User:DroneBetter/qfind results

From LifeWiki
< User:DroneBetter
Revision as of 16:32, 27 July 2024 by DroneBetter (talk | contribs) (add Move/Morley (B368/S245) and Dance (B34/S35); interestingly, former has a 3c/7, none of which are known in B36/S245, but no such small c/8d)
Jump to navigation Jump to search

I had long assumed that openmp was simply not yet supported on macOS until I learned that the gcc command in fact uses Clang albeit named misleadingly

as such, having used Homebrew, I am now able to compile qfind, and finally create tables of bounds upon spaceship widths (which I will do here :-)

all links included are to the minimal spaceship found (first outputted, only minimal by bounding box, not population), however (where a table cell is split) the second subrow excludes members of a subset of the symmetry and those comprised of two smaller noninteracting spaceships, choosing the first nontrivial output instead to maximise information content

note that qfind is restricted to orthogonal searches, however it is very fast at them

however, its gfind ancestor of yore is usually used for diagonal and glide-symmetric searches; inputs to find glide-symmetric spaceships are in logical (halved) period rather than actual, this table uses actual for consistency with others

you may add your own results (disproofs for lower bounds and spaceship examples for upper), however (to avoid confusion) I would like others to include citations of forum posts in which they explicitly state their results, so that authorship can be determined without having to go through the page's history; I also sometimes look for old coinciding discoveries that occurred before this table's beginning to cite

no gutter column is included for rules that are not gutter-preserving, even if sometimes spaceships within them happen to be

thank you very dearly to ascendantDreamweaver for using a 48-core computer with 512GB of RAM to which they had access, for increasing logical widths for 2c/5 and 3c/7 to 12 in the first four rules (except for B36/S12, in which 2c/5's are small enough that I managed on my own)

unless stated otherwise,

  • all results labelled as JLS are due to wwei23
  • all labelled as rlifesrc are due to yujh

non-orthogonal spaceships are of course found with other programs, widths are measured with the scheme of a line of cells parallel to the diirection of movement replacing a column (ie. half-diagonals (12-units) for diagonal spaceships, 15-units for knightships)[1]

per dreamweaver, ikpx2 is exhaustive (and in fact a negative result means slightly more than with other programs, since it allows slices to be joined at an offset), however note that it is incapable of symmetry-reduced odd-period diagonal searches

sqrtulous rules

B36/S245 (sqrt replicator rule)

(I like the name a lot for some reason)

ascendantDreamweaver did the searches that led to finding the asymmetrical 2c/5 and 2c/7, as well as obtaining the present best lower bounds for 3c/7, 3c/8 (except for the 3c/8 even, which they found!), 2c/9 asymmetric, 4c/9, 5c/10 asymmetric and 5c/11

Velocity Asymmetric Symmetric Glide-symmetric
odd even odd even
(0,0)c/1 3 4 3
(0,0)c/2 3 3 4 5 6
(1,0)c/2 6 13 14
(0,0)c/3 4 7 6
(1,0)c/3 6 11[n 1][n 2] 6
6
(1,1)c/3 13[n 3] 13[n 4]
(0,0)c/4 3 7 4 5 4
(1,0)c/4 4 9 10
12
(2,0)c/4 7[n 5] 13 14 13 (gfind)[n 6] 14[n 7]
(gfind)
(1,1)c/4 10[n 8] 17[n 9] 12[n 10]
(0,0)c/5 [1] 7 6
(1,0)c/5 8 11[n 11] 12
(2,0)c/5 12 19 20
(1,1)c/5 12[n 12] 15[n 13]
(2,1)c/5 w ≤ 67
(1,0)c/6 9 13 14[n 14]
(2,0)c/6 7[n 15] 11[n 16] 10 11 (gfind) 12 (gfind)
(3,0)c/6 7 13 14
(1,1)c/6 9 (gfind) 15 (gfind) 16[n 17]
(2,2)c/6 10 (gfind) 11 (gfind) w ≤ 17[n 18] 20 (gfind)
(2,1)c/6 w ≤ 58[9]
(1,0)c/7 9[n 19] 13 14
(2,0)c/7 11[n 20] 17 16[n 21]
(3,0)c/7 12 23 24
(1,1)c/7 7 7
6
(2,2)c/7 8 (gfind)
12 (ikpx2)
15 (gfind)
(1,0)c/8 7[n 22] 13[n 23] 14[n 24]
(2,0)c/8 7 9[n 25]

12

9[n 26]
(gfind)
10[n 27]
(gfind)
(3,0)c/8 10[n 28] 19[n 29] 20
(4,0)c/8 7 13 14 13 (gfind) 14 (gfind)
(1,1)c/8 7 (gfind) 11 (gfind) 12[n 30]
(2,2)c/8 6 (gfind) 11 (gfind) 10 (gfind)
(1,0)c/9 7[n 31] 11[n 32] 12[n 33]
(2,0)c/9 8[n 34] 15[n 35] 16[n 36]
(3,0)c/9 7 11 12
(4,0)c/9 12 23[n 37] 24[n 38]
(1,1)c/9 4 (gfind) 7 (gfind)
(2,2)c/9 5 (gfind) 9 (gfind)
(3,3)c/9 6 (gfind) 11 (gfind)
(1,0)c/10 6 11[n 39] 12[n 40]
(2,0)c/10 7[n 41] 11 12 9 (gfind) 10 (gfind)
(3,0)c/10 8 13 14
(4,0)c/10 8 15 16 11 (gfind) 12 (gfind)
(5,0)c/10 8 13 14
(1,1)c/10 5 (gfind) 7 (gfind) 8 (gfind)
10 (rlifesrc)
(3,3)c/10 6 (gfind) 11 (gfind) 10 (gfind)
18 (rlifesrc)
(1,0)c/11 5 9 10
(2,0)c/11 6 11 12[n 42]
(3,0)c/11 7 13[n 43] 12
(4,0)c/11 9 15 16[n 44]
(5,0)c/11 11 19[n 45] 20[n 46]
(1,0)c/12 5 9 10
(2,0)c/12 5 9 10 7 (gfind) 6 (gfind)
(3,0)c/12 5 9 10
(4,0)c/12 6 9 10 7 (gfind) 8 (gfind)
(5,0)c/12 8 15 16
(6,0)c/12 7 13 14 11 (gfind) 12 (gfind)
(2,0)c/14 4 7 8 5 (gfind) 6 (gfind)
(4,0)c/14 5 9 12 7 (gfind) 6 (gfind)
(6,0)c/14 7 13 14 9 (gfind) 8 (gfind)
(7,0)c/14 6 < w ≤ 10 11 12
(3,0)c/15 4 7 8
(5,0)c/15 5 9 10
(4,0)c/16 4 7 8 5 (gfind) 6 (gfind)
(6,0)c/16 6 9 10 7 (gfind) 6
(8,0)c/16 6 11 12 7 (gfind) 8 (gfind)
(10,0)c/20 5 < w ≤ 10 9 10 7 (gfind) 6 (gfind)
(4,0)c/23 3 5 6 < w ≤ 10
(26,0)c/52 w ≤ 17

I found the 4c/14 with ikpx2 as a new speed before performing qfind searches up to width 10 that proved its minimality, then found the true-period 2c/7's

