo$2b
8o$b2o6b2o$2bob4obo$4b4o2$bo8bo$ob8obo$3bo4bo$4bo2bo$4bo2bo$5b2o$4bo2bo$2bo2b2o2bo$3b2o2b2o$3b6o$3b2o2b
2o$2b8o$bo8bo$obobo2bobobo$bobo4bobo$bo2bo2bo2bo$2b2o4b2o$2b3o2b3o$3b2o2b2o$2b8o$2bobo2bobo$b2o6b2o$b2o
6b2o$bob6obo$4bo2bo$3b2o2b2o$2bob4obo$3bo4bo$bob2o2b2obo$bo3b2o3bo$bo2b4o2bo$bo2b4o2bo$2bo6bo2$2bobo2bo
bo$b10o$2b3o2b3o$bo8bo$bo2b4o2bo$bo2bo2bo2bo$b4o2b4o$2obo4bob2o$obob4obobo$bo2bo2bo2bo$12o$b2o2b2o2b2o! - ↑ 7*34 partial
4b2o$3b4o2$5b2o$5bo$5bo$3bo$2b3o$2b4o$3bo2$2bo$ob2o$bo2b3o$2o$4bo$5bo$2b2obo$5b2o$3
b2obo$3b3o$2bob2o$3bo$3b2o$2b3o$5o$o2b2o$b2o2bo$bob3o$3b2o$2bobo$2bo3bo$bo$ob2ob2o! - ↑ 12*70 partial
5b2o$4b4o$5b2o$4bo2bo$4bo2bo$3b6o$2b2o4b2o$3b6o$3b2o2b2o$3b6o$4b4o2$4b4o$4bo2bo$5b2o$3b6o$4bo2bo$4bo2bo$4b4o$4bo2bo$4bo2bo$5b2o$4b
4o$4b4o$bobo4bobo$3bo4bo$b3o4b3o$2b2o4b2o$b2o6b2o$ob3o2b3obo$b2o2b2o2b2o$12o$2b8o$3b6o2$2b2o4b2o$bobo4bobo$2ob2o2b2ob2o$bo2bo2bo2b
o$b3o4b3o$b2obo2bob2o$3b2o2b2o$3bob2obo$2bo2b2o2bo$5b2o$2b8o$4bo2bo$5b2o$b2obo2bob2o$2bo6bo$3bob2obo$3bo4bo$2bo2b2o2bo$4bo2bo2$3b2
o2b2o$3bob2obo$5b2o2$2b8o$bo3b2o3bo$bo3b2o3bo$bo2bo2bo2bo$2bo2b2o2bo$2bo2b2o2bo$b4o2b4o$b2obo2bob2o$b2obo2bob2o$2bob4obo$3bob2obo! - ↑ 12*48 partial
4b4o$2b8o$4b4o$b2obo2bob2o$3bo4bo$3bob2obo$2b2o4b2o$2b2o4b2o$3b2o2b2o$4bo2bo$3b6o$5b2o$2bo6bo$2o8b2o$bobo4bobo2$3b2o2b2o$b2o6b2o$2bo6bo$3bo4bo$bo3b2o3bo2$2o8b2o$12o$b10o$2b2o4b2o$
3bo4bo$4b4o$4bo2bo$2b2ob2ob2o$2bo6bo$3bob2obo$ob2o4b2obo$ob3o2b3obo$b10o$2bo2b2o2bo$2obob2obob2o$b4o2b4o$bob6obo$5b2o$bo8bo$3bob2obo$2b2o4b2o$5o2b5o$4o4b4o$bo3b2o3bo$3b6o$b2o6b2o!