x = 852, y = 265, rule = B36/S245 b2o3b4o3b4o4b4o5b4o4b4o5b4o6b4o8b4o12b4o9b4o2b4o5b4o2b4o9b4o9b4o2b4o6b4ob4o6b4ob4o4b4o5b4o2b4o5b4o4b4ob4o4b4o5b4o3b4o3b4o8b6o4b4o9b4o10b4o18b4o11b4o4b4o6b4o4b5ob5o3b4o5b4o5b5ob5o3b4o7b4o6b5ob5o2b7o8b9o10b4o10b4o6b4o4b3o8b4o8b3o6b3o8b4o8b4o5b3ob3o9b2o12b2o10b4o6b4o9b3o11b2o12b5o12b2o24bob5o7b3o38b2o17b3o14b2o11bobo14bo9b4o$4o3b2o5b2o6b2o7b2o6b2o7b2o8b2o7bobo2bobo8bobo2bobo8b2o4b2o7b2o4b2o8bobo2bobo8b2o4b2o8b2o3b2o8b2o3b2o6b2o7b2o4b2o7b2o6b2o3b2o6b2o7b2o5b2o5b2o8bo3b2o5bo2bo4bo4bo2bo3b5o3b2o3b5o12b2o11b6o2b6o4b6o4b3o3b3o3b6o3b6o5b3o3b3o3b6o5b6o6b3o3b3o4b2ob2o9bobobobobo8bobo2bobo6bo2b2o2bo4b4o2b7o7b2o8bo3bo3b7o6b4o9b2o5b2obobob2o7b4o10b4o10b2o7b2obo5b11o5b6o8b2o2bo2b2o9bo2bo22bob3ob3o6bob2o36b4o19b2o13b2o11b3o13b2o8b5o$bo2bobobo3b2obo4b2obo5b2obo4b2obo5b2obo6b2obo6b4o2b4o6b4o2b4o5b2ob6ob2o3b2ob6ob2o5b4o2b4o5b2obo4bob2o4b2obo3bob2o4b2obo3bob2o4bob2o3b2obo4bob2o3b2obo4b2obo3bob2o4bob2o3b2obo3b2obo5bob2o12b2o3bo3bobobobobo3bo6bo2b6o2bo7b6obo2bob6o3bo4bo2bo4bo4bo4bo4bo2bobo2bo3bo4bo3bo4bo5bo2bobo2bo3bo4bo5bo4bo6bo2bobo2bo5b2ob2o7b5ob5o9b4o9bo4bo6b2o4bobobo6bo4bo6bo3bo4b5o8b2o9b2obo3b5ob5o5bob2obo8bob2obo19b2o7b2o5b2o6bo4bo9bo5bo34b2o5b2ob2o5bo2bo38b2o18b2o11bobobo11b2obo12b3o9b2obo$bo9b2o6b2o7b2o6b2o7b2o8b2o8bobo2b2o2bobo4bobo2b2o2bobo3b2o3bo2bo3b2ob2o3bo2bo3b2o3bobo2b2o2bobo3b2o10b2o2b2o9b2o2b2o9b2o6b2ob2o10b2ob2o6b2o9b2o6b2ob2o5b2o11b2o5b2obob2o4bo5bobobo5bo4bob2o3b2o3b2obo7b3o8b3o7b2o6b2o8b2o7bobobobo6b2o7b2o8bobobobo6b2o9b2o9bobobobo5b4obo6bobob5obobo8bo2bo9b6o12b5o6b6o6b2ob2o4bobobo18b2ob3o3b3o3b3o6bob2obo8bob2obo6b2o4b2o5bo2bo5bobo3bobo21b3ob3o7bo2b4o2bo16bo4bo2b2ob2o7b3o33bob2o2b2o13bob4o10b2ob2o11b3o22bo4b2o$12bo6bob2o5bob2o5bo7bob2o7bo7bo4b4o4bo2bo4b4o4bo5bo6bo7bo6bo5bo4b4o4bo3bo10bo4bo9bo4bo9bo7bo3bo10bo3bo7bo9bo7bo3bo6bo11bo9bo2bo12bo14b2ob2o2b2ob2o7bob2o10b2obo4b4o4b4o6b4o7bo3bo6b4o5b4o8bo3bo6b4o7b4o9bo3bo6bob2o9b3ob3ob3o8b2o2b2o8bo4bo7bo4b2ob2o6bo4bo8bo5b2o3b2o6bo2bo7b3o6b3o3b3o7b4o10b4o7b2o4b2o3bo3b2o5bobo3bobo5b2o4b2o8bobobobo6b2o2b4o2b2o18b3o3b2obo7bo36b2o3b3o11bob2o2b2o10bo2b2o6b2ob2o2bo21b2ob2o$11bo2bo5b3obo4b3obo2bo2bo6b3obo4bo2bo6bob8obo4bob8obo7bob2obo9bob2obo7bob8obo3bo2bob4obo2bo2bo2bo5bo2bo2bo2bo5bo2bo4bo2bobo2bo6bo2bobo2bo4bo2bo5bo2bo4bo2bobo2bo3bo2bo7bo2bo7b3o12bo3bo11b2o10b2o28b4o4b4o5bob2obo7b3o7b4o5b4o9b3o7b4o7b4o10b3o6bobo3bo5b7ob7o4b3ob2ob3o4bobo4bobo4b2o3bo2bo2bo4b3o2b3o14bo3bo8b2o9b2ob2o2b2o7b2o31bo6bo4bobob2o3bob2o3b2obo4bo2b2o2bo9bo3bo8b3o4b3o17bob3o3b3o7bobo33b4o2bob2o12b2obo11b3obo8bo5bo20b2ob2o$12bo2b2o3bo3b2o3bo3b2o2bo2b2o4bo3b2o4bo2b2o3bobob2o2b2obobo2bobob2o2b2obobo6bob2obo9bob2obo6bobob2o2b2obobo3bo3bo2bo3bo4bo2b2ob2o2bo4bo2b2ob2o2bo3b2o2bo3bo2b2o2b2o2bo3bo2b2o3bo2b2ob2o2bo3b2o2bo3bo2b2o2bo2b2o3b2o2bo8b3ob2o9bo3bo34bo10bo6bob2obo2bob2obo4b6o7b3o6bob2obo4bo2bo9b3o6bob2obo5b6o9b3o8b4o7bo11bo5b2o6b2o3b3obo2bob3o4b2o11b3obo2bob3o4bobo4b2o3b2o5bob2obo6bob3o3bobo5bobo4bo2b2o2bo6bo2b2o2bo17bob3obo17bo6bo10bobo7bo2b2o4b2o2bo13b2o2b2o2b2o9b4o32bo4b3obo8b3ob2obo9bo3b3o7b2obobo21bo4b3o$14b2o3bo2b3o3bo2b3o5b2o4bo2b3o7b2o6b2obo2bob2o6b2obo2bob2o6bo8bo5bo8bo6b2obo2bob2o4b2o10b2o5b2o3b2o8b2o3b2o6b2o7b2o4b2o7b2o6b2o3b2o6b2o7b2o5b2o5b2o10b3o12bobobo12bo3b4o3bo9bo2bo6bo2bo5bob2obo2bob2obo4bo4bo6bobobo5bob2obo4b4o8bobobo5bob2obo4b2o4b2o7bobobo6bobob2o8bo7bo8b2ob2ob2o4bo2bob2obo2bo9b5o4b2o6b2o6bo4b2o5b2o2b2obo2bob2o3bobo7b2o5b2o5b8o6b8o20bob3o16b2o4b2o10bobo7b2o10b2o14b2o2b3o2bo7b2obo27bo5bo4b2o9bobo2b2o12b4ob3o7bo3bo20b3ob4o$13b3o8b2o7b2o2bob2obo7b2o4bob2obo3b3o6b3o4b3o6b3o7bo4bo9bo4bo9b2o4b2o7bo8bo6b3o3b3o9bobo8b3o5b3o4b3o5b3o5b3o3b3o5b3o5b3o3bob2obobob2obo8bob5o7bobobobo10bobobob2obobobo8bobo8bobo23b2o2b2o6b2ob2o16b2o9b2ob2o16b2o2b2o8b2ob2o8b3o10b2o3b2o11b4o7bobo4bobo12bo6bobob2obobo4b2ob2o4bo3bo4b2obo2bob2o4b2obo5b2o5b2o4b2ob4ob2o4b2ob4ob2o19bo3bo35bo11b2o4b2o16bobo2b4o8b5o28b4obo4bobo8bo5bo13b4o10b4o20b3o$14bo8b2o7b2o3b6o6b2o5b6o3b3o6b3o3bob2o6b2obo23b2o10bo8bo6bo8bo6b3o3b3o6bo7bo6bo7bo6bo7bo7bo5bo7bo7bo4b6ob6o6b3o2bob2o6b4ob4o9bo4bo2bo4bo9b2o8b2o7bo2bo4bo2bo3b2o6b2o15bo2bo3b2o4b2o17bo2bo6bo4bo22bobo6b2o2b2ob2o2b2o41bo5b2o3b2o3b2o12bo3bo5b2ob2ob2o6bo20bobo4bobo4bobo4bobo19bo2bo17b2o4b2o10bobo9b3o4b3o18bobob3o5b4o2bo27bo2bo7bo8b2o2b3ob2o9bob2o3bo5b2o3bo2bo20b3o$11b2ob3o6b3o6b3o3bo2bo7b3o5bo2bo3bob2o6b2obo2bob2o6b2obo22b4o9b2o6b2o6b3o4b3o5b2obobobob2o6bobobobo5b3ob2ob2ob3o2b3ob2ob2ob3o2b2ob3ob3ob2o2b3ob2ob2ob3o3bo2bo3bo2bo6b3o3bo3bo2bob2o2bobo2b2obo5bo4bo4bo4bo42b4o2b4o3bobobobo12b3o2b3o5bobobobo14bobo2bobo6bobobobo9bobo5bobob2ob2obobo6bobo2bobo4b2o8b2o8b7o4bo6bo5bobobo4b2ob2o6b2o2b2o8b2o7b5o6b10o4b10o20bo18bobo4bobo10bo12bo4bo15b3obobo2b3o6b2obobo29bo5b3o10bo2b4obo8b3o10b4o26bo$12bob3o3b2obo5b2obo13b2obo14bobo8bobo4bo8bo36bobo6bobo6b3o2b3o6bo3bobo3bo7b2ob2o6b3obo3bob3o2b3obo3bob3o3bob3ob3obo3b3obo3bob3o23b2o3bo4b2ob2o2bo2b2ob2o8bo8bo13bo6bo16b2o2b2o3bo6bo4b7o5bo2bo5bo2bo7b7o4b2o2b2o2b3o6b3o4b7o6b2o3bo4b2o3b5o3b2o4bo2bo2bo2bo3b2o8b2o7bo2b3o2bo5b4o9bo6b2ob2o5b2o4b2o6bob2o6b5o7b2ob2ob2o6b2ob2ob2o21b2o17b2o6b2o4bob3obob3obo5bo6bo14b2o2bobo3bo8b2obo30b2o17bo7bo5bo3bo10bob2o2bo23b2o2bo$12b2o5b6o3b6o5b2o4b6o7b2o21b4o4b4o35bo10bo7bo4bo7bo3bobo3bo6bo5bo8b2o3b2o8b2o3b2o6b2o7b2o6b2o3b2o7b2o5b2o16b2o4bo2b2ob2o2bo6b3o12b3o6bob3o4b3obo13b2o2b2o14b2o2bo2b2o3b3o5b3o2b3o4b2o2bo2b2o3b2o2b2o3bo8bo4b2o2bo2b2o7bo3bo6bobo3bobo6bo2bo4bo2bo3bo8bo8bo7bo4b2o2b2o7bobo4b3ob3o3b2o2b2o2b2o15bo3bo7b3o2b3o6b3o2b3o22bo19bo4bo6b3o2b3o2b3o3bobo6bobo11bo2b2ob4obo4b4o40bo12bo3bo2bo6b3o10bob2o4bo21b3obobo$11bo3bo4bo4bo3bo4bo3b4o4bo4bo5b4o21b3o4b3o36bobo6bobo4bob2o4b2obo6bo5bo8b2o3b2o6bo3bobo3bo4bo3bobo3bo3bo3bo3bo3bo3bo3bobo3bo4b4o3b4o6b4o11bobo5bobo6bo3b2o6b2o3bo7bo3bo2bo3bo16b2o20bo8bo2b2o18bo9b2o5bo8bo8bo10bo4bo7bo5bo7b2o2bo2bo2b2o3bo8bo9b3ob3o5bo4bo7b3o5bo3bo4b4o2b4o3b5o6b2obob2o8bo2bo10bo2bo23b2o21b2o10b2o5b2o30bo2b2o2b2o4bobo39bob2o11b2ob2obo10bo7bo2b2o2b2obo23bo4bo$12bo7bo8bo9b2o5bo11b2o24bob2obo26b4o8b3o6b3o6bo6bo24bo3bo10bo3bo10bo3bo7bo3bobo3bo7bo3bo8b2o5b2o11b2o12b2ob2o11b2o10b2o7bo2b3o4b3o2bo12b6o16b5o4b5o18b5o5b6o5bo4bo8b5o7b2o2bo23bobo6bobo5b6o22bobo2bobo8bo5bo3bo6b6o6b3obo5bo5bo5bobo4bobo4bobo4bobo17b7o16b2o4b2o8bo2bo2bo28b3o2b2o8b3obo38b2obo11b2o2bobo5bob2o2bo5bo2b2ob3ob2o20bo2bo$23bo8bo6b2o8bo8b2o21bo2b6o2bo23bo2bo10bob4obo6bobo6bobo23b3o11b5o10b5o12bo12b5o8b2o5b2o6b3ob2o10bobo5bobo8bobobob2obobobo6bo3b3o4b3o3bo12bo2bo16bo2bo2bo4bobo4b2o6b2o4bo2bo2bo5bo2bo5bo6bo6bo2bo2bo6bo2bo11b5o9b3o4b3o7b4o14bobo7bo4bo6bo7bobobobo5bob2obo5bobo3bo5bobobo10b2o12b2o22bo24b2o11bo2bo2bo27b2o2bobo13bo41bo15bo5bobob4o5bobo4bobo21b3o$32bo5bo2bo15b4o23bo4bo41b6o7b4o4b4o23bobo41bobobo22b4o3b4o8b3o9b3obobobob3o5bo2bo2b2o2b2o2bo2bo3bob2o2b3o2b3o2b2obo11bo2bo16b3ob3o4bo2bo4bo6bo5b3ob3o5bo2bo4bobo4bobo5b3ob3o7b6o7b2obob2o8b2obo2bob2o5b2ob2ob2o21b2o4b2o5b3o6b5o6bo4bo6bob2ob2o3bobobobo6b2ob2ob2o6b2ob2ob2o20b3o34b7o26b6o11b2o2b2o39bobo23bo2bo6bo2bo26b4obo$23b2o7bo6b2o8b2o6b4o22b3o2b3o41bo2bo9bo8bo24bobo26b2ob2o10b5o22b4o3b4o5b3o2b2o8bo4bobo4bo6b4obob2obob4o5bo2b2o8b2o2bo11b2o2b2o16b2ob2o5b3o5b3o2b3o6b2ob2o5b2o2b2o2bo10bo5b2ob2o6bob2o2bo9bo3bo8bo3bo2bo3bo4bobo2bobo19b5o2b5o3bo17b4o2b4o8bobo5b3o10b4o10b4o22bobo18b8o43bob3o2bo9bob2o61b2o2bo12b2o2bo20b2ob3o$22bo9bo6b2o7bo82b2o2b2o8bo2bo2bo2bo40bo12b2ob2o11bobo12bobo25b2o2bobo6b2o2b2o3b2o2b2o4b3ob2o2b2o2b2ob3o3b3o14b3o12b2o17bo2bo2bo4b3o5bo6bo5bo2bo2bo6b2o4bo10bo4bo2bo2bo8bobo9bobobobo9bobo2bobo8bo2bo22b2obo2bob2o4bobo6b5o6b2o2b2o11bo6bobo70b10o8b5o25bo4bo4bo9b3obo58b2obo2b3o8bo3bobobo21b3obo$22b3o58b8o40bo4bo11b4o43bo12b2ob2o11bobo12b3o24bob3o3bo7b3obobob3o6bob2o3bo2bo3b2obo12b2o20bobo19b3o7bobo4b2o4b2o7b3o7bobo5b2o6b2o7b3o12bo2bo7b5o11bo4bo34bob2o4b2obo4bob2o6bo7bobo2bobo6b2o22bo2bo10bo2bo18b3o39b5o25bob2ob4o10bo2bobo60bo3b2o8bob3o3b2o21b2obo$22bobo24b2o34bo2bo41bob4obo11b2o44bo12b2ob2o7bo3bobo3bo7bo3bo23b3o2bo2bo5bo2bobo3bobo2bo6bobob2o2b2obobo13b4o20b2o18bo3bo8bo5bo4bo7b2ob2o7b2o6bo6bo7b2ob2o12bob2o19b2obob2obob2o32bobo4bobo8b2o4bobo20b2o9b3o11b2o12b2o44bo6bo11bo28bo2b2ob2o11bo2bo59bobo4bo9b3o3bobo$24bo23b2o36b2o42bo6bo10b4o43bo14bo8b2ob2o3b2ob2o4b2ob3ob2o26bob2o5bo4b2ob2o4bo10b6o14b2ob4ob2o37b5o16b2o8bobobobo16bo2bo8bobobobo5b3o3bobo5bo2bobo2bo5b3ob6ob3o32b3o2b3o6bo2bo6bo5bo4b2o4bo4b2o8b5o10b2o12b2o19b3o21b2obo2bob2o10bo25b2o6bobo8bobob2o60b4o8b2o2bobo2b2o$21bo28bo32b2o4b2o38b2obo2bob2o10b2o56bo5bo6b3o5b3o6b3ob3o24b2ob4o6bo2bo5bo2bo4bo3b3o2b2o2b3o3bo5b14o15bo18bob3obo4b2o6b8o6b2ob2o7bo7bobo2bobo7b2ob2o6bobobobo2bo5b7o8b2o2b2o2b2o33bo8bo6b2obo12b4o2b4o7bo7bo3bo7bob4obo7bo4bo19bo23bo4bo11bobo27b5obo8b4o2bo56bo2bo3b2o7bo2bo$21bobo23b2o35bo4bo39b3o4b3o68b3ob3o6b2obo3bob2o6bo5bo24b2o2bo3bo3b2o2bo5bo2b2o4b2o3b2ob2ob2o3b2o6bo5b2o5bo14bo31bo6b2ob2ob2o17bo9bo4bo20bo4bobo6b2o3b2o8bo8bo34bo6bo7b2obo4b3o7b2o2b2o8bob2o4bo5bo7bob2obo7b3o2b3o17bob2obo63b2o4b2o12b5o56b3o2bobo5b2o2b2obo$20bo2bo23bobo34b2o2b2o59b2o56b3ob3o6b2obo3bob2o8bobo26b2o2bo2bo7bo7bo7b2o3bobo2bobo3b2o35bobo16bo5bo5b2o6bo4bo7b5o7bobo6b2o2b2o8b5o21b2o3b2o8b3o4b3o49b3o12b3o6b3o4b2ob2o3bo2bobo2bo6b2o2b2o6b3o4b3o16b2o2bobo35b3o24b3ob2ob2o9b2o4bo56bob3obo6b3ob2o2b2o$21bobo22b2ob2o32b2o4b2o37b5o2b5o9b2o55b2o5b2o6bo7bo8bo3bo26bo2bo2b2o4b2o9b2o4bobo2b3o4b3o2bobo6bo4b2o4bo16bob2o16bo3bo5bo9bo2bo8bo3bo7bob2o3bo2b4o2bo6bo3bo10bobobo7b2ob2o13b2o68bob2o4b2obo4b3o4b2obobobob2o4bo2b2o2bo5b2obo2bob2o18b2o2bo18bob2obo10b2ob2o19bo2b4o17bob2o56b2o2b3o5b2o2b2ob2obo$22bo23bo3bo78b3o4b3o10b2o54b2obo3bob2o3b4o5b4o6b2ob2o24bob2obo2bo5b3o7b3o6b6o4b6o9b2obo2bob2o15b2o2b2o16bo3bo8bo5bob2obo7bobobo5b2o2b2o2bobo6bobo5bobobo9bob2o26bo2bo60bobo5bobo4bobo12b4o3b4o3bob6obo4b3o4b3o18b6o16b2o4b2o9b2ob2o19bob2obo2b3o14b3o57b2ob2o6bobo2bo2bo$48bo80bobo4bobo10b2o55b2o5b2o4b3o7b3o5b3ob3o23b7obo7bo7bo9b2ob2o4b2ob2o10b3o4b3o15b2o32b2o17b2obob2o4b2o6bobob4obobo4b2obob2o7bobo9b2o5b2o10bo2bo52bo7b3o22bo7bo3bo7bo6bo4b2o8b2o17b2ob2o17b2o4b2o9b2ob2o19bo3bo2bobo17bo57bo9b3o4bobo$47bobo78bob2o4b2obo66b2o5b2o24bobo25bo5bo6b3o2bo3bo2b3o6bob2ob4ob2obo8b2o3b4o3b2o14b2obo28bobo3b2o6b2o3b2o5b2o4b2obo4bo2bo2bo2bo4b2o5b2o6bo2bo7bob2obob2obo9b4o50b3obo5bobo5bo8bo8b2o3bo3bo3bo4bob2o2b2obo4b2o6b2o17b2o21b8o9b5o19bo3b3obo2bo15bo56bo9b3obo2b3obo$46bo3bo79b3o2b3o81bob4ob4obo5bo5bo22b2obob3o5b3o2bo5bo2b3o7bo2b4o2bo11bo3bo2bo3bo14b2o31b2o4bo3b2o3bo4bo5bo4b2o8bo2b2o2bo6bo5bo7bo10bo4bo4bo64bobo5b2ob2o22bo5bobobobo7b6o5bo10bo17bob2o18b2ob2ob2o9bo3bo17b2ob3o3b4o17b2o52b2obo16b4o$47b3o80b8o68b2o5b2o4bo2b2o3b2o2bo6b5o23bo6bo6b3o9b3o7bo10bo10bo2bob2obo2bo15b4o30bo4b2o4b2o4bobo3bobo4b4o4bobo4bobo4bobo3bobo6bobo9b2ob3ob2o10b4o49b3ob3o2b2o3b2o3b3o4b3o7bo9bo9bo6bo7bo4bo21bo19b2o6b2o7b2obob2o16bo2b2o2b2o2bo15b2o50b3obob2o8b2o3b2o3bo$47bobo80bobo2bobo68b2o5b2o5b2o2bobo2b2o6b2o3b2o23bobo10bo13bo6bo3bo4bo3bo8b3o8b3o15b3o27b3o6bo4bo4b2o7b2o4b3o8b2o7b2o7b2o3b2o2b2o7bo9bo9bo2bo51bob2o5bobo6b2o4b2o7b2o19bo6bo7b2o2b2o23bo16b3o2b2o2b3o7bo3bo19bobo2bob2o16b3o48bo3bo2bo9b2o4b2ob2o$131b6o69bobo3bobo5b2o3bo3b2o6b2o3b2o26bo7b4o11b4o4b3ob2o2b2ob3o8bo2b8o2bo13bo3bo27bo6bo8bo2bo9bo2bo3bo5bob4obo4bo9bo3b5obo8bo5bo11b4o50b2o3bo13bobo2bobo5b2obo18b2obo2bob2o4b2obo2bob2o19bo36bobobobo19bo6bo16b2ob3o45b2o16b2o2b3o$130bo6bo83bobobobobo8bobobo26bo3bo4b3obo9bob3o6bo2b4o2bo10bobob2o2b2obobo14bobo36b2o4b2o4bobo3bobo4bobo7b6o6bobo3bobo6bob2obo5b4o3b4o8bo4bo52bobo3b2ob2o6bo4bo7b2o20bob4obo5bo2bo2bo2bo21bo32b3o5b3o14b2o2b2obobo16b2o2bo44b5o11bobo2bobo2b2o$131bo4bo86b2ob2o9bo5bo24b2ob2o7bo2bo7bo2bo8b2obo2bob2o11b2ob2o2b2ob2o67b2obob2o14b2o4b2o6b2obob2o11bo6b4o3b4o6b2ob4ob2o47b4o5bobobo6bo4bo8b2o18bobob2obobo3bobo6bobo58bo19bobo2b3o17bo4bobo42b2o2b2o9bo3b2ob3ob2o$221bob2ob2obo8b5o36bobo2bo5bo2bobo10b4o12bo2bob2o2b2obo2bo13b3o37bo4bo5bo3bo3bo3bob2o6b3o2b3o5bo3bo3bo4b2ob2o2b2o20b2o3b2o3b2o45bo2bo7b3o8b4o8b3o31bo2bo4bo2bo18b2obo31bobob3obobo18bo19b2obo3bobo41b2ob2o9bob2o3bo4bo$222bob3obo8b2o3b2o23bo3bob2o5bo3bo5bo3bo8bob6obo9b6o4b6o13bo39bo4bo7bobobo5b5o6bo4bo8bobobo6b2obo4bo5b3o3b3o7b2ob4ob2o47bo21b2o9bo22b6o7b3o2b3o18b2o37bobobobo18b2obobo16bo3bo3bo40bo2b2o11b3o5bo$222bo2bo2bo8bo5