14*54
6b2o$4b2o2b2o$3b8o$3bobo2bobo$3b2o4b2o$4b6o$4b6o$4b2o2b2o$4b2o2b2o$5b4o$5b4o$4bo4bo$2b3o4b3o$2b2o6b2o$2b3o4b3o$3b2o4b2o$3b3o2b3o2$3bo6bo$b2obo4bob2o$b4o4b4o$2ob2o
4b2ob2o$2b3o4b3o$2bo2b4o2bo$3bo2b2o2bo$2bo2bo2bo2bo$4b6o$bo4b2o4bo$5bo2bo$3b3o2b3o$4b2o2b2o$4bo4bo$2bo2bo2bo2bo$2bo2bo2bo2bo$2bo2bo2bo2bo$2b2obo2bob2o$5b4o$3bo6bo
$4b2o2b2o$2b2obo2bob2o$bobob4obobo$bo4b2o4bo$b5o2b5o$4bob2obo$3b2ob2ob2o$2b3o4b3o$3b3o2b3o$2ob8ob2o$o3b2o2b2o3bo$2bob2o2b2obo$2bo2b4o2bo$3bo2b2o2bo$o12bo$bob8obo!
16*70
6b4o$4b8o$6b4o$3b2obo2bob2o$5bo4bo$5bob2obo$4b2o4b2o$4b2o4b2o$5b2o2b2o$6bo2bo$5b6o$7b2o$4bo6bo$2b2o8b2o$3bobo4bobo2$
5b2o2b2o$4bo6bo$3b2o6b2o$3b2o6b2o$2bo2b2o2b2o2bo$b2o2b2o2b2o2b2o$3b3ob2ob3o$7b2o$3b2o2b2o2b2o$3b3ob2ob3o$3b2o6b2o$3b
obo4bobo$3b3o4b3o$2bobob4obobo$3bob2o2b2obo$5b6o$4bo6bo$3bo3b2o3bo$2b2o2bo2bo2b2o$4b3o2b3o$3b2o6b2o$3b3ob2ob3o$7b2o$
4b2o4b2o$3bo2bo2bo2bo$3b2o2b2o2b2o$5b2o2b2o$4bo2b2o2bo$5b6o$4b3o2b3o$bob2obo2bob2obo$o3bobo2bobo3bo$2o3bob2obo3b2o$2
b3o2b2o2b3o$4b3o2b3o$3bo2bo2bo2bo$3bob2o2b2obo$2bob8obo$b2o3bo2bo3b2o$b2o4b2o4b2o$bo2b2o4b2o2bo$bobobob2obobobo$2b2o
8b2o$5bo4bo$b2o3b4o3b2o$2b12o$b4o6b4o$ob3o6b3obo$3b2o6b2o$b2o3bo2bo3b2o$b14o$b2o2b6o2b2o$2b2obo4bob2o$2bob2ob2ob2obo! - ↑ 19*47 partial
2b15o$b4o4bo4b4o$5b2obobob2o$b2obob2o3b2obob2o$2b2o2b2o3b2o2b2o$bo4b3ob3o4bo$4bobob3obobo$6bob3obo$bobo2b3ob3o2bobo$b3obo2bobo2bob3o$b2o2bobo3bobo2b2o$3bob
2o5b2obo$6b3ob3o$5bobo3bobo$2bo2bo2bobo2bo2bo$bo2bobo5bobo2bo$b2ob2o7b2ob2o$b4ob7ob4o$bob2obob3obob2obo$2bo6bo6bo$b2ob11ob2o$bo2bo9bo2bo$3b2ob7ob2o$b3o2b2o
3b2o2b3o$bo2bobo5bobo2bo$b2o2bobo3bobo2b2o$b2o5bobo5b2o$3bo2bobobobo2bo$bob5o3b5obo$7bo3bo$2o4bo5bo4b2o$b3o11b3o$bo3bob2ob2obo3bo$bob2o2bo3bo2b2obo$2bo3bo5b
o3bo$b3obo7bob3o$b3o11b3o$2bo4bo3bo4bo$7ob3ob7o$bob4o5b4obo$2ob5o3b5ob2o$5bobo3bobo$3b2o3bobo3b2o$3b3o2bobo2b3o$3bob2o2bo2b2obo$3b3o2bobo2b3o$3o3b3ob3o3b3o! - ↑ 20*30 partial
8b4o$6b8o$5b3o4b3o$8bo2bo$3bo3bob2obo3bo$4b2o2bo2bo2b2o$2b2o2bo2b2o2bo2b2o$2b2ob2obo2bob2ob
2o$3bob10obo$3bo3bo4bo3bo$3bobo2bo2bo2bobo$5bo8bo$5b3ob2ob3o$5b4o2b4o$5bobo4bobo$7b6o$6bo6b
o$2b3ob3o2b3ob3o$4bob2ob2ob2obo$b3ob3ob2ob3ob3o$bob3o8b3obo$2b2o2b2o4b2o2b2o$5b2o6b2o$3bobo
bo4bobobo$b3obobob2obobob3o$bo2bo3bo2bo3bo2bo$o5bobo2bobo5bo2$ob3obo6bob3obo$bo4b3o2b3o4bo! - ↑ 32.0 32.1 32.2 32.3 32.4 32.5 32.6 32.7 32.8 32.9 though preceding width has been disproven, this was not found with qfind so is not guaranteed to be of minimal height
- ↑ 33.0 33.1 15*44 partial
6b3o$5bo3bo$5bo3bo$3bob5obo$3bobo3bobo2$5b2ob2o$2bo9bo$2bo2b2ob2o2bo$4bobobobo$4b2o3b2o
$3b3o3b3o3$6bobo$7bo$7bo$4b3ob3o2$3b4ob4o$2b4o3b4o$3b2o5b2o$7bo$6bobo$6bobo$2bobo5bobo
$2bobo5bobo$2b2o7b2o$5b2ob2o$3bo2bobo2bo$4bobobobo$bo11bo$3o9b3o2$3o9b3o$2b2ob2ob2ob2o$
2bo3bobo3bo$obo2b2ob2o2bobo$3ob2o3b2ob3o$3bobo3bobo$3bo3bo3bo$3bo3bo3bo$7bo$2bobo5bobo! - ↑ 10*32 partial
4b2o$4bo2bo$5bo2bo$4bo$3b2obobo$3bo$3b2o2bo$3bo$4bo2bo$5b2o2$2b3o$bo2b5o$b4o3bo$2b2obo2bo$3bobo$2bo
2b2o$bo4bo2$bo2b2obo$5bobo$2b5o$bo$b3obo2b2o$4bo$o3bo$2b2o2bo$3b2o2b2o$bo6bo$2bo3b2o$2b3o$bo3bo2bo! - ↑ 10*42 partial
4bo2b2o$3bob2obo$2bo2b3o$5b2o$5bo$4bo2$3b4o$3o$2bo$5bob2o$3b2obobo$7bo$2b3obo$2b5o$b3o2bo$4b2o$6bo$6bo$3bo2bo$3bo2bo$5b3
o$2bo3bo$2bobo$7bo$3bobo2bo$4b2o$3b2ob2o$3bo5bo$3bo4bo$5bo$2bo$2bo$6b2o$3b3o$3bo3bo$6b3o$2bo6bo$3b5obo$2b2o4bo$b9o$o6b3o! - ↑ 17*47 partial
b4o7b4o$bobobo5bobobo$2b2o9b2o$2bo11bo$b2o11b2o$3bo9bo$2b2o9b2o$2b2o9b2o2$2bo11bo$bobo2bo3bo2bobo$o3b2obobob2o3bo$o4b2o
3b2o4bo$5bo5bo2$bo13bo$2b3o7b3o$4b2o5b2o$3bobo5bobo$2bo2bo5bo2bo$5bo5bo$bo3bo5bo3bo$o2bobo5bobo2bo$b4o3bo3b4o$3bo4bo4bo
$2bo11bo$bo2bo7bo2bo2$2ob2obo3bob2ob2o$o4b7o4bo$b2o2bo5bo2b2o$2bo2b2o3b2o2bo$3b2o7b2o$2bo3bo3bo3bo$2bob3o3b3obo$2bo4bob
o4bo$4bo7bo$4bo7bo$b2ob2o5b2ob2o$bobo9bobo$b2o3bo3bo3b2o$4bo2bobo2bo$4b2obobob2o$4bo7bo$5bobobobo$3b2o7b2o$2bob3o3b3obo! - ↑ 20*62 partial
8b4o$7b6o$6b2o4b2o$7bo4bo$7bo4bo$7bob2obo$9b2o$5bo8bo$5b2o6b2o$5bo3b2o3bo2$9b2o$6b2o4b2o$4bo10bo$4bo10bo2$8bo2bo$6bobo2bob
o$7b2o2b2o$4b2o8b2o$5bo3b2o3bo$5bo3b2o3bo$3bo12bo$2bo14bo2$bo2b4o4b4o2bo$4b2obo4bob2o$4bo3b4o3bo$bobobob6obobobo$5bobob2ob
obo$7bo4bo$3bo3bo4bo3bo$4bo10bo$5bo2b4o2bo$6bo6bo$7bo4bo$7bo4bo$7bo4bo2$3b2o3bo2bo3b2o$2bo2b3o4b3o2bo$6bo6bo$2bo4bo4bo4bo$
2bo4bo4bo4bo$7bo4bo$2bo3bo6bo3bo$b5obo4bob5o$2b2o2b2o4b2o2b2o$3b4o6b4o$b3o2bo6bo2b3o$ob2obo8bob2obo$2o7b2o7b2o$3bo2bo6bo2b
o$2b2o3bo4bo3b2o$2bob2o2bo2bo2b2obo$2bobob2ob2ob2obobo$3b5o4b5o$4bo10bo$4bo3b4o3bo$3b2o2b2o2b2o2b2o$bo3bo8bo3bo$bo7b2o7bo! - ↑ there is also a width-18 version which has the same backend as the w17o (and as such can be considered its even variant)