bo22b2o2bobobo8bo7bo10b2o3b2o3b2o8bob4o4b4obo12b3ob2o33bobo4bobo5b2ob2o5bob2o6b3o2b3o7b2ob2o5b2obo3bo7b3o3b3o8b2ob2ob2o49bobo7bo10b2o9bo3bo15b4o4b4o5bob2obo19bobo35b2o2bo2b2o17bobobo20bo61bob4obo$222bobobobo8bo5bo23b4o2bo9b2o5b2o9b2obo6bob2o8bob2o2b2o2b2obo15bobo34bo8bo4b2o3b2o5b3o6bo2b2o2bo6b2o3b2o5b2ob4o5b5o3b5o5b4o2b4o49b2o5bobobo19b4o18bob4obo6bo2b2o2bo57b2obob2o16bob2obo18b2ob2o43b3o14bob6o$225bo11b7o23bob3o2bo28b2ob4ob2o13bo2b2o2bo19b3o34b2o4b2o15b2obo6bo2b4o2bo6b2ob2o9bob2o6bo3bobo3bo8bo4bo68bobo2bobo5bob2ob2o16bob4obo6b2o4b2o20b2o33bo2bo3bo2bo13bobo2bo20b2obo42b2o16b5obo$224bobo8bobob3obobo28bo10bo3bo13b2o2b2o2b2o9b2o4b4o4b2o51bobo4bobo5b5o7bobo5bo6bo5b2o5b2o6bob2o6bo3b2ob2o3bo4b2o2bo2bo2b2o47bobo15bo2b2o2bo6bobob2o18b4o8bobo2bobo21b3o54bobob3o19bo2bo40b2obo18bo2b3o$222b7o5b2o2bobobo2b2o27bo29b2ob2ob2o16bo2bo20b2o38bo2bo6bobo3bobo5bob2o4b2o4b2o6b3ob3o8b2o6bo4bo3bo4bo3b2obob2obob2o46b2o17bo2b2o2bo9b2o32bo4bo22b2o34b2o3b2o15bob2o22b2obo35b2ob2o17bo4b2o$221bo2bobo2bo4bob2o5b2obo27b3o6b2ob3ob2o8b2obo8bob2o13b2o72b3ob3o6bobo4b3ob2ob3o5b3ob3o7bo10bob2o3b2obo5bo2b2o2b2o2bo46bo2bo18b2o10bob3o29b2ob4ob2o19bobo56b2o24b3o34b5o19bobobobo$220bobobobobobo4bobo5bobo28bob2o7bo3bo11bo3bo4bo3bo9bobo6bobo14b2o51b3ob3o8bo4bo2b4o2bo4bobo3bobo5b3obo7b3o5b3o8bo4bo51bo18b4o10b4o17bob2obo9b4o22b2o36b2ob2o15b2o23b3ob3o32b5o18bo2b2o$221bobo3bobo39b6obo5bo3b3o3bo6b2o3bobo2bobo3b2o8b2ob4ob2o17bo50bo5bo5b2o7b8o7b2ob2o8bob2o6b2o9b2o3bob4o2b4obo45bob2o15b3o2b3o8bo19bobo2bobo8b4o23b2o34bo5bo13b3o23b2o2b3o32b3o19b2o$222bo5bo5bobo7bobo24b4o2bo5bo2bobo2bo7b3o3bo4bo3b3o7bobob4obobo14bob2o48bobo3bobo5bo7b8o7bo3bo8bobo24b2o8b2o46b2o18b2o2b2o7bobo18bob6obo5b2o4b2o20bo38bobo14b2o2bo21bobo2b2o49bo$234bo2bo5bo2bo25bo2bo7bo2b3o2bo8bo3b2o4b2o3bo7b6o2b6o14bo51bo5bo6b2o5b2o6b2o19b2obo6bobo7bobo7bo4bo48b2o19bo4bo7b3o17b4o4b4o3b2o2b2o2b2o17bob2o36bo3bo14b5o21bo2bobo50b4ob2o$238b2ob2o30bo12bobo11b3obob4obob3o7bo12bo14b2o69b2o2bo2bo2b2o4b3ob3o11bo7b2o5b2o8b2o4b2o66b3o4b3o4b3ob3o14b12o4b2o4b2o19bo35bo2bo3bo2bo35bo3bobo49bo2b2obo$237bobobobo30bo8bob2ob2obo9bo2bob4obo2bo9b12o15bo64bob2o3bo8bo5b3ob3o8bobo8b3o3b3o9b2o2b2o67bob2o2b2obo4b4o32b10o20bo32b2o9b2o7bob2o23bobob2o51b3o3bo$236b2ob3ob2o26b5obo4b2ob5ob2o10bobo4bobo12b4o2b4o15b2obo64bo3bobo6bobo5b2ob2o9b2o10bobobobo9b2o4b2o67b2o4b2o7b3o18bob4obo5b3ob2ob3o20b2o32b3o5b3o6b2ob3o21b2o2bobo51b3o3b2o$238b5o29bob2obo5b2o5b2o11bobo4bobo11bo2bo4bo2bo16b2o63bo5b2o6b2o6b2ob2o20b4ob4o7b2o6b2o67b6o7bo2bo20bo2bo9bob2obo20b3o32bob2o5b2obo4b3o24bob2ob2obo49b2o2bo3bo$238b2ob2o28b2o3bo4b2o9b2o29b3ob2o2b2ob3o13bo2bo63bo6b8o6b7o8bo12b2ob2o9b4o2b4o66b2o4b2o7bo19b3ob2ob3o4bobob2obobo19b2o35b3ob3o5b2o4bo20bo2b2o2bobo48bo5bob3o$238bo3bo27b3o8b2o9b2o8b3o6b3o13bob2obo18b2o63bo7b2ob2ob2o6bobobobo7b3o10b2o3b2o85b6o8bo21b6o9b4o58bob2ob2obo3bo3b4o21b2ob2o2bo50b2o3b2o$238bobobo27bobo8b2o2b2ob2o2b2o9b10o8b3o2bob4obo2b3o12b2o64b2o4bobo4bobo20b2o12bobo12b6o69bo4bo7b2o21bo4bo7b2ob2ob2o19bo39b3o8b2o2bobo19b2o3bo51bob3obo$237bo2bo2bo26b3o13b3o13bo2b6o2bo7bo2bobobo2bobobo2bo14bo64b2o3bob2o2b2obo7b3o11b3o8b3ob3o9b8o68bo4bo8bobo17bo2bo2bo2bo73bo8bo2bobo23bo4bo51bo3bo$269bo12bob3ob3obo9b3ob4ob3o11bob2o2b2obo18bo65bo4b2o4b2o34b5o10bob4obo68bo4bo7bo3bo18bo4bo6b3o4b3o17bobo38b3o12bo19b2ob2o55b4o$238bobobo25bo2bo2bo8b2obobob2o12bobo2bobo15bob2obo19bobo62bo8bo2bo8bobobobo9b2o9bo2bo2bo10bob2obo82bobo22b2o9bob4obo19bo50b2obobo19bo3bobo47bo3bo3bo$239bobo26bo15bobobobo11b4o4b4o12b2ob2ob2o18bo63b3o33b2o11bo2bo2bo9bobo2bobo68bo4bo8bob2o15bob3o2b3obo3b2o2b2o2b2o17b3o47b4obobo19bobo2bo47bob2obo$268bo2b2o9bo2bo3bo2bo10bobo4bobo14b2o2b2o17b3o71b2ob2ob2o5b2obobob2o5b2obobo8bo5bo9b3o2b3o67b3o2b3o7bo18bo2b2o2b2o2bo3bo8bo17b3o46bobo2b3o25bo45bo4b2o$270b2o10b4o3b4o12bo4bo15b2o4b2o17bo63bo8b8o6bo5bo7bo12bobobobo9b3o2b3o67bo6bo10bo20b2o12b2o21b3o47bo29bobo46b2o3bo$270b2o11bobo3bobo11b3o4b3o12b4o2b4o15b2o64b2o6b8o18b3o12b2obob2o7b4o4b4o64bob2o2b2obo6b2obo20b2o10bob2obo20bo47bob3o24b4o46bo2bo2bo$282b2obo3bob2o9b2o3b2o3b2o10b2o2b4o2b2o16bo60b2o2bo50bo9b4ob4ob4o64bo2b2o2bo10b2o16bobo2bobo9b2o68b4o26bob3o44b6o2bo$283b2o5b2o10b4o4b4o11bob6obo17bo61bo2b2o31b4o10b2obobob2o5b2o2bob2obo2b2o65b2o2b2o7bobo22b2o11bo2bo68bobo24bobo2b2o43b2obo3bo$282b5ob5o11bo2b2o2bo11b4o2b2o2b4o17bo62bo33bo2b2o8bo7bo10bo2bo71bo2bo8bo2b2o32b2o2b2o67b2o25bo2b3o45bo3b3o$282bo2bo3bo2bo11bo2b2o2bo12bo2b2o2b2o2bo15b2ob2o95bo2b3o7bobo3bobo6bo2bo4bo2bo68b2o48b2o67b2o2bo22b4ob4o41b2o3b4obo$283bobo3bobo12bo6bo12bobobo2bobobo18b2o59bobo34bo3bo7b2obobob2o6b2ob2o2b2ob2o78b2o37bo2bo66b3obo21b4o2bobo43bo2bo2bo$283bobo3bobo12bo2b2o2bo12bob3o2b3obo79b2o33bo3bo12bobo9b2o2bo2bo2b2o117bo2bo66bob2o23bo51bo2b3o$284bo5bo13b2o4b2o13b2o6b2o17bobo58b2o36b4obo6bo3b3o3bo5b5o2b5o78bobo35bob2obo68bo21bo2bo47bob2o$282bobo5bobo12bo4bo16bo4bo19b2o60b2o33bob2o11b9o5b5ob2ob5o116b4o61b4obo24bobobo44b2obob2obo$284bo5bo15bo2bo41bo62bo37bo10b2o3bo3b2o8bob2obo81b4o34b2o2b2o60bo2b2o2bo22b5o43bo2bo$305b2o2b2o14bo2bo2bo2bo115bobobo8bob3ob3obo7bobo2bobo183bo2b3o2bo22bobo45bo3b3o$282bobo5bobo12bob2obo13b2ob2o2b2ob2o118bo9bo7bo9b2o2b2o183bo2bo3b2o21bob2obo43b2ob2o$283bo7bo12b2o4b2o12b2obo4bob2o118bo9bobo3bobo9bo4bo81bo102b2o3bo23bo5b2o38b3ob4o$282bo9bo11b2o4b2o11b3o8b3o115bo2bo9b2o3b2o12b2o82b2o38b4o61b2obo25bobo2bo43bobo$283bo7bo13bob2obo15bo6bo119bo13bobo13bo2bo82b2o36b6o57bobo3bo25b2ob4o40b2ob2o$299b3ob3o4b3ob3o7bo2bo4bo2bo116bobo10bo5bo9bobo2bobo79b2o37b2o2b2o61bo25bo2bo2bo40b3ob3o$283b2o5b2o7bobo4bo2bo4bobo7bo10bo118bo12bobo10b4o2b4o79bo36b3o2b3o57bo2bo25bob3o2bo38b2obob2o$282bo9bo5bobobob8obobobo8bo6bo123b2o6bo5bo7b2o2bo2bo2b2o80bo99b3o28b2ob2o40b2o$282b2o7b2o6b2ob2obo4bob2ob2o6b2o10b2o117bob3o6bo5bo11bo2bo84b2o35b4o57bobo2bo26b3ob2o36b2o2b2o$300b4obob2obob4o5bobobo8bobobo115bob4o4bobo3bobo5bo3b2o2b2o3bo78bo37b4o58bobo27bob2o2bo35bo2b2o$281bobobo3bobobo7b6o2b6o7bo2bo8bo2bo117b3o5bob2o3b2obo5bob2o4b2obo79b3o35b4o57bo31b3obo37b3o$282bobo5bobo7bo2bo2bo2bo2bo2bo6b2obo8bob2o116bo4bo4b2o5b2o5b3o8b3o78b3o35b4o59b2o28bobo36b6o$281b3o7b3o9bobo4bobo9bo14bo125bob2o3b2obo95bo2bo35b4o56b4o30b2o38b2o$303bobo4bobo11bob2o4b2obo120b2o6bobo3bobo6bo4b2o4bo78b3o35bo4bo55b2ob2o65bobo2bo$302bo3bo2bo3bo11b2o6b2o121bo9b2ob2o10b2ob2ob2o80b5o33b2o2b2o52bo5bo32b2o35bo$301bobo2bo2bo2bobo9bobo6bobo119bo7bo9bo7b2o4b2o84bo33b2o2b2o50bob3obo35bo31b2obo$301b2obo6bob2o9bobob4obobo118bobo4b2obo7bob2o4b2ob4ob2o78b2o3b3o30b3o2b3o46b2o3bob2obo31b2o30bob3o$303b2ob4ob2o10b2o3bo2bo3b2o117bo6b2obo7bob2o92b8o31bob2obo47b3obo4bo34bobo26b3ob3o$303bo2b4o2bo10b3ob2o2b2ob3o117b2o7bob2o3b2obo8b2o2b2o81b6o33b4o48b4o4bo33b2obo26bob2ob2o$305bo4bo17b4o122b2o7b2ob2ob2ob2o5b2o2bo2bo2b2o117bo2bo46b6o39b5o21b2o6bo$307b2o15bo4b2o4bo130bo3bo9bo3b2o3bo80b2o35bo4bo44bo4bobo36b2obo24bo2bob2obo$305b6o14b3o4b3o132bobo9b4o4b4o78bob2o35b4o44bobo3b2o36bo3b3o20b2o7bo$305b2o2b2o12b2ob2ob2ob2ob2o114b4o10bo5bo7b5o2b5o80b2o82b2obo2bo37b2o3bo22b3o4bo$304b2o4b2o10b2o5b2o5b2o113b2o2b3o6bo2bobo2bo6b2o3b2o3b2o79b2o81bob2obo39b2obo32bo$303bob6obo9bob2o8b2obo115b3o7b2o2b3o2b2o6b3ob2ob3o79bob2o79bob2o3b2o36bo3bo24bo3bo2bobo$302bo3b4o3bo8bo14bo118b3o5bo7bo6bo2bob2obo2bo81bo79bobo2bo41b3o23bo2bob3o$301bo12bo6bob2o10b2obo116b2o7b2o2bo2b2o6b2obo4bob2o80bobo77b2obobobo39bo2bo23bob2o2b2o$302bo10bo7bobobo8bobobo117b3o6bo5bo7b4o4b4o81b3o76bob3obo40b3o2b2o17bo3b2o$301bo12bo7bob3o6b3obo118bo21b2obob4obob2o78bobo78bo2bobo42bo3bo19b2ob2obo$301bo12bo10b2o6b2o121bo7b3o3b3o6bo10bo80bo3bo75b4o44bo2bo19b2obo$301bobo8bobo10b2o6b2o121bo8b2obob2o6bo2b8o2bo78bobo75b3obo43b3o3b2o17b2o3bo$300b2obo3b2o3bob2o8b3o6b3o119b2o8b2o3b2o6b2o10b2o79bo126b3o19bo3b2o$301b3o2b4o2b3o139bo3bo19bo12bo78bo76bo2b2o47b2o2b2o14bob2o2bo$300bob4ob2ob4obo7b2o10b2o119b3o6b3ob3o6b2o3b4o3b2o78b2obo71b2obo2bo46b2o3b2o16b2o$301b14o8bobo8bobo117bo2bo8bo3bo9bob2o2b2obo81bo76bob2o47b4o13bob2obo$303bobo4bobo8b2ob2o8b2ob2o116b4o6b3ob3o9bobo2bobo156bo3bo47b3obo14b6o$303bo8bo8b2o2b3o4b3o2b2o117b3o7bobobo10bobo2bobo82b3o72b2o48bob2o16bobobo$302bob8obo9b3o8b3o117bo10b3ob3o99b2obo67b4obo48bo18b2obo$304bo2b2o2bo11bob3o4b3obo117bo9bob2ob2obo96bo4bo66b4o2b2o44bo4bo16b2o2bo$304bo2b2o2bo12bo10bo116bobo6b3obo5bob3o94b3o67bo7bo43b3ob2o15bobo$307b2o15bo2bo4bo2bo114b3o2bo5b2o11b2o93b2obo68bo5bo43bob6o9b2o2bob2o$305b6o11bo3bo6bo3bo113bo3b3o7b2o3b2o98bo70bo3bobo43bo2b2obo11b3obo$306bo2bo13b2obo6bob2o114bo3b2o7bob2ob2obo96b4o65bo6bo46b2o13bo2b2obo$305bob2obo10b3o12b3o111b2o2b2obo6bobo3bobo95bob2ob2o64b2o4bo45b3o14bob3o$305b6o12b3o8b3o114bobo11b3ob3o98b2o66b3o3b2o45bo2bo11b3o3bo$305bob2obo12b2o10b2o116bo118b2o64b3o50b4o10b4o3bo$304bo6bo10b2o12b2o114bo119b3o65b2o52bo8bobobo4bo$305b6o11b2obo8bob2o113b4o183bobo48bob4o7bo2b2o2bo$307b2o14bob2o6b2obo114b3o234bob2o2bo5b3o4bob2o$305bo4bo11bo2b2o6b2o2bo113bo2bo117bobo61bob2o47bo3b3o6b2ob2ob3obo$304bo2b2o2bo11bo2bo6bo2bo117bo117b3o63b2o49bo3bo4b2ob2obobobo$305b6o12bo2bo6bo2bo114bobobo114bo2bo62bob2o45bob5o5bo$304bo2b2o2bo11b2o10b2o115bo2b2o112b5o63bo46bobobob2o4bo8b2o$305bob2obo12bobo8bobo116b2o114bo2b2o62b3o44bob2o2bo5b3o7bo$304b2o4b2o9b2obo2b2o2b2o2bob2o113b2o114b2ob3o109bo10bobo6bo$305b2o2b2o11bo4b2o2b2o4bo114bo116b2o62bob2o45b2ob2o7b2o7bo$306bo2bo12b5o6b5o112bob4o112bo3bo61bo46bobo3bo8bo6bo$305bo4bo11bo3bo2b2o2bo3bo116bo114bo2bo61bo44b6o8b2o2bo4bo$323b2obobo2bobob2o115b2obo116bo61bo43b2o2bobob2o5bo2bob2ob2o$322b2o4bo2bo4b2o115b2obo115bo59bobo43b3obo2bo8bobo3bo$327b2o2b2o119b3obo114bo60bo2bo41bobo6bo5b2obo3bo$452b3o176bo3bo42b2o10bobobo$325b2o6b2o116bo179b3o45bo11b3o$325b2o6b2o117b3o177b2o46bo4b3obobo$631bo56b4o$324bo2b6o2bo118b2o172b2o53b2o3b3o$324b3o6b3o118b3o170bo2bo52bobobo$325b2o2b2o2b2o119b2o170bo3bo50b2obo4bo$323bo3b2o2b2o3bo115bo2bo169bobo2bo51bo7bo$324bo3bo2bo3bo116bo2bo169b3o51bobo7bo$323bo4bo2bo4bo116bo2bo171bo50bobo4b3o$325bobo4bobo120b2o167b2o2b2o48b2o6b2o$326bobo2bobo119bo2bo167bo3b2o51b2obob3o$325bo8bo117bo2bo167b3obo53bobo2bo$326bo6bo120bo167b2o2b2o50bo4b2o$324bo3bo2bo3bo286bo3bo52bobo$324bo4b2o4bo116b2o169bo54bo$324bo10bo117bo169b3o48bo2bo$324bo3b4o3bo115bobo170bo50b2o$324bob3o2b3obo114bo171b2o$324bo2b2o2b2o2bo114b4o165b2obo49b3o$323bo3bob2obo3bo114b2o165bo2b2o45bo2b2o$322bo3bob4obo3bo113bo2b3o162bo47bo2b3o$323bo2b8o2bo113b7o161b2o46b2o2b3o$323b2o10b2o114b2obo211b2o4b2o$323bobobo4bobobo113b2o2b2o216bo$322bob2o2bo2bo2b2obo116bo210bobo2bo$323bo2b3o2b3o2bo117bo209bob2o2b2o$322b5o6b5o324bob5o2bo$322b2o2bo6bo2b2o115b2o207bo2b6o$322b2ob3o4b3ob2o117bobo207b2o$324bobo6bobo117b2o2b2o202b2obobo$452b3obo199b2obo2bo$452bo205bobobo$323bo12bo116b2o201bo2bobo$323b4o6b4o118bo198bobo2bob2o$322bo4bo4bo4bo116bobo197b3o4b2o$321b4o10b4o116b2o199bobob3o$322b3o10b3o116bo199bob3o$455bo197bob5o$322bobo10bobo115b2o198b2ob4o$320bo2b2o10b2o2bo311bobobobo$322b4o8b4o312b2o$324bo10bo314b3o$323bo12bo314b2o$321bo2bo10bo2bo306b4obo$323b2o10b2o306bo2b2ob2o$325b2o6b2o307bo2b4o$325bo8bo308bobo2bo$322b3o10b3o303b2o2b2o2bo$325bo8bo308b4obo$328b4o310bo$327b2o2b2o$326b2o4b2o$325b3ob2ob3o$323bobobob2obobobo$322b2o2bo6bo2b2o$321b2o3b2o4b2o3b2o$320bobo4b6o4bobo$320b2o2bobob4obobo2b2o$327b2o2b2o2$326b3o2b3o$324bo2b2o2b2o2bo$324b2ob6ob2o$327b6o$324bo10bo$325bobo4bobo$327bob2obo$325bo8bo$328b4o$328b4o$328bo2bo$327bo4bo$327bob2obo$326bo2b2o2bo$325bo2bo2bo2bo$325b2o6b2o$324bo10bo$326bo6bo$327bo4bo$323bobo8bobo$322bob2o8b2obo$322bobobo6bobobo$322bobo10bobo$324bo10bo$323bo12bo$322b3o10b3o$325b2o6b2o2$324b2o3b2o3b2o$324bo2b6o2bo$323bo2bob4obo2bo$323b2o2bo4bo2b2o$324b4ob2ob4o$324b2o3b2o3b2o$324bob8obo$323b3ob6ob3o$323bo12bo$324bobo6bobo$320b2o2bo10bo2b2o$323bobobo4bobobo$321bobo2bo6bo2bobo$324b2o8b2o2$323bo3bo4bo3bo$323bo12bo$325bo8bo$321bob2o10b2obo$321b3obo8bob3o$323bo12bo$323bo12bo$321b2o14b2o$323bo12bo$321b3o12b3o$321bo16bo$324bo10bo$323bo12bo$324bobo2b2o2bobo$323b2o2b6o2b2o$324bo2bo4bo2bo$326bobo2bobo$323b2obobo2bobob2o$323bo3b2o2b2o3bo$323bo2b3o2b3o2bo$326bo6bo$325bob2o2b2obo$327bob2obo$327b2o2b2o2$327bo4bo3$329b2o$329b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 WIDTH 3500 HEIGHT 1085 ZOOM 4 ]]
(click above to open LifeViewer)

B368/S245 (Move/Morley)

Velocity Asymmetric Symmetric Glide-symmetric
odd even odd even
(1,0)c/2 6 13 14
(1,0)c/3 6 11 6
(1,1)c/3 14[n 47] (gfind) 17 (gfind)
(1,0)c/4 4 9 10
12
(2,0)c/4 7[n 48] 13 14 13 (gfind) 14[n 7] (gfind)
(1,1)c/4 10 (gfind) 17 (gfind) 12 (gfind)
(1,0)c/5 8 13 14
(2,0)c/5 10
11 (gfind)
19 22[n 49]
(1,1)c/5 10 (gfind)[n 50] 15[5] (gfind)
(2,1)c/5 w ≤ 50[12]
(1,0)c/6 9 13 14[n 14]
(2,0)c/6 7[n 51] 11 10 11 (gfind) 10[n 27] (gfind)
(3,0)c/6 7 13 14[13]
(1,1)c/6 8 (gfind) 17[13] 16[n 52]
(2,2)c/6 9 (gfind) 15 (gfind) w ≤ 17 18 (gfind)
(2,1)c/6 w ≤ 40[14]
(1,0)c/7 8 15 14
(2,0)c/7 10 17 18[n 53]
(3,0)c/7 11 21 22[n 54]
(1,1)c/7 7 7 (gfind)
6 (gfind)
(2,2)c/7 7 (gfind) 13 (gfind)
(1,0)c/8 5 9 10
(2,0)c/8 7 11 12 7 (gfind) 8 (gfind)
(3,0)c/8 10 19 20
(4,0)c/8 7 13 14 13 (gfind) 12 (gfind)
(1,1)c/8 5 (gfind)
6 (ikpx2)
9 (gfind)
11 (ikpx2)
8 (gfind)
12 (ikpx2)
(1,0)c/9 5 9 10
(2,0)c/9 8 13 14
(3,0)c/9 6 9 10
(4,0)c/9 11 21 22
(1,0)c/10 5 7[n 27] 8
(2,0)c/10 6 9 10 7 (gfind) 8 (gfind)
(3,0)c/10 7 13 12
(4,0)c/10 8 13 14 11 (gfind) 12 (gfind)
(5,0)c/10 7 11 12

the flocks

thank you to Lapintra/TrollDu13EtDu14/Lapin Acharné for finding a surprisingly small 2c/8 in apgsearch,[16] which works in all three rules and has been proven to be minimal-width by ascendantDreamweaver

the dreamweaver also increased c/5 to logical width 11 (except in B36/S12, where my laptop's 10 was sufficient in odd and even, and they have not done asymmetrical yet), 4c/9 to 11 and 2c/8 even (in which none were known previously) to 18, 16 (found), and 18, respectively

B3/S12 (Flock)

all partials for c/2 seem to be single-row irrespective of period, I conjecture there are no c/2's in this rule

Velocity Asymmetric Symmetric Gutter-preserving Glide-symmetric
odd even odd even
(1,0)c/3 11
20 (JLS)[17]
24 (ikpx2)[18]
21
39 (JLS)[17]
47 (ikpx2)[18]
22
40 (JLS)[17]
48 (ikpx2)[18]
23 < w ≤ 71[19]
41 (JLS)[17]
49 (ikpx2)[18]
38 (LLSSS)[20]
(1,0)c/4 11 17 22 17
13 (JLS)[18]
(1,1)c/4 13 (gfind)
17 (ikpx2)
25 (gfind)
33 (ikpx2)
27 (gfind)
33 (ikpx2)
24 (gfind)
36 (ikpx2)
(1,0)c/5 11 < w ≤ 18 21 24[n 55] 23
(2,0)c/5 12 25[n 55] 24 < w ≤ 34 25
(1,1)c/5 11 (gfind)
20 (ikpx2)
21 (gfind) 23 (gfind)
(1,0)c/6 10 17 < w ≤ 21 18 19
(2,0)c/6 10 19 20 21 17 (gfind) 18 (gfind)
(1,1)c/6 9 (gfind) 17 (gfind) 19 (gfind) 16 (gfind) < w ≤ 24
(1,0)c/7 9 17[n 56][n 57] 18[n 58] 19[n 59]
(2,0)c/7 10 19 20 21
(3,0)c/7 12 23 24 25
(1,1)c/7 8 (gfind) 13 (gfind) 15 (gfind)
(1,0)c/8 7 13 14 15
(2,0)c/8 10[n 55] 17[n 55] 18 17 13 (gfind) < w ≤ 17 12 (gfind)
(1,1)c/8 7 (gfind) 13 (gfind) 15 (gfind) 12 (gfind)
(2,2)c/8 8 (gfind) 15 (gfind) 15 (gfind) < w ≤ 21 14 (gfind)
(3,0)c/8 10 19 20 21
(1,0)c/9 7 11 12 13
(2,0)c/9 8 13 14 15
(3,0)c/9 9 17 18 19
(4,0)c/9 11 21 22 23

B36/S12 (HighFlock)

see also User:AforAmpere/2x2 for B36/S125
Velocity Asymmetric Symmetric Glide-symmetric
odd even odd even
(1,0)c/3 11 21 22
14 (JLS)[21] 29 (JLS) 30 (JLS)
(1,0)c/4 10 15 16
(1,1)c/4 13 (gfind) 25 (gfind) 26[n 30]
(1,0)c/5 10[n 60] < w ≤ 14
11 (gfind)[22]
19 20
(2,0)c/5 11[n 55] 17[n 61] 20
(1,1)c/5 11 (gfind) 21 (gfind)
(1,0)c/6 10[n 62] 19 18
(2,0)c/6 10 < w ≤ 15 19 20 17 (gfind) 18 (gfind)
(1,1)c/6 9 (gfind) 15 (gfind) 16 (gfind) < w ≤ 24
(1,0)c/7 9 17[n 63] 18[n 64]
(2,0)c/7 10 19 20[n 65]
(3,0)c/7 12 23 24
(1,0)c/8 7 11 12
(2,0)c/8 10[n 55] 17 16[n 66] 13 (gfind) 12 (gfind)
(3,0)c/8 10 19 20
(1,1)c/8 6 (gfind) 11 (gfind) 12 (gfind)
(2,2)c/8 8 (gfind) 13 (gfind) < w ≤ 21 14 (gfind)
(1,0)c/9 6 11 12
(2,0)c/9 8 13 14
(3,0)c/9 9 15 16
(4,0)c/9 11 21 22
(1,0)c/10 6 11 12
(2,0)c/10 6 11 12 9 (gfind) 8 (gfind)
(3,0)c/10 7 13 14
(4,0)c/10 8[n 27] 17[n 27] 18[n 27] 13 (gfind) 8[n 27]
8 < w ≤ 19 17 18
(3,0)c/15 4 9 8
(12,0)c/30 5 < w ≤ 24 7 6 4 5

B38/S12 (Pedestrian Flock)

Velocity Asymmetric Symmetric Gutter-preserving Glide-symmetric
odd even odd even
(1,0)c/3 11 < w ≤ 38[20]
20 (JLS)
23 (ikpx2)
21
27 (JLS)
45 (ikpx2)
22
28 (JLS)
46 (ikpx2)
23 < w ≤ 71[19]
27 (JLS)
45 (ikpx2)
(1,0)c/4 11 17 22 17
13 (gfind)[24]
(1,1)c/4 13 (gfind) 25 (gfind) < w ≤ 33 27 (gfind) 24 (gfind) < w ≤ 36
(1,0)c/5 11
13 (gfind)[25]
21 24[n 55] 23
(2,0)c/5 12 25[n 55] 24 < w ≤ 34 25
(1,1)c/5 11 (gfind) 21 (gfind) 23 (gfind)
(1,0)c/6 10 17 < w ≤ 21 18 19
(2,0)c/6 10 19 20 21 17 (gfind) 18 (gfind)
(1,1)c/6 9 (gfind)
11 (ikpx2)
17 (gfind)
21 (ikpx2)
19 (gfind)
21 (ikpx2)
16 (gfind)
24 (ikpx2)
(1,0)c/7 9 15[n 57] 16 17
(2,0)c/7 10 19 20 21
(3,0)c/7 12 23 24 25
(1,1)c/7 8 (gfind) 13 (gfind) 15 (gfind)
(1,0)c/8 7 13 14 15
(2,0)c/8 10[n 55] 17[n 55] 18 17 13 < w ≤ 17 12
(3,0)c/8 10 19 20 21
(2,2)c/8 7 (gfind) 13 (gfind) 15 < w ≤ 21 12 (gfind)
(4,0)c/9 11 21 22 23

B34/S35 (Dance)

Velocity Asymmetric Symmetric Glide-symmetric
odd even odd even
(1,0)c/2 7 7 18
(1,0)c/3 10 17 20
(1,1)c/3 13 15
(1,0)c/4 9 15 14
(2,0)c/4 8 11 10 9 10
(1,1)c/4 11 (gfind) 21 (gfind) 20 (gfind) < w ≤ 22[n 55]
(1,0)c/5 7[n 67] 13 14
(2,0)c/5 10 19 20
(1,1)c/5 9 (gfind) 11 (gfind)
(2,1)c/5
(1,0)c/6 7 11 12
(2,0)c/6 6 13[n 68] 14 13 14
(3,0)c/6 9 13[n 27] 18
(1,1)c/6 8 (gfind) 13 (gfind) 14 (gfind)
(1,0)c/7 6 11 8
(2,0)c/7 8 13 14
(3,0)c/7 10 19 20
(1,1)c/7 7 (gfind) 11 (gfind)
(2,2)c/7 8 (gfind) 13 (gfind)

INTs

B3ai4/S23

thank you to the dreamweaver once more for improving the 2c/5 and 3c/7 bounds (and thereby finding the surprisingly small 2c/5 asymmetrical)

Velocity Asymmetric Symmetric Glide-symmetric
odd even odd even
(1,0)c/2 12
22 (ikpx2)
23
43 (ikpx2)
24
44 (ikpx2)
(1,0)c/3 10 21 22
(1,0)c/4 10 19 20
(2,0)c/4 11 21 22
(1,1)c/4 21 (ikpx2) 41 (ikpx2) 42 (ikpx2)
(1,0)c/5 10[n 69] 17 18
(2,0)c/5 11 21 22
(1,0)c/6 9 15 16
(2,0)c/6 10 < w ≤ 15 21 20
(1,1)c/6 13 (ikpx2) 25 (ikpx2) 26 (ikpx2)
(1,0)c/7 7 13 14
(2,0)c/7 9 15 16
(3,0)c/7 11 21 22

B34kz5e7c8/S23-a4ityz5k (yujh rule :-)