- ↑ 39.0 39.1 39.2 39.3 39.4 unique thinnest
- ↑ 10*33 partial
5bo$4bobo$5bo$5bo$5bo$4bo2bo2$5bob2o$5bobobo$6b3o$6b2o$5bo$4b2o$4b2o$4bo2bo$4bo2bo$7bo$3bob3o$3b
obobo$3b3o2bo$4b2o$4bobo$3bo2bo$3bo2bo$2b2o$2b2o3bo$2bobob2o$2b4o$bobobo2bo$o4bo2bo$5o3bo2$o8bo!
looks alike the Statue of Liberty - ↑ this one has a smaller population but a backspark that increases its bounding box
- ↑ not sure of minimality of length, also is 466 cells and beaten in population by a 299-cell w23o (by dreamweaver)
- ↑ 24*19 partial
10b4o$8bobo2bobo$8b8o$8b8o$4b4ob6ob4o$4b6ob2ob6o$2bobob2obo4bob2obobo$2b3obo2bo4bo2bob3o$2bobobo2bo4bo2bobobo$b2obob4o4b4obob2o$ob3obo2bo4
bo2bob3obo$2bobob4ob2ob4obobo$3obobo3b4o3bobob3o$6bo3b4o3bo$bo6bo2b2o2bo6bo$b2obobo2b6o2bobob2o$b2o3bobo2b2o2bobo3b2o$bobo6b4o6bobo$10b4o! - ↑ 20*46 partial
7b6o$5bob2o2b2obo$3bobob6obobo$bob3ob6ob3obo$bob14obo$ob4obob2obob4obo$b5ob6ob5o$b18o$b4obo6bob4o$3b3o8b3o$bobobo8bobobo$bob3o8b3obo$2b2o5b2o5b2o
$ob5o2b2o2b5obo$obobobobo2bobobobobo$2bobobob4obobobo$4bob8obo$2b5ob4ob5o$2bobob2o4b2obobo$3b5ob2ob5o$2b5o6b5o$2bob4o4b4obo$4b2o8b2o$2b3obobo2bo
bob3o$3b4o2b2o2b4o$b8o2b8o$4bobob4obobo$3b4ob4ob4o$bob2obob4obob2obo$bob14obo$bob5o4b5obo$4b4o4b4o$b7o4b7o$4bo2b2o2b2o2bo$2b3obo6bob3o$4bobo6bob
o$2b2o12b2o$2b16o$2bobo2b2o2b2o2bobo$2bo2bobob2obobo2bo$4b2ob6ob2o$b2o3b3o2b3o3b2o$2b4o3b2o3b4o$4o2bo2b2o2bo2b4o$ob3ob8ob3obo$2bobob2ob2ob2obobo! - ↑ 235 cells, shortest width-15 is 146 cells
other such tables alike this
references
- ↑ wwei47 (May 14, 2024). Re: Thread for your miscellaneous posts and discussions, in which the scheme for non-orthogonal width notation was specified
- ↑ 2.0 2.1 2.2 2.3 2.4 wwei47 (May 21, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which various results were found for diagonal spaceships in B36/S245
- ↑ wwei47 (May 24, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which a minimal-width[2] c/5 diagonal was found in B36/S245
- ↑ wwei47 (June 1, 2024). Re: B36/S245, in which a minimal-width symmetric c/5 diagonal was found
- ↑ May13 (March 3, 2024). Re: B36/S245, in which a symmetrical width-19 c/5d was found