Velocity Asymmetric Symmetric Gutter-preserving Glide-symmetric
odd even odd even
(1,0)c/2 11 11 24 11
15 24
(1,0)c/3 11 11 20 11
11 17
(1,0)c/4 9 9 16 13
(2,0)c/4 5 11 12 11
14 13
(1,0)c/5 8 17 18 17
20 19
(2,0)c/5 11 19 20 < w ≤ 26 21
(1,1)c/5 12 (ikpx2) < w ≤ 17 23 (ikpx2)
(1,0)c/6 10 17 18 19
(2,0)c/6 10 17 20 19
(3,0)c/6 10 15 20 19
(1,1)c/6 7 (ikpx2) 13 (ikpx2) 13 (ikpx2) 14 (ikpx2)
(1,0)c/7 9 15 16 17
(2,0)c/7 9 17 18 19
(3,0)c/7 10 19 20 21
(1,0)c/8 7 13 14 15
(2,0)c/8 8 15 16 17
(3,0)c/8 10 19 20 21
(4,0)c/8 7 11 14 13
(1,1)c/8 7 (ikpx2) 13 (ikpx2) 13 (ikpx2) 14 (ikpx2)
(3,0)c/9 8 < w ≤ 17 13 16 15
(5,0)c/10 8 15 < w ≤ 21 16 15
(6,0)c/12 7 11 14 13
(7,0)c/14 6 11 < w ≤ 19 12 13
(11,0)c/22 5 7 < w ≤ 17 8 9
(12,0)c/24 4 7 < w ≤ 21 8 < w ≤ 24 9
(10,0)c/26 4 < w ≤ 7 7 8 9
x = 495, y = 70, rule = B34kz5e7c8/S23-a4ityz5k 76bo9b3o6b3o5b3o3b3o5b3o5b3o5b3o11b3o5b3o4b3o3b3o4b3o4b3o4b3o3b3o7b3o14b3o6b3o3b3o8b3ob3o13b3o2b3o7b3o7b3o9b3o2b3o13b3ob3o11b3o7b3o8b3o2b3o9b3ob3o10b3o6b3o11b3o4b3o7b3o5b3o7b3o10b3o8b3o3b3o$6b3o5b3ob3o5b3o5b3o5b3o14b3o5bo7b3o8bobo6bobo4bo2bo3bo2bo3bo2bo5bo2bo4bob4o5b4obo5bo2bo3bo2bobo2bo4bo2bo2bo2bo3bo2bo3bo2bo6bob2o12b2obo6bob2ob2obo7b2obobob2o11bo8bo5bo2b3o3b3o2bo7bo8bo11b2obobob2o11bo9bo11b4o13bobo13bo8bo13bo4bo2b2o5b2o2bo3bo2b2o5bo2b2o8b2o2bo4bo3bo5bo3bo$6bo2bo3bo2bobo2bo3bo2bo5bo2bo3bo2bo14bo2bo3b3o4bo2bo2bo6bob2o4b2obo6b2o3b2o4bo3bob3obo3bo2b2o2bo2bo3bo2bo2b2o4bob2o3b2o5b2o4bo8bo5b2o3b2o8bo2b2ob2o4b2ob2o2bo5b2o2bobo2b2o4b2obo5bob2o8b2o8b2o5bo3b2ob2o3bo7b2o8b2o8b2obo5bob2o27bo2bob2obo2bo5bo2bo3bo2bo21bo7bo7bo2bo7bo2bo3bo2bo6bo2bo10bo2bo2b3o13b3o$2b3obo3bobo3bobo3bobo3bob3obo3bobo3bob3o6b3obo3bob2obo4b3ob3o5bobob2o2b2obobo6bo3bo5bo2b2obobob2o2bo2bobobo3bobo3bobobo3bo7bo7bo6bo4bo8bo3bo9b3o4b2o2b2o4b3o5bobo5bobo2b2obobo5bobob2o3b4obob4obob4o7bobo9b4obob4obob4o3b2obobo5bobob2o4b2o3b2o3b2o3b2o4b3o6b3o5b3o5b3o6b2o3b2o5bo2bo7bo2bo4b2o3bo3bo3b2o3b2o3bo4b2o3bo6bo3b2o4bo13bo$bo2bob2o2bobo2b2ob2o2bobo2b2obobob2o2bobo2b2obo2bo4bo2bob2o2bob3o5bobobobo6bo3bo2bo3bo4bo9bo4b2o2bobo2b2o6bobobobobobobobo17bo21bo9bo7bob2o3bo2bo3b2obo24bo5bo8bo3b2o2b2o2b2o3bo3b2o2bobo2b2o5bo3b2o2b2o2b2o3bo8bo5bo9bo2bo2bo3bo2bo2bo2b2o12b2ob2o11b2o4bo2bo2bo8bo7bo9b2o7b2o7b2o8b2o10b2o6bo2bo7bo2bo$o3bo2b2o5b2o3b2o5b2o2bobo2b2o5b2o2bo3bo2bo3bo2b2o4bobo17bobobo2bobobo6bo5bo5bobo2bobo2bobo5bob2o2bobo2b2obo15b5o21bo5bo10b4o2bo2bo2b4o22b2o2b2ob2o2b2o5bo3bo8bo3bo6b2ob2o8bo3bo8bo3bo5b2o2b2ob2o2b2o7bo3bo5bo3bo5bo10bo5bo9bo5b2o5b2o4bobo9bobo5b3o7b3o5b3o7b3o10b3o5bo4b2ob2o4bo$o2b2o2bobo3bobo3bobo3bobo2bobo2bobo3bobo2b2o2bo2bo2b2o2bobo24b2ob4ob2o7bo5bo7bob2ob2obo6b2ob2ob2ob2ob2ob2o40bo5bo10bo14bo20bob3o2bobo2b3obo3bo2b2o8b2o2bo5b2o3b2o7bo2b2o8b2o2bo3bob3o2bobo2b3obo58bo7bo23bo3b3ob3o3bo3bo3b3o3bo3b3o4b3o3bo4bo5bobo5bo$2b2o23bob2ob2obo11b2o6b2o29b5o2b5o5b2o5b2o5bobobobobobo6bob2ob2ob2ob2obo15bo3bo20b2o5b2o7b2o3b4o2b4o3b2o19bo5bobo5bo25bo2bo3bo2bo27bo5bobo5bo4b2obobob2ob2obobob2o34bo2b2obob2o2bo2bo2bo7bo2bo4bo13bo3bo9bo16bo4b2o2bobobobo2b2o$bobo22bobobobobobo10bobo4bobo29b2o8b2o5b2o5b2o5bob2o3b2obo7b3o7b3o16bo3bo20b2o5b2o7b2obo5b2o5bob2o21b2o7b2o8bo12bo5bo2bo3bo2bo7bo12bo8b2o7b2o9bobo7bobo40b2obob2o5b2obo7bob2o53b3ob2obobob2ob3o$26bob2o3b2obo9b2o8b2o45bo7bo7bo5bo9b2o9b2o16b2ob2o20bo7bo7b2o2b2obo4bob2o2b2o20b2o9b2o25bo3bo3bo3bo27b2o9b2o7b2ob2o5b2ob2o37bobo2bo2bobo5b2o7b2o19bo5bo13b2o4b2o9b2o4bobo4b2o$28bo5bo10bo2bo6bo2bo28b3o4b3o5bo2b2ob2o2bo6bo5bo10bo9bo19bo21bo2b2ob2o2bo10b3o6b3o62b3o7b3o7b2o8b2o30bo9bo40bo7bo6bo9bo19b2o3b2o31bo2bobobobo2bo$28bo5bo9b2o12b2o28bo6bo6b3obobob3o5bobo3bobo7b3o9b3o14b7o18b3obobob3o47bo9bo29bo5bo9bobo8bobo8bo9bo60b2o7b2o5b2o7b2o20b2ob2o15bo4bo11b4obobob4o$27bobo3bobo6b2obob2o6b2obob2o41b2obobob2o8bo3bo13b3ob3o17b2o5b2o18b2obobob2o10b4o6b4o24bo9bo26bo2bo5bo2bo6bob2o6b2obo8bo9bo7b2o3b2o3b2o3b2o37b4ob4o6bo9bo21bobo14bobo4bobo9b2obobobobob2o$27bobo3bobo7bobo12bobo41bo3bobo3bo7b2ob2o13bobobobo17b2ob3ob2o17bo3bobo3bo7b3o12b3o20bo13bo23b2o3bo3bo3b2o3bo3bobo4bobo3bo4bo13bo6bo3bo5bo3bo38bobo3bobo7b4ob4o21bo3bo12bo3bo2bo3bo9bo3bobo3bo$41b3obobo8bobob3o39bo2bo3bo2bo8bobo14bobobobo18b2obob2o18bo2bo3bo2bo6b2o16b2o20bo11bo25b4obobob4o4bo3b3o4b3o3bo5bo11bo5b4ob4ob4ob4o40bo11bo2bobo2bo18b2o2bobo2b2o8b2o2b2o2b2o2b2o7bobob2ob2obobo$40bo8bo4bo8bo39b3o3b3o8bo3bo15bobo21b5o20b3o3b3o7b2o16b2o21bo9bo26bo4bobo4bo6b2obobo2bobob2o8bo9bo59b2o9b2o7b2ob2o19bo11bo7b3o2bo2bo2b3o5bobo2b2o3b2o2bobo$44b4ob2o2b2ob4o44b2o3b2o7b2o5b2o63b2o3b2o8b2o16b2o58bo11bo11bo2bo34bo9bo37b2o3bobobo3b2o6bo3bo18bo6bo6bo25bo5bo3bo5bo$42bo3b3obo2bob3o3bo44bobo9bo7bo38b3o24bobo9bo20bo20b2o7b2o26bob2o5b2obo11bo2bo12b3o7b3o57b2o11b2o4b2obobob2o17bo11bo8bo10bo$49b2o2b2o48bob2ob2obo6bo7bo62bob2ob2obo9bo14bo60b4ob3ob4o9bo6bo11b2o7b2o8bo52b2o5b2o7b2obobob2o18b3o5b3o9bo10bo6b2ob2o7b2ob2o$47bob2o2b2obo44b2o2b2ob2o2b2o4b2obobob2o60b2o2b2ob2o2b2o3bo22bo18bo11bo27bo7bo12bo4bo11bo11bo8bo10bo40b2o5b2o9b2ob2o20bo2bo3bo2bo9bo10bo$101bo4bobo4bo8bo64bo4bobo4bo3b2ob2o14b2ob2o19b3o5b3o49b2o2b2o9b2o13b2o5bobo50bo7bo7bo7bo19b3o3b3o$121b3o79bobobo14bobobo21b2o3b2o50bob4obo8b2ob2ob2ob2ob2ob2o5bob2o48bo9bo7bo5bo20b3o3b3o$103bo2bobo2bo10bo66bo2bobo2bo5bo22bo22bo3bo35bo15bo6bo9b4o2bobo2b4o10bo45b2o11b2o4b3o3b3o$104bobobobo9bobobo65bobobobo7bobo16bobo19b3o2bobo2b3o29b2ob2o14bob2obo12bo3bobo3bo9b5o46b3o5b3o7b2o3b2o$104b3ob3o8b7o64b3ob3o9b2o14b2o20bob3o5b3obo28b2ob2o13b3o2b3o12bo7bo12bobo44b2o11b2o$103b2obobob2o7b2obob2o63b2obobob2o5bob2o16b2obo17bobob3ob3obobo27bobobobo12b2o4b2o11bo9bo60bo2bo3bo2bo5bo2bo3bo2bo$106bobo10bobobobo63bob2ob2obo4b2obo18bob2o15b2o4bobobo4b2o26bo5bo30b6ob6o57bo13bo7bobo$105b2ob2o8bo2bobo2bo63bobobobo6bobo18bobo16bo15bo26bo5bo33bobobobo61b2ob2o3b2ob2o5b4ob4o$105bo3bo80bobobobo6b3obo14bob3o17bo13bo28b2ob2o31bob2obobob2obo58b3obo3bob3o8bobo$103b3o3b3o77bo2bobo2bo6bobo16bobo58b2o2bobo2b2o29b2o2bobo2b2o61b2o5b2o5bo2bobobobo2bo$103bo2bobo2bo79b2ob2o8b2o18b2o58b5ob5o31bobobobo64bo5bo5bo3bobobobo3bo$103bo7bo80bobo9bo2bo14bo2bo56b2o4bobo4b2o25b3obobobobob3o58b11o3bobo2bo3bo2bobo$191b2ob2o11bo14bo58bo3b4ob4o3bo97bob7obo6bo7bo$105bo3bo95b3o14b3o56b2ob2o2bobo2b2ob2o23bo6bobo6bo62bo8bo2bo7bo2bo$285b4ob4o27bo2bobobobobobo2bo74bo7bo$207bo14bo62bo7bo27bo3b2obobob2o3bo$206b3o12b3o64b3o35bobobobo77b3o7b3o$205b5o10b5o62b5o36bobo82bo5bo$206b3o12b3o100bo3bobo3bo76bo9bo$206bobo12bobo63bo3bo31b2ob3ob3ob2o$323b2o9b2o75b2ob2ob2ob2o$207bo14bo62b3o3b3o29b2o9b2o74bo4bobo4bo$207b3o10b3o62bo3bo3bo29b2o9b2o73bo2b2obobob2o2bo$209bobo6bobo64bo2b3o2bo29b5o3b5o$207b5o6b5o62b2o5b2o29bo2b3ob3o2bo74bo11bo$207bo14bo64b5o29b2o2b2obobob2o2b2o$208b5o4b5o66bobo30b3ob2o5b2ob3o70b2o13b2o$208b2o2bo4bo2b2o99b2o13b2o71b2o11b2o$212b2o2b2o195b3ob3o$213bo2bo195b2obobob2o$412b2obobob2o$214b2o197b3ob3o$408b3ob2obobob2ob3o$411bob3ob3obo$410bobob2ob2obobo$409b6o3b6o$408bo5bo3bo5bo$408bobo11bobo$409b2o11b2o$410bo2b2o3b2o2bo$409bob2o2bobo2b2obo$409bobo3bobo3bobo$410b4obobob4o$411bobobobobobo$412b2obobob2o$413bobobobo$412b2obobob2o$411b2ob2ob2ob2o$412b2obobob2o$413b3ob3o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 WIDTH 2030 HEIGHT 350 ZOOM 4 ]]
(click above to open LifeViewer)


self-complementaries

B35678/S4678 (Holstein)

c/2 reports no partial results are found in any symmetry

c/4 w24e searched by dreamweaver

Velocity Asymmetric Symmetric Glide-symmetric
odd even odd even
(1,0)c/2 14
28 (gfind)
27
55 (gfind)
28
56 (gfind)
(1,0)c/3 13 19[n 70] 20
15 (JLS)[26]
(1,1)c/3 20 (gfind) 37 (gfind)
(1,0)c/4 11 21[n 71] 24[n 72]
(1,1)c/4 15 (gfind) 29 (gfind) 28 (gfind)
(1,0)c/5 11 15 14
(2,0)c/5 12 23 24
(1,1)c/5 11 (gfind) 21 (gfind)
(1,0)c/6 10 19 20[n 73]
(2,0)c/6 11 19 20 17 (gfind) 18 (gfind)
(1,1)c/6 8 (gfind) 15 (gfind) 16 (gfind)
(1,0)c/7 9 15 16
(2,0)c/7 10 19 20
(3,0)c/7 12 21 22
(1,0)c/8 8 13 14
(2,0)c/8 8 15 16 11 (gfind) 12 (gfind)
(3,0)c/8 11 19 20
(1,0)c/9 8 15 16
(2,0)c/9 9 17 18
(3,0)c/9 10 17 18
(4,0)c/9 12 21 22

B3578/S24678 (Geology)

Velocity Asymmetric Symmetric Gutter-preserving Glide-symmetric
odd even odd even
(1,0)c/2 7 11 10 11
(1,0)c/3 7 11 10 13
(1,1)c/3 9 (gfind) 17 (gfind) 19 (gfind)
(1,0)c/4 7 11 12 13
(2,0)c/4 7[n 74] 11 10 11 9 (gfind) 10 (gfind)
(1,1)c/4 10 (gfind) 13 (gfind)[n 75] 17 (gfind) 12 (gfind)
(1,0)c/5 8 11 12 13[n 27]
(2,0)c/5 10 13 16 19
(1,1)c/5 8 (gfind) 13 (gfind) 17 (gfind)
(2,1)c/5 w ≤ 38[28]
(1,0)c/6 7 11 10 15
15
(2,0)c/6 7 11 10 13 9 (gfind) 10 (gfind)
(3,0)c/6 7 11 10 13
(1,1)c/6 7 (gfind) 11 (gfind) 13 (gfind) 12 (gfind)
(2,2)c/6 9 (gfind) 15 (gfind) 16 (gfind)
(1,0)c/7 7 11[29] 12 15[30]
(2,0)c/7 8 13 14[31] 17
(3,0)c/7 9 17[32] 18 19
(1,1)c/7 6 (gfind) 13 (gfind) 13 (gfind)
(1,0)c/8 6 9 10 11
(2,0)c/8 6 9 10 13 9 (gfind) 10 (gfind)
(3,0)c/8 9 15 16 19
(4,0)c/8 7 11 10 11 11 (gfind) 10 (gfind)
(1,1)c/8 4 (ikpx2) 7 (ikpx2) 7 (ikpx2) 8 (ikpx2)
(1,0)c/9 6 9 10 11
(2,0)c/9 6 11 12 13
(3,0)c/9 6 9 10 13
(4,0)c/9 9 17 18 19
(2,0)c/10 5 9 10 11 9 (gfind) 8 (gfind)
(5,0)c/10 7 11 10 13
(4,0)c/11 7 13 12 13
(6,0)c/12 6 11 10 13 7 (gfind) 10 (gfind)