- ↑ 6.0 6.1 6.2 found by ikpx2, disproof of lower widths by gfind
- ↑ LaundryPizza03 (December 21, 2020). Re: B36/S245, in which a (2,1)c/6 was found (the first knightship)
- ↑ LaundryPizza03 (March 25, 2024). Re:B3/S12 (Flock), noting Lapin Acharné's 2c/8
- ↑ 9.0 9.1 9.2 9.3 wwei47 (May 13, 2024). Re: B3/S12 (Flock), in which bounds upon c/3 widths were found with JLS
- ↑ 10.0 10.1 10.2 10.3 10.4 10.5 wwei47 (May 14, 2024). Re: B3/S12 (Flock), in which considerably improved bounds were found with ikpx2
- ↑ 11.0 11.1 May13 (May 17, 2024). Re: B3/S12 (Flock), in which a width-71 gutter-preserving c/3 was found with LSSS (which also works in Pedestrian Flock)
- ↑ 12.0 12.1 amling (May 18, 2024). Re: amling questionable searches/ideas firehose, in which dark magic was utilised to achieve the impossible of finding a minimal-width w38a c/3
- ↑ wwei47 (April 27, 2024). Re:RLE copy/paste thread - everyone else, in which minimal-width c/3's were found in HighFlock with JLS
- ↑ wwei47 (June 9, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which the existence of a width-11 c/5 in HighFlock was disproven with gfind
- ↑ wwei47 (June 5, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which a negative gfind search was completed for B38/S12 c/4 w12a (meaning the w13a from wwei's B3/S12 search is minimal-width in B38/S12 as well)
- ↑ wwei47 (June 7, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which a negative gfind search was completed for B38/S12 c/5 w13a
- ↑ wwei47 (April 25, 2024). Re:RLE copy/paste thread - everyone else, in which width-15 c/3's were found in Holstein (per personal correspondence, with JLS and also disproving lower widths)
- ↑ H. H. P. M. P. Cole (May 31, 2024). Re: Spaceships in Life-like cellular automata, in which a c/7 w15g in Geology was disproven (with qfind, per personal correspondence)
- ↑ LaundryPizza03 (September 11, 2020). Re: B3578/S24678, in which the smallest w14e 2c/7 was first found (apparently they didn't remember to do w13o otherwise they would have a considerably smaller one)
verified with qfind, next shortest w14e is this one - ↑ saka (March 5, 2021). Message in #naturalistic on the Conwaylife Lounge Discord server (further down they explain it was found with qfind)