notes

collapsed due to considerable length
  1. 84 cells; shortest at width 13 is 127 and at 15 is 56
  2. non-monotonic!
  3. [2] found a 71-cell version, gfind found a 68-cell
    at width 14, the shortest is 72 cells, and at width 15, gfind seems to return the width-13 result
  4. first found in [2], 106 cells, shortest at width 15 is 84 cells, at 17 is 78, at 19 and 21 is 60, at 23, 25 and 27 is 82
  5. 62 cells, smallest at width 8 is 26 cells
  6. 100 cells; shortest at width 15 is 66 (or if you'd prefer one which isn't an odd-symmetric with phase-shifted p4 backends, 83)
  7. 7.0 7.1 though this is shortest, it is 71 cells, and this spaceship is 58
    for Move, this one (91 cells) is nontrivial
  8. first found in [2], also the first spaceship to be found in a width-10 or 11 gfind search
  9. first found in [2], 107 cells, shortest at width 19 and 21 is this 46-cell one
  10. 60 cells, shortest at width 14 and 16 is this 62-cell one, at 18 and 20 is this 54-cell one
  11. 113 cells, shortest at width 13 is the same, at 15 is 69 cells
  12. 373 cells, found in [3] and verified minimal-width in [2]
    note that the smallest known is 146 cells at width 17[4]
  13. 184 cells, found in [5] then proven minimal in [6], gfind agrees
    gfind reports the same spaceship for width 17
    Note the smallest known symmetrical one is a 152-cell width-19 found by May13[7]
  14. 14.0 14.1 112 cells, note that this alternative backend is marginally longer but matches population
  15. 71 cells, width 8 reduces to 61 cells
  16. 171 cells, width 13 reduces to 142 cells, 15 to 107
  17. width 14 was disproven with gfind
    the first w16glide (at 718 cells) was found in [4], and the likely minimal (shown in the table), at 351 cells, was in [8] by my dearest yujh, which also found a 64-cell w18glide
  18. found by yujh with rlifesrc (they are very yujhular)
  19. 9*654 partial
    4b3o$3bob3o$4bo$3bo3b2o$4b2o$6b3o$3b2obo$2bob2obo$2bob2o$5obo$3o3bo$2bob3o$3bob2o$b2ob2o$o2b3o$3b3o$2bobo$bob3o$4b2obo$5b3o$5bobo$o2b4o$b2o2bo$bobo2$2b3o$3bo$2bob3o$5b2o$7bo$5bobo3$3b
    2o$2b4o$5bo$2b2o2bo$2bobo$3b2o$4b2o$3b2obo$3bo3bo$2bobo2bo$2b3obo$4bobo$3bob2o$4bo2$6bobo$5b3o$8bo$2b3ob3o$3b3o$2bo3bo$2b2obo$5bobo$2o2bo2$2b6o$4bob2o$bo$bo$2b3o$5b2o$3b4o$3b2obo$4b3o
    $6bo$4b3o$5bo$2bo$b2o$2b2o$o2b2o2$2obo$2bo2bo$bob3obo$4bobo$5b2o$5bo$6bo$4bo$4bo$2b2o$2b2obo$bo2b2o$b3o$5b3o$2ob2obobo$3o2bobo$2b6o$2b2o2b3o$2bo2bobo$o2b3o2bo$o2b3obo$b5o2bo$obo3bo$4b
    o2bo$3b3o$4b3o$2b3o$bob2o$2bob2o$2bob2o$2bobobo$b2obo$b2o2b2o$b3o$2bo$2bobo$bo3bo$3bo$3b3o$6bo$5b3o$4b2obo$o2bob2o$b2o$2bobo2$bo$2bo$2b3o$2bobo$3b3o$4b2o$5bo$4bo$5b2o$3b4o$2bob4o$3bo2
    b2o$3bobo$3bo$3bob2o$5bo$3b2o$3bobo$5b2o2$6bo2$4bob2o$3bo$4b2o$3bo2bo$2bo2b2o$3b3o$4b2o2$4bo2bo$5b2o$3bo3bo$2b2o$2bo$3bobo$2b4o$2bo2bo$b3obo$bo2bo$3bo2b2o$3bo2bo$4b4o$4bo$5bo$bo2bo$2b
    3o$bo2b2o$bo2bobo$2b4o$b3o$6bo$6bo$5bo$5b2o$5bobo$6b3o$7bo$3b4o$b2o$b2o$2bob2o$2bo$o$2o2$2b2o$2bo$3b5o$6bo$6bo$2bo3bo$b2obo$bobobo$2b2obo2$b2obo$4bo$3bo$bo2b2o$3b2o2bo$3b2obo$3bo2$2b2
    o$3bo$3bo$b2o$b2o$2bobo2$5b3o$7bo$4b2o$4bo$4bobo2$2b2o3b2o$2bob4o$4bo$4b2o$bo$3o$o2b2o$3bo$bo2$2b3o$3b2o$2bo$2bobo$4bo2$3b2o$3b3o$3bob2o$3bo$4b2o$3b3o$3b3o$2bob2o$5b2o$b3o$b4o$7bo$5bo
    b2o$b2o3b3o$obo$obo2bo2bo$7bo$7bo2$5b2o2$6bo$4bo$2b3o$2bobo$2bo4bo$3bo2b2o$3bo$3bo$6bo$5bo$2b3o$2bobob2o$bob2obo$2obob2o$2o3bo$5bo$2b4o$2bob3o$2bo$4bo$2bo$4bobo$bobobo$4b3o$4bo2bo$3b5
    o$4bobo$4b2o$5b2o$4b2o$4bo$6bo$3b2o2bo$4b2obo$5o$3bo2bo$4obo$2b4o$bo$3bobo$4b2o$3b3o$3bo3bo$6b2o$6bo$4bo$2b3o$b3o$3bobo$5bo$7bo$5b2o$3b3obo$5b2o$2bobo$2b2o2bo$4bo2$3bobo$5b2o$4b2o$4b3
    o$4b2o$4bo2$2bobo$3b2o$b2o$2o2bob2o$o2b2o2bo$bo3bo$6bo$7b2o2$5b3o2$3b2o$2bo$2b3o$3b2obo$3bobo3$3b2o$3b2o2bo$3bo2b3o$2bob3obo$4bo$3b2o$b3o$2b3o3$2b3o$2b3o$2bo3bo$2bobobo$3b2o$bob2o$obo
    $4bobo$2bo$3b4o$3b2obo2$4b2o$3bo2bo$4bob2o$4bobo$3b2ob2o$4bob2o$4b2obo$4bo$4bobo$3b3obo$4b3o$3bo$5b2o$4b3o$4bo$bo2b2o$2o4bo$b4o$obo2bo$b2o$2bo3b2o$2b5o$2b2o3bo$5b2o$5bo$7bo$5b2o$5bo$5
    bobo$4bob2o$3b3obo$2b3obo$2bob2obo$bob2ob2o$2b4obo$6bo$3bo$4bo$4b2obo$5bobo2$4bobo$5b2o2$4b2o$4bo$3b2o$4bo2$4b2o$3b3obo$3bo2b2o$3bobo$3bobobo$4bo2bo$4bo2bo$5b2o$3b2o2b2o$4b2o2bo$4bob2
    o$5b3o$5b3o$5b2o$6bobo$3b2ob2o2$6b2o$5b4o$6b2o$5b3o$3b2obo$b3obo$b4o$2b2o2bo$2bo$bo4bo$4b3o3$3b3o2$3bo$2b2o$b2obo$bo2bobo$2b3obo2$2bob3o$4b2o$5b2o3$2bo$2ob2o$bobo$o3bo$bobo$3bo$2bobo$
    2b4o$3b5o$3bo3b2o$5bobo$6bobo$6bo$3b2o$3bobo$2b3obo$4b2obo$b4ob2o2$4bo$2bob3o$2b6o$2b2obobo$3b3ob2o$3b2o2bo$2bo4bo$2b2o$bo2b2o$2b2obo$bo2$2bo$2b4o$bo3bo$4b2o$4b3o$5b2o$5b2o$6bo$2bob2o
    $3b2obo$3bob2o$3b2o$3b2o$2b2o$3bo$2bobo$bo$2b2o$3bo$bo$2bo$2b4o$2bo2bo$b2ob2o$bo2bo$3o2b2o$bobo$bo2b3o$b4o$ob3o$3o2b2o$b2ob2o$2b2o2bo$2b2o$2ob3o$2bob2o$2bob2o$3b4o$4bo$2b3o2$2b4o$3bo$
    3bob3o$3b2o3bo$5bobo$6bo$3b2o2bo$2bobo$3bo2$4b2o$3b2o$3b2o$3bo$bo2bo$bo2bo$3o$bo$ob4o$4b2o$b3obo$3b2o$2bob2o$3b3o$2bo3bo$2b4o$4b3o$bo$o2bo$ob2o$4b2o$5bo$2b2o$5b3o$4bo2bo$3b4o$bo2bo$b3
    o$2o2b2o$2o2bo$3bo2bo$b2obo$o2bo$5b2o$6b2o$2b4o$3bobo$4bo$3bo$5bo$5b2o$5b2o$5bob2o$7b2o$6bo$6bo2$3bob2o$3bo3bo$5o2b2o$bo2b2o$o2bobo$2b3o$3bo3bo$3bobo$3b2o$3b2obo2$b4obo$b2obo$3bo$3bo$
    4bobo$4b2ob2o2$3b3obo$3bob3o$5b2o$4b3o$4b3o$3b2ob2o$6bo$4b3o$5bo$3b3o$3b3obo$4b3obo$4bobo$2bob3o$3bobo$3b4o$2bob2o$2b6o$2b2o2bo$7b2o$3bo3bo$2bob2obo$3bob2obo$3b2ob3o$5b2o$4b2o$2b2o$3b
    ob2o$3o2b2o$b4ob2o$2obob2o$2b2o$2bo2bo$5o$bob5o$bob5o$bobobo$ob4o$4bobo$b5o$b2o2bo$3bobobo$5bobo$4bob2o$2bobobo$2b2o$2b2o$bo4b2o$4b2o2bo$3b5o$2b2obobo$2bobo2b2o$o5b3o$3b2obo$2ob2o2bo!
  20. found by the dreamweaver, who specified that it is not guaranteedly minimal-length for a width-11 since the search split and only one branch was necessary to search to find it, but shows that 11 is the minimum
    shares frontend with the longest width-10 (10*65) partial
    5bobo$5b3o$4bob2o$2b4o2bo$2b4o$6bobo$9bo$5bobo$4b4o$3bobobo$3b2o$5bobo$5b4o$4bobo$4b2obobo$4b2o$4b5o$3b2o$4bo3bo$2b2ob4o$2bobob2o$3bobobo$3b2o$2b2
    obo$b2o2b2o$7bo$3bo$2bo3b3o$2bob2obobo$2bobobob2o$4b2o2bo$6b4o$4b2obo$4b3o$5b2o2$3b2obo$2bo3b3o$3b2obobo$3b2obobo$3b2obobo$o2b5o$7b2o$2b3o2bo$2bo4
    bo$3bo3bo$3b2o2b2o$2bo2b3obo$b2obo$b2obo$o4bo$b2ob2o$3b5o$b4obo$bo2bo2bo$9o$bob4obo$2bo2bo2b2o$2bo2bobo$5bo3bo$2bobo$bobo$b3o2b4o$2obobob2o$3b4obo!
  21. was first found by lordlouckster in [10] then noted minimal in [4]
    this spaceship (with a forked tail) is in fact shorter, but higher-population
  22. 7*39 partial
    2b4o$2b4o3$4b2o$4bo2$b3o$bobo$3b3o$2b2obo$2bobo2$bobobo$2b2o2$bobo$obobo$bobo$o$3bo$3b2o$4bo
    $3b3o$o3bo$bobobo$3o3bo$2bo$bo2b2o$b2o2$b2ob2o$3o3bo$bob3o$bob2o$bobob2o$b2ob2o$2bo2bo$3b2o!
  23. 13*143 partial
    2bo7bo$b3obobob3o$ob4ob4obo$5bobo$4b2ob2o$4bo3bo$5bobo$4b5o$2b3o3b3o$3bobobobo$3b2obob2o$bob2o3b2obo$4bo3bo$4bo3bo$3b2o3b2o$5bobo$3b2o3b2o$2b2o5b2o$3
    b2obob2o$2bo2b3o2bo$4b2ob2o3$3b2obob2o$4bo3bo$3bobobobo$3b2o3b2o$4bobobo$3bo5bo$4bo3bo$4b5o2$5b3o$4b2ob2o$4b2ob2o$4b2ob2o$2bob2ob2obo$2bo3bo3bo$3bobo
    bobo$2b2o5b2o$2b2ob3ob2o$b4obob4o$3b7o$bo2bobobo2bo$b5ob5o$2b3o3b3o$3b2o3b2o$bob2o3b2obo$2bobo3bobo$6bo$4bobobo$3bob3obo$3bo2bo2bo$2bobo3bobo$2bobobo
    bobo$bo9bo$o2b2o3b2o2bo$2b2obobob2o$3b2o3b2o3$2b2o5b2o$bob2o3b2obo$2b3o3b3o$b2ob2ob2ob2o$4b5o$5b3o$3bobobobo$b2o3bo3b2o$b11o$bo3bobo3bo2$4bo3bo$4bo3b
    o$3bo2bo2bo$3bo5bo$4bobobo$2b2obobob2o$2bobo3bobo$b3obobob3o$3obobobob3o$bo3b3o3bo$2bobo3bobo2$3bo5bo$4b2ob2o$6bo2$2b3o3b3o$2b2o2bo2b2o$b4obob4o$bo3b
    obo3bo$3b3ob3o$4bo3bo$3b2obob2o$6bo$3bobobobo$5bobo$3bo5bo$4b2ob2o$2b9o$b3o5b3o$3bo5bo2$5bobo$3ob5ob3o$b2o7b2o$bob2o3b2obo$2o9b2o$b4obob4o$6bo$3bo5bo
    $5b3o$b2o3bo3b2o$ob4ob4obo$4ob3ob4o$bo3bobo3bo$2b3obob3o$6bo$5bobo$3b3ob3o$2bobo3bobo$b2obo3bob2o$5bobo$2b3o3b3o$4bobobo$3b2o3b2o$2bobo3bobo$2bob2ob2
    obo$2obo2bo2bob2o$b2obobobob2o$2obo2bo2bob2o$2bo2b3o2bo$b4o3b4o$4bo3bo$bo2b5o2bo$b2o2bobo2b2o$2b9o$3bo5bo$5b3o$obobo3bobobo$2obobobobob2o$bobob3obobo!
  24. 14*194 partial
    6b2o$5bo2bo$4bo4bo$6b2o$6b2o2$3b3o2b3o$4b6o$4bob2obo$3b2o4b2o$3b2ob2ob2o$5bo2bo$3b3o2b3o$3b3o2b3o$5bo2bo$4b2o2b2o2$3b2ob2ob2o$6b2o$5b4o$5b4o2$4bo4
    bo$3bo2b2o2bo$4bo4bo$4bo4bo$6b2o$5b4o2$4bo4bo$2b2obo2bob2o$2bob2o2b2obo$5bo2bo$2b3ob2ob3o$2b2o2b2o2b2o$3b2ob2ob2o$b2o8b2o$5b4o$3b8o$3bobo2bobo$3b2
    o4b2o$3b8o$2bo8bo$2b3o4b3o$4bob2obo$4b2o2b2o$4b2o2b2o$4b2o2b2o$6b2o$5bo2bo$4bo4bo$4bo4bo$3bo6bo$5b4o$4b6o2$3bo2b2o2bo$4bob2obo$4b2o2b2o$3bobo2bobo
    $3b2o4b2o$2b2o2b2o2b2o$4bo4bo$3b3o2b3o$o2bo6bo2bo$b3o2b2o2b3o$bob2ob2ob2obo$6b2o$4bo4bo$2bo8bo$2b4o2b4o$b2o2bo2bo2b2o$3b3o2b3o$3bobo2bobo$2b3ob2ob
    3o$4bob2obo$4bo4bo2$6b2o$4bo4bo$3b2o4b2o$3b2ob2ob2o$5b4o$5b4o$4b2o2b2o$2bobo4bobo$6b2o$3bo2b2o2bo$4bob2obo$4bo4bo$4bo4bo$6b2o2$5bo2bo$3b3o2b3o$2b3
    ob2ob3o$2bobo4bobo$4b6o$4b6o$4bo4bo$4bo4bo2$3bo6bo$bob2ob2ob2obo$3b3o2b3o$bo3b4o3bo$2bobo4bobo$2bo8bo$6b2o$5bo2bo$2bo3b2o3bo$3b8o$4b2o2b2o$4bob2ob
    o2$4b2o2b2o$4b2o2b2o$4b2o2b2o2$2bob2o2b2obo$3bo6bo$2bobob2obobo$6b2o$3b2o4b2o$3b3o2b3o$3b2o4b2o$4b2o2b2o$5b4o$3bob4obo$4b2o2b2o$2b3o4b3o$3b3o2b3o$
    bob3o2b3obo$2bo2bo2bo2bo$3bob4obo$3b8o$6b2o$3bo6bo$6b2o$2b10o$3b2ob2ob2o$2bo3b2o3bo$4b6o$3b2o4b2o$4bo4bo$3b2o4b2o$3b2o4b2o$3bob4obo$3bobo2bobo$3b2
    o4b2o$3b2ob2ob2o$3b2ob2ob2o$2b2ob4ob2o$2b3o4b3o$3bob4obo$2bobob2obobo$b2o8b2o$2bobo4bobo2$2bobob2obobo$b2o8b2o$2b3o4b3o$2b2o6b2o2$3bob4obo$2bo2b4o
    2bo$2b2o6b2o$b2o8b2o$2bob2o2b2obo$3bo6bo$b4o4b4o$2b2o2b2o2b2o$o3b6o3bo$o2b2o4b2o2bo$bo3b4o3bo$2o4b2o4b2o$bobo2b2o2bobo$4bob2obo$3b2ob2ob2o$4b2o2b2
    o$2b2o6b2o$3b2ob2ob2o$bobobo2bobobo$obo2bo2bo2bobo$b3o2b2o2b3o$o2bo6bo2bo$2bo2bo2bo2bo$3b3o2b3o$bo2b6o2bo$b3o6b3o$b2o8b2o$2b2ob4ob2o$4b6o$3bob4obo!
  25. 99 cells
    same result for width 11
    smallest at width 13 seems to be 109 cells
  26. 96 cells, less short but smaller is 90 cells
  27. 27.0 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 unique thinnest
  28. 10*30 partial
    5b2o$4b3o$7b2o$4b3obo$4bo3bo$5b3o$7bo$6bo$3bo3b2o$3b2o$3b6o$4bobob2o$5b5o$4bo$5bo$3b5o$2bobo3bo$5b2
    o2bo$b2o2bo$2b2o2bo$obobo$3obobo$b2obob2o$o2b6o$b2ob2o2b2o$2bo4b2o$bob3ob2o$2b2o3bobo$3b3o3bo$ob2o!
  29. 19*86 partial
    b4o9b4o$2b2o11b2o$2bobo9bobo$b5o7b5o$4bo9bo$b2o13b2o$bobo11bobo$2bob2o7b2obo$3b
    obo2b3o2bobo$3b3o7b3o$3b2o9b2o$3bob2o5b2obo$8b3o$9bo$7bobobo$5b2o2bo2b2o$5bo2b3
    o2bo$4bo2bo3bo2bo$4bob2o3b2obo$3bob2ob3ob2obo$6b7o$8bobo$3bo2bob3obo2bo$3b4obob
    ob4o$4b3o5b3o$4b2ob2ob2ob2o$6b2o3b2o$6b2o3b2o$6b3ob3o$5bobo3bobo$4bo2b5o2bo$4b2
    o7b2o$3b3o7b3o$4b5ob5o$6bob3obo$4bo2bobobo2bo$4b2obobobob2o$3bobo2b3o2bobo$4b4o
    bob4o$4b2obo3bob2o$3b2o2bo3bo2b2o$3bob3o3b3obo$4b2o7b2o$4b2ob2ob2ob2o$6b2o3b2o$
    4b2o2bobo2b2o$4bo9bo$4bobo5bobo$5b2o5b2o$3b3o2bobo2b3o$2bo2b2o5b2o2bo$3bo3bo3bo
    3bo$2o3bo7bo3b2o$bo3b2o5b2o3bo$2ob3o7b3ob2o$bob3o3bo3b3obo$b3obobobobobob3o$2bo
    4bobobo4bo$2b4o3bo3b4o$2b3o9b3o$4b5ob5o$2b2o3bo3bo3b2o$2bo2b4ob4o2bo$bobob2obob
    ob2obobo$3bobob5obobo$bobo2bobobobo2bobo$o2bobo2bobo2bobo2bo$b2o2bo3bo3bo2b2o$2
    o4bobobobo4b2o$ob2o2b2obob2o2b2obo$6b7o$4b3o5b3o$4b2o7b2o$4b5ob5o$2bo3bobobobo3
    bo$4bo2b5o2bo$b4obo5bob4o$4bo2bobobo2bo$bo3bobo3bobo3bo$b2obobob3obobob2o$b2obo
    b3ob3obob2o$b2o2b3o3b3o2b2o$2bob2o3bo3b2obo$4b2o2b3o2b2o$b3o11b3o$3bo3bo3bo3bo!
  30. 30.0 30.1 found by ikpx2, disproof of lower widths by gfind
  31. 7*51 partial
    3b2o$3bo2bo$bo2bo$2b3obo$2o2b2o$o$b2o$bo$bob2o$2bobo$4bo2$3bobo$3b3o$4bo$3b2o$2b2o$2bo$bo2$bobo$o3bo$bobobo$o3bo$2b2o$2b2o$2b
    o$4b2o$b3ob2o$2b3obo$2b3o$bobobo$2bo$2b3o$2b3o$4bo$4bo$3bobo$b2o$ob2o$3bo$4b2o$4ob2o$7o$2bo$2bob2o$2bo$2b5o$2b5o$b2ob2o$o4bo!
  32. 11*61 partial
    3b2ob2o$2b3ob3o$2b3ob3o$2b2o3b2o$2bobobobo$3bobobo$3b2ob2o$3b5o$3bo3bo$b3obob3o$b3o3b3o$2bo5bo$2b2o3b2o$bobo3bobo2$4b3o$4bobo$4b3o$4bobo$4bobo$4b3o
    $5bo$5bo$2bob3obo$2b2o3b2o$2b7o$5bo$4b3o$3bobobo$4b3o$2b2obob2o$2bobobobo$4bobo$2bob3obo$3b5o$2bob3obo$b2o5b2o$4bobo$2b2o3b2o$4b3o$2b2obob2o$bobo3b
    obo$2bobobobo$b3o3b3o$3b2ob2o$4bobo$5bo2$b3obob3o$b3o3b3o$4bobo$3b2ob2o$bo7bo$o3bobo3bo$b4ob4o$4b3o$2bobobobo$5bo$bo2b3o2bo$2obobobob2o$b2obobob2o!
  33. 12*91 partial
    5b2o$5b2o$4bo2bo$5b2o$4b4o$3bo4bo$4bo2bo$3b6o2$2b2o4b2o$2bobo2bobo$b2ob4ob2o$b2o6b2o$b2o6b2o$3b6o$3b6o2$5b2o$3bo4bo$3bo4bo$2bobo2
    bobo$2bobo2bobo$5b2o$3b2o2b2o$2o8b2o$b3o4b3o$b2o6b2o$2o3b2o3b2o$2b8o$bo8bo2$4b4o$5b2o$4b4o2$4bo2bo$4b4o$3bob2obo$2bo2b2o2bo$b2o2b
    2o2b2o$5b2o$3b2o2b2o$2bobo2bobo2$2b2o4b2o$3b6o$b2ob4ob2o$2bobo2bobo$bob2o2b2obo$4b4o3$2bob4obo$bob6obo$b2ob4ob2o$b3ob2ob3o$3b2o2b
    2o$b4o2b4o$3b2o2b2o$4bo2bo$4bo2bo$b4o2b4o$bo8bo2$o4b2o4bo$2b8o$3b6o$2o2b4o2b2o$o10bo$b3o4b3o$b3o4b3o$5b2o$2b8o$2b2o4b2o$3b2o2b2o$
    5o2b5o$ob2o4b2obo$3b6o$2bobo2bobo$3b2o2b2o$4bo2bo$2b2o4b2o$3b2o2b2o$4bo2bo2$3bob2obo$2b2o4b2o$4bo2bo$2bobo2bobo$4ob2ob4o$o4b2o4bo!
  34. 8*51 partial
    3b2o$3b2o$2bo2bo$2b4o3$b2o2b2o$2bo2bo$ob4obo2$bo4bo$b6o$bo4bo$2b4o$2b4o$2b4o2$3b2o$3b3o$b2o3bo$2bobobo$3bob2o$2b2obo$2bob2o$4b2o$2bo2bo2$2b
    5o$bob2o$2ob2o$2bobo$2b4o2$b2o2b2o$bo2b3o$2bobo$3bo3bo$bo2b2obo$bob3o$2b3o$3b2o$2bo$b3o$4b2o$2bo2bo$2b2ob2o$2b3ob2o$2bob4o$bo3bo$b3obo$6bo!
  35. 15*168 partial
    2b2o7b2o$bo2bo5bo2bo$o4bo3bo4bo2$5bo3bo$4b3ob3o$4b3ob3o$2bo9bo$2b4o3b4o$3b2ob3ob2o$6b3o$5bobob
    o$5b5o$4b2o3b2o$4b2o3b2o$4b2o3b2o$4bo5bo$6b3o$3bobo3bobo$4b2o3b2o$3bo7bo$4bob3obo$5b5o$6bobo2$
    6bobo$5b2ob2o$2o3b2ob2o3b2o$2b2obo3bob2o$3ob7ob3o$2b11o$2bo2b2ob2o2bo$5bobobo$6bobo2$5b2ob2o2$
    7bo$6b3o$4b7o$5b2ob2o$5b2ob2o$5b2ob2o$5bo3bo$4bobobobo$4bo2bo2bo$7bo$7bo$4bob3obo$3b2o5b2o$6b3
    o$7bo$b3o2b3o2b3o$bo11bo$3b9o$b2ob2obob2ob2o$b2obobobobob2o$2bo2bo3bo2bo$3bo3bo3bo$4b7o$3b2ob3
    ob2o$b2obo5bob2o$2b2ob5ob2o$bobo2b3o2bobo$5b5o$5bobobo$2bob7obo$2bo2b2ob2o2bo$3b3o3b3o2$3b2o5b
    2o$5bobobo$5b2ob2o$3b3o3b3o$3bo7bo$3bo7bo$4b2o3b2o$4b2o3b2o$3bo3bo3bo$b2o2bo3bo2b2o$2bobo5bobo
    $2bobo2bo2bobo$4bo5bo$2b2o7b2o$3bo7bo$4b2obob2o$3bob2ob2obo$2bo2bobobo2bo$2bo9bo$bobo3bo3bobo$
    b3o7b3o$bobo3bo3bobo$5bo3bo$4bob3obo$5bo3bo$6bobo$2b3o5b3o$2b2obo3bob2o$bo11bo$3bobo3bobo$4b2o
    3b2o$3b4ob4o$2b3obobob3o$2b2obo3bob2o$2bo9bo$6bobo$4b3ob3o$2b2ob2ob2ob2o$2b3o2bo2b3o$b6ob6o$bo
    bo2b3o2bobo$2bo9bo$2bo9bo$bobo7bobo$o13bo$bob2o5b2obo$3bo7bo$4o7b4o$2bo9bo$2bob2o3b2obo$bob2o5
    b2obo$2bo9bo$2bobobobobobo$3bobo3bobo$3b9o2$2bob3ob3obo$2bo4bo4bo$3bo7bo$2o11b2o$ob4o3b4obo$bo
    11bo$2b11o$bo3b2ob2o3bo$2b4o3b4o$2bo2bo3bo2bo$b2o3bobo3b2o$bo2bobobobo2bo$2bobo5bobo$b3o7b3o$3
    b3o3b3o$5b2ob2o$3bobo3bobo$2b2o7b2o$3b2obobob2o$2bob7obo$2b2o2b3o2b2o$4b2o3b2o$2bo3bobo3bo$3b2
    o5b2o$2bob2obob2obo$2bob7obo$2b2o7b2o$bo11bo$5bo3bo$6b3o$2b3obobob3o$3b2o5b2o$b2obo5bob2o$b2o2
    b5o2b2o$b2o2bo3bo2b2o2$3obo5bob3o$b4o2bo2b4o$o3b2o3b2o3bo$o3bobobobo3bo$3bo2bobo2bo$4ob5ob4o!

    13*71 partial
    b3o5b3o$o2bobobobo2bo$obobo3bobobo$b2obo3bob2o$3b3ob3o$3b3ob3o2$5b3o$4b2ob2o$4b5o$4bo3bo$4bobobo$5bobo$2bob2ob2obo$2bo2bobo2bo$2bob
    2ob2obo$2bobo3bobo$3b2o3b2o$2b9o$bo2b5o2bo$2b2o5b2o$bo2bo3bo2bo$bob2o3b2obo$bobo5bobo$3obo3bob3o$bobo2bo2bobo$2b2o2bo2b2o$2b2obobob
    2o$2bo2b3o2bo$4bo3bo$4b2ob2o$b3o5b3o$2b2o5b2o$2b2o5b2o$2bo7bo$4bo3bo$3b3ob3o$4bo3bo$3bo2bo2bo$5bobo2$3b2o3b2o$2b4ob4o$4b5o$3b3ob3o$
    b3o5b3o$2bo2b3o2bo$b2o3bo3b2o$2bob2ob2obo$3b2obob2o$2bo3bo3bo$2b2o5b2o$bobob3obobo$2b2o2bo2b2o$b3o2bo2b3o$4b5o$2b4ob4o$b2ob5ob2o$b2
    ob2ob2ob2o$o2bobobobo2bo$2b2o2bo2b2o$b2obo3bob2o$b3o5b3o$bobo2bo2bobo$3bo2bo2bo$2b4ob4o$bo9bo$bo9bo$b2o2bobo2b2o$2o4bo4b2o$4b2ob2o!
  36. 16*286 partial
    3b2o6b2o$2b4o4b4o$3b2o6b2o$2bo2bo4bo2bo$3b2o6b2o$7b2o$5b6o$5b6o$4bo6bo$4bo6bo$2bob3o2b3obo$b4o6b4o$3b
    3o4b3o$3b2o2b2o2b2o$b2o2b6o2b2o$3b2o6b2o$2bo3bo2bo3bo$4bo2b2o2bo$3bo8bo$2b2obob2obob2o$bob4o2b4obo$ob
    2o8b2obo$bo12bo$4bo6bo$3b3o4b3o$2bob3o2b3obo$4bobo2bobo$6bo2bo$5bo4bo$5bo4bo$2bo2bob2obo2bo$bob4o2b4o
    bo$bo2bobo2bobo2bo$4bo6bo$3b2obo2bob2o$5bo4bo2$4b3o2b3o$3bo8bo$2bo10bo$2bo2bo4bo2bo$2bo2bo4bo2bo$2bob
    o6bobo$5bob2obo$5b6o$6bo2bo$6bo2bo$6b4o$6b4o$6b4o2$5b2o2b2o2$5bob2obo$4b2o4b2o$3b4o2b4o$2o4b4o4b2o$4o
    bob2obob4o$2bobo2b2o2bobo$6b4o$2bob2ob2ob2obo$3bo3b2o3bo$3bo3b2o3bo$3bo2b4o2bo$2b2o8b2o$2bob2o4b2obo$
    3bobob2obobo$3bo3b2o3bo$3bo2bo2bo2bo$7b2o$6bo2bo$7b2o$6b4o$6bo2bo$4b2o4b2o$7b2o$6bo2bo2$6bo2bo$7b2o$4
    b2ob2ob2o$4b8o$3b3ob2ob3o$3bo8bo$5b6o$4bob4obo$7b2o$4b2o4b2o$6bo2bo$6b4o$5bo4bo$5b6o$5b6o$4bo6bo$4b2o
    4b2o$3bobo4bobo$3b3o4b3o$4bo6bo$2b2o2bo2bo2b2o$bo12bo$b2o10b2o2$3b3o4b3o$3b3o4b3o$3b3o4b3o$3b2o6b2o$2
    b3ob4ob3o$3b10o$4b2o4b2o$4bob4obo$5b6o$2bo2b6o2bo$b4o6b4o$2bobobo2bobobo$2bob2o4b2obo$2o3bob2obo3b2o$
    3obobo2bobob3o$3bobo4bobo$3bo8bo$3b2o6b2o$3b3o4b3o$4b2ob2ob2o$4bob4obo2$4bobo2bobo$2b3ob4ob3o$2b2ob2o
    2b2ob2o$3bo8bo$2b2ob2o2b2ob2o$5b2o2b2o$4bo2b2o2bo$4b2ob2ob2o$2bobo2b2o2bobo$2bobob4obobo$2b2obob2obob
    2o$6b4o$b3ob6ob3o$3bobob2obobo$4bobo2bobo$4bo6bo$4bobo2bobo$5b2o2b2o$6b4o2$6b4o2$5bob2obo$5b2o2b2o$5b
    2o2b2o$7b2o$4bo6bo$6b4o$6b4o$7b2o$7b2o$4bo6bo$4bo6bo$7b2o$5b2o2b2o$5bo4bo$3b10o$3b10o$4bo2b2o2bo$5b2o
    2b2o$5b2o2b2o$5b2o2b2o2$4b2o4b2o2$3bo8bo$4b3o2b3o$2b2obo4bob2o$3bo2bo2bo2bo2$2bobo6bobo$2b4o4b4o$3bob
    o4bobo$2bo2bo4bo2bo$2bo2bo4bo2bo$2bobo6bobo$3bo8bo$3b2o6b2o$5bo4bo$2b4o4b4o$2b2o8b2o$3b2o6b2o$2bobo6b
    obo$5bo4bo$4b3o2b3o$3b3o4b3o$2b3o2b2o2b3o$3b2o6b2o$4bo6bo$3bobob2obobo$3bobob2obobo$b14o$5bob2obo$bob
    obo4bobobo$bob3o4b3obo$obob2o4b2obobo$3b10o$3bo2b4o2bo$4bobo2bobo$3bob6obo$5bob2obo$7b2o$6bo2bo$3bo3b
    2o3bo$3b3ob2ob3o$3b3o4b3o$5bo4bo$b2o10b2o$b2o10b2o$3b3o4b3o$3b2o6b2o$3bobo4bobo$5bo4bo$2bob8obo$b4ob4
    ob4o$4bo6bo$7b2o$5bo4bo$2bob3o2b3obo$3bo3b2o3bo$3bo8bo$2bob8obo$2b3obo2bob3o$2b3ob4ob3o$5b6o$4b2o4b2o
    $6b4o$3b2obo2bob2o$4bo2b2o2bo$7b2o$2b3o2b2o2b3o$2bobobo2bobobo$2b4ob2ob4o$2b3o2b2o2b3o$2b3o2b2o2b3o$b
    ob3o4b3obo$3b3o4b3o$7b2o2$4b2ob2ob2o$2b5o2b5o$2bo2bo4bo2bo$3b2o6b2o$2bobob4obobo$3b3o4b3o$4bo6bo$5b2o
    2b2o$5b2o2b2o$3bobob2obobo$3b2o2b2o2b2o$3b2ob4ob2o$3bobob2obobo$b4o6b4o$2b2o2bo2bo2b2o$b2obobo2bobob2
    o$2bo2bob2obo2bo$2bob2ob2ob2obo$3bo8bo$6b4o$4bo2b2o2bo$3b2o2b2o2b2o$2bob8obo$4obo4bob4o$4bo6bo$bob3o4
    b3obo$2bob2ob2ob2obo$5bob2obo$4bobo2bobo$3bo8bo$2b3o2b2o2b3o$3b2ob4ob2o$2b5o2b5o$b4ob4ob4o$b3o2bo2bo2
    b3o$3b3o4b3o$2b3obo2bob3o$3bobo4bobo$3bobob2obobo$bo2bobo2bobo2bo$2b2o3b2o3b2o$o6b2o6bo$b2o3bo2bo3b2o!

    14*98 partial
    6b2o$5b4o3$5bo2bo$4bo4bo$4bo4bo$6b2o$4b2o2b2o$3bo2b2o2bo$4bob2obo$4b2o2b2o$4b2o2b2o$5bo2bo2$4b2o2b2o$5bo2bo$4b2o2b2o$3bo6bo$3bob4obo$3b2o4b2o$
    6b2o$4b6o$4bo4bo$2b3ob2ob3o$3bob4obo$2b3o4b3o$b4o4b4o$2b2o6b2o$2bo8bo$obobo4bobobo$3b3o2b3o$2bo3b2o3bo$4b6o$3bo6bo$3b2o4b2o$4b2o2b2o2$4bob2obo
    $5b4o$4b6o$6b2o$2bo3b2o3bo$2b3o4b3o$bo3bo2bo3bo$bo2b2o2b2o2bo$2o10b2o$b2o3b2o3b2o$3bo6bo$3b8o$5bo2bo$4bob2obo$3bo2b2o2bo$2bob2o2b2obo$2b3ob2ob
    3o$3bo6bo$2b4o2b4o$4b2o2b2o$2bobob2obobo$b3o2b2o2b3o2$2bobo4bobo$4b2o2b2o$4bob2obo$4bo4bo$5bo2bo$3bob4obo$3bo6bo2$2bo2bo2bo2bo$6b2o$2b2obo2bob
    2o$3bob4obo$o2bob4obo2bo$b2ob2o2b2ob2o$4b2o2b2o$4b6o$2b3ob2ob3o$b3obo2bob3o$2b2obo2bob2o$b2obo4bob2o$3bobo2bobo$bobobo2bobobo$5bo2bo$2o2b6o2b2
    o$3bobo2bobo$5bo2bo$bob3o2b3obo$b2o3b2o3b2o$o4bo2bo4bo$3o2b4o2b3o$2bo3b2o3bo$3b2o4b2o$6b2o$3b2ob2ob2o$bo4b2o4bo$2o2bob2obo2b2o$o2bo2b2o2bo2bo!
  37. 23*60 partial
    10bobo$8b2obob2o$7b2obobob2o$6bob2obob2obo$6bo3bobo3bo$5b3o2bobo2b3o$5bob2obobob2obo$5b4o5b4o$8bob3obo$4bob2
    o3bo3b2obo$7bobobobobo$3bob4ob3ob4obo$3b2o3bo5bo3b2o$2b3o3b3ob3o3b3o$5bo2bobobobo2bo$5bo3b2ob2o3bo$5bo2bobob
    obo2bo$5bob2ob3ob2obo$4b3obob3obob3o$3b3o3bobobo3b3o$2bob2ob2o2bo2b2ob2obo$bob2ob3o5b3ob2obo$o3bo4b5o4bo3bo$
    b2o2bo2bo5bo2bo2b2o$2bo4bob2ob2obo4bo$2bo5bo5bo5bo$2b5o9b5o$4b3ob7ob3o$3bo5b5o5bo$3b3o2bo5bo2b3o$7bo3bo3bo$2
    b6ob2ob2ob6o$10b3o$3bo15bo$2bob2obo2b3o2bob2obo$3bo2b3o5b3o2bo$10bobo$4bob3obobob3obo$6bobo5bobo$7bob2ob2obo
    $3b3ob2ob3ob2ob3o$2b2o2b2ob5ob2o2b2o$6bobo5bobo$3b3o2bo2bo2bo2b3o$3bobo3bobobo3bobo$3bo3b2o2bo2b2o3bo$2bo3b2
    obobobob2o3bo$2b5o4bo4b5o$7bo3bo3bo$b4o3bobobobo3b4o$bo5b2ob3ob2o5bo$2bo2bo3bo3bo3bo2bo$3bobo5bo5bobo$o4b2ob
    3ob3ob2o4bo$3o4b2ob3ob2o4b3o$2bo3bo2b2ob2o2bo3bo$10b3o$bob4o2bo3bo2b4obo$2bobo13bobo$b2o2bob2ob3ob2obo2b2o!
  38. 24*140 partial
    7bo2b4o2bo$6b2ob6ob2o$5b2obo6bob2o$5b5ob2ob5o$5bo2b2ob2ob2o2bo$8b2o4b2o$6b2ob2o2b2ob2o$6b2ob2
    o2b2ob2o$5b2ob2ob2ob2ob2o$4bob2obob2obob2obo$4b3obo6bob3o$5b5o4b5o$7b4o2b4o$4b5obo2bob5o$3bob
    o2b2o4b2o2bobo$4bo2bo8bo2bo$3bobo12bobo$3b5obo4bob5o$4b2obo8bob2o$2b2obobo8bobob2o$3b2ob3o6b3
    ob2o$7b3o4b3o$7b2o6b2o$5b5o4b5o$3b2ob2o8b2ob2o$3bob5o4b5obo$7b2o6b2o$5b2obo6bob2o$4b4o8b4o$2b
    2o3bo8bo3b2o$3b2o4b6o4b2o$2b7ob4ob7o$3bo2bo3bo2bo3bo2bo$5bo3b2o2b2o3bo$5bobo2bo2bo2bobo$4bob4
    ob2ob4obo$10bo2bo$6bobobo2bobobo$7b3ob2ob3o$8b3o2b3o$5b2o2b2o2b2o2b2o$5bo4b4o4bo$6bo3bo2bo3bo
    $6b2ob2o2b2ob2o$4b2o4bo2bo4b2o$5b2obo2b2o2bob2o$2bobo3bo6bo3bobo$9bo4bo$b2o2b3o8b3o2b2o$2bobo
    2bobob2obobo2bobo$4b3o3bo2bo3b3o$3o3bob8obo3b3o$4b4o8b4o$5b2o10b2o$2b2o2b3ob4ob3o2b2o$bobo4bo
    2b2o2bo4bobo$b2o6bob2obo6b2o$2bo6b2o2b2o6bo$2bobo2bo8bo2bobo$3b2o4b2o2b2o4b2o$3b2o2b4o2b4o2b2
    o$2bobo2bo2bo2bo2bo2bobo$2bobo2bobo4bobo2bobo$3bo4bo6bo4bo$4bo4b6o4bo$2bo3b2o3b2o3b2o3bo$3bo4
    b3o2b3o4bo$bob4obo6bob4obo$bo20bo$2b2o4bo6bo4b2o$4bob3o6b3obo$4b5o6b5o$4b2o2bobo2bobo2b2o$6bo
    bobo2bobobo$3bo4bo2b2o2bo4bo$5bo2bobo2bobo2bo$5b3o8b3o$4bo2b3ob2ob3o2bo$3b2o4b6o4b2o$3bob6o2b
    6obo$6bobo6bobo$3b2o3b3o2b3o3b2o$3bob5o4b5obo$3b2ob2o8b2ob2o$2b3o14b3o$b2ob2obo8bob2ob2o$2bob
    2ob2o6b2ob2obo$2bo2bobo8bobo2bo$b2obo3bo6bo3bob2o$bobo16bobo$o3bob2o8b2obo3bo$bo5bo8bo5bo$3bo
    b2o10b2obo$bo2b2obo8bob2o2bo$2b3o2bo8bo2b3o$bo2bo2b2ob4ob2o2bo2bo$5bob3o4b3obo$2bo7b4o7bo$b2o
    4b2o6b2o4b2o$o2bo3b2o6b2o3bo2bo$6bob3o2b3obo$2bo3bo2bob2obo2bo3bo$2b2o2b4ob2ob4o2b2o$3bo2bo10
    bo2bo$2bo2bob10obo2bo$3b3o2bo2b2o2bo2b3o$b2o2bo2bo6bo2bo2b2o$bobobob3ob2ob3obobobo$6bobo2b2o2
    bobo$8bob4obo$3b2ob2o8b2ob2o$b3o2b2ob2o2b2ob2o2b3o$3o3bo4b2o4bo3b3o$bo2b4obo4bob4o2bo$3b2o2bo
    bob2obobo2b2o$bobobo2b2o4b2o2bobobo$3b2o2b4o2b4o2b2o$2b2o2bo10bo2b2o$2bo2b2o2b2o2b2o2b2o2bo$b
    3o4bobo2bobo4b3o$2b2obo12bob2o$b2o2bo4bo2bo4bo2b2o$bobob2obobo2bobob2obobo$3b5o3b2o3b5o$b6obo
    bo2bobob6o$3bo2b2o2bo2bo2b2o2bo$3bobobo3b2o3bobobo$2bobo2b2ob4ob2o2bobo$2b2o2b2obo4bob2o2b2o$
    3b2ob4o4b4ob2o$3bo4b3o2b3o4bo$2b2o2b3o6b3o2b2o$4bo14bo$4b3o3b4o3b3o$6bobobo2bobobo$2bobo3b2ob
    2ob2o3bobo$2bo4bobob2obobo4bo$bobobo5b2o5bobobo$o5bobo2b2o2bobo5bo$obobob2o2bo2bo2b2obobobo!
  39. 11*101 partial
    3bo3bo$3b5o$2b2obob2o$3bobobo$2bobobobo$3bo3bo$4bobo$4b3o$3obobob3o$4bobo$4b3o2$3bobobo$3b5o$4bobo$3bo3bo$3b2ob2o2$4b3
    o$5bo$3b5o$3b5o$3bo3bo$bobo3bobo$2b2o3b2o$b3obob3o$b4ob4o$4bobo2$5bo$2bo5bo$2b2obob2o$bob5obo$4bobo$bo2b3o2bo$2b2obob2
    o$bob2ob2obo$b4ob4o$bo7bo$bobo3bobo$3bo3bo$3b2ob2o$3b2ob2o$4bobo$5bo2$4b3o$3bo3bo$2b2o3b2o$2b3ob3o$3b2ob2o$4bobo$3bo3b
    o$3bo3bo$4bobo$3b5o$5bo$2bo2bo2bo$3b2ob2o$2b2o3b2o$2bo5bo$3b2ob2o$3b2ob2o$3b5o$3b5o$4bobo$b3obob3o$2b2obob2o$2bobobobo
    $ob2o3b2obo$obo5bobo$4bobo$3bo3bo$5bo$2b3ob3o$2b2o3b2o$2bo5bo$bo3bo3bo$2b7o$2b7o$3b5o$4bobo2$3bo3bo$2b7o$bobobobobo$b9
    o$2b3ob3o$b2o5b2o$5bo$bo7bo$2o2bobo2b2o$bo2b3o2bo$2b7o$bo7bo$2ob2ob2ob2o$bobo3bobo$b2obobob2o$o3b3o3bo$bo3bo3bo$4bobo!
  40. 12*120 partial
    4b4o$5b2o$4bo2bo$2b2o4b2o$3bo4bo$2bo6bo$b2o6b2o$b10o2$3bo4bo$4bo2bo$2b3o2b3o$3bob2obo$2bo6bo$3b2o2b2o$3
    bo4bo$bo8bo$4b4o$b2obo2bob2o$2bobo2bobo$bobob2obobo2$o4b2o4bo$bo2bo2bo2bo$2b2ob2ob2o$4b4o2$3b6o$3b2o2b2
    o$4ob2ob4o$o2b2o2b2o2bo$b10o$ob3o2b3obo2$2b2o4b2o$bob2o2b2obo$bo8bo$4bo2bo$3b2o2b2o$4bo2bo$2b2o4b2o$b4o
    2b4o$o2b6o2bo$2o2b4o2b2o$bob6obo$2bo6bo$3bo4bo2$3b2o2b2o$3b2o2b2o$3b2o2b2o$4bo2bo$3bo4bo$4b4o$3bo4bo$3b
    ob2obo$3b2o2b2o$3b2o2b2o$5b2o$4bo2bo$4b4o$2b3o2b3o$3bob2obo$3b6o$3b6o$b4o2b4o2$2bobo2bobo$2bo2b2o2bo$2b
    8o$b2o6b2o$2bob4obo$4b4o2$bo8bo$ob8obo$3bo4bo$4bo2bo$4bo2bo$5b2o$4bo2bo$2bo2b2o2bo$3b2o2b2o$3b6o$3b2o2b
    2o$2b8o$bo8bo$obobo2bobobo$bobo4bobo$bo2bo2bo2bo$2b2o4b2o$2b3o2b3o$3b2o2b2o$2b8o$2bobo2bobo$b2o6b2o$b2o
    6b2o$bob6obo$4bo2bo$3b2o2b2o$2bob4obo$3bo4bo$bob2o2b2obo$bo3b2o3bo$bo2b4o2bo$bo2b4o2bo$2bo6bo2$2bobo2bo
    bo$b10o$2b3o2b3o$bo8bo$bo2b4o2bo$bo2bo2bo2bo$b4o2b4o$2obo4bob2o$obob4obobo$bo2bo2bo2bo$12o$b2o2b2o2b2o!
  41. 7*34 partial
    4b2o$3b4o2$5b2o$5bo$5bo$3bo$2b3o$2b4o$3bo2$2bo$ob2o$bo2b3o$2o$4bo$5bo$2b2obo$5b2o$3
    b2obo$3b3o$2bob2o$3bo$3b2o$2b3o$5o$o2b2o$b2o2bo$bob3o$3b2o$2bobo$2bo3bo$bo$ob2ob2o!
  42. 12*70 partial
    5b2o$4b4o$5b2o$4bo2bo$4bo2bo$3b6o$2b2o4b2o$3b6o$3b2o2b2o$3b6o$4b4o2$4b4o$4bo2bo$5b2o$3b6o$4bo2bo$4bo2bo$4b4o$4bo2bo$4bo2bo$5b2o$4b
    4o$4b4o$bobo4bobo$3bo4bo$b3o4b3o$2b2o4b2o$b2o6b2o$ob3o2b3obo$b2o2b2o2b2o$12o$2b8o$3b6o2$2b2o4b2o$bobo4bobo$2ob2o2b2ob2o$bo2bo2bo2b
    o$b3o4b3o$b2obo2bob2o$3b2o2b2o$3bob2obo$2bo2b2o2bo$5b2o$2b8o$4bo2bo$5b2o$b2obo2bob2o$2bo6bo$3bob2obo$3bo4bo$2bo2b2o2bo$4bo2bo2$3b2
    o2b2o$3bob2obo$5b2o2$2b8o$bo3b2o3bo$bo3b2o3bo$bo2bo2bo2bo$2bo2b2o2bo$2bo2b2o2bo$b4o2b4o$b2obo2bob2o$b2obo2bob2o$2bob4obo$3bob2obo!
  43. 13*61 partial
    b4o3b4o$b4o3b4o$2b2o5b2o$bob2o3b2obo$bo3bobo3bo$2bo2bobo2bo$3b3ob3o$b2o7b2o$b4o3b4o$2bo7bo$2b
    2o5b2o$bo2bo3bo2bo$bo2b2ob2o2bo$bo4bo4bo$b5ob5o$4b2ob2o$4bo3bo$3b2o3b2o$3bo5bo$4b2ob2o$5b3o$4
    bobobo$3b2obob2o$4b2ob2o$3b2obob2o$2bob2ob2obo$3bo5bo$2bo2bobo2bo$b3obobob3o$3b2o3b2o$bo3bobo
    3bo2$3bo5bo$b2obo3bob2o$b2ob2ob2ob2o$b2ob2ob2ob2o$b3o5b3o$3bo5bo$4bo3bo$bo2bo3bo2bo$2b2o5b2o2
    $2bob5obo$b3ob3ob3o$3bo5bo$2b4ob4o$3bobobobo$bo2b5o2bo$5bobo$b2ob2ob2ob2o$5bobo$2b2o2bo2b2o$b
    4obob4o$2bob5obo$3ob5ob3o$2obob3obob2o$bo2b5o2bo$2b4ob4o$b2ob5ob2o$bobo2bo2bobo$ob2obobob2obo!
  44. 12*48 partial
    4b4o$2b8o$4b4o$b2obo2bob2o$3bo4bo$3bob2obo$2b2o4b2o$2b2o4b2o$3b2o2b2o$4bo2bo$3b6o$5b2o$2bo6bo$2o8b2o$bobo4bobo2$3b2o2b2o$b2o6b2o$2bo6bo$3bo4bo$bo3b2o3bo2$2o8b2o$12o$b10o$2b2o4b2o$
    3bo4bo$4b4o$4bo2bo$2b2ob2ob2o$2bo6bo$3bob2obo$ob2o4b2obo$ob3o2b3obo$b10o$2bo2b2o2bo$2obob2obob2o$b4o2b4o$bob6obo$5b2o$bo8bo$3bob2obo$2b2o4b2o$5o2b5o$4o4b4o$bo3b2o3bo$3b6o$b2o6b2o!

    14*54
    6b2o$4b2o2b2o$3b8o$3bobo2bobo$3b2o4b2o$4b6o$4b6o$4b2o2b2o$4b2o2b2o$5b4o$5b4o$4bo4bo$2b3o4b3o$2b2o6b2o$2b3o4b3o$3b2o4b2o$3b3o2b3o2$3bo6bo$b2obo4bob2o$b4o4b4o$2ob2o
    4b2ob2o$2b3o4b3o$2bo2b4o2bo$3bo2b2o2bo$2bo2bo2bo2bo$4b6o$bo4b2o4bo$5bo2bo$3b3o2b3o$4b2o2b2o$4bo4bo$2bo2bo2bo2bo$2bo2bo2bo2bo$2bo2bo2bo2bo$2b2obo2bob2o$5b4o$3bo6bo
    $4b2o2b2o$2b2obo2bob2o$bobob4obobo$bo4b2o4bo$b5o2b5o$4bob2obo$3b2ob2ob2o$2b3o4b3o$3b3o2b3o$2ob8ob2o$o3b2o2b2o3bo$2bob2o2b2obo$2bo2b4o2bo$3bo2b2o2bo$o12bo$bob8obo!

    16*70
    6b4o$4b8o$6b4o$3b2obo2bob2o$5bo4bo$5bob2obo$4b2o4b2o$4b2o4b2o$5b2o2b2o$6bo2bo$5b6o$7b2o$4bo6bo$2b2o8b2o$3bobo4bobo2$
    5b2o2b2o$4bo6bo$3b2o6b2o$3b2o6b2o$2bo2b2o2b2o2bo$b2o2b2o2b2o2b2o$3b3ob2ob3o$7b2o$3b2o2b2o2b2o$3b3ob2ob3o$3b2o6b2o$3b
    obo4bobo$3b3o4b3o$2bobob4obobo$3bob2o2b2obo$5b6o$4bo6bo$3bo3b2o3bo$2b2o2bo2bo2b2o$4b3o2b3o$3b2o6b2o$3b3ob2ob3o$7b2o$
    4b2o4b2o$3bo2bo2bo2bo$3b2o2b2o2b2o$5b2o2b2o$4bo2b2o2bo$5b6o$4b3o2b3o$bob2obo2bob2obo$o3bobo2bobo3bo$2o3bob2obo3b2o$2
    b3o2b2o2b3o$4b3o2b3o$3bo2bo2bo2bo$3bob2o2b2obo$2bob8obo$b2o3bo2bo3b2o$b2o4b2o4b2o$bo2b2o4b2o2bo$bobobob2obobobo$2b2o
    8b2o$5bo4bo$b2o3b4o3b2o$2b12o$b4o6b4o$ob3o6b3obo$3b2o6b2o$b2o3bo2bo3b2o$b14o$b2o2b6o2b2o$2b2obo4bob2o$2bob2ob2ob2obo!
  45. 19*47 partial
    2b15o$b4o4bo4b4o$5b2obobob2o$b2obob2o3b2obob2o$2b2o2b2o3b2o2b2o$bo4b3ob3o4bo$4bobob3obobo$6bob3obo$bobo2b3ob3o2bobo$b3obo2bobo2bob3o$b2o2bobo3bobo2b2o$3bob
    2o5b2obo$6b3ob3o$5bobo3bobo$2bo2bo2bobo2bo2bo$bo2bobo5bobo2bo$b2ob2o7b2ob2o$b4ob7ob4o$bob2obob3obob2obo$2bo6bo6bo$b2ob11ob2o$bo2bo9bo2bo$3b2ob7ob2o$b3o2b2o
    3b2o2b3o$bo2bobo5bobo2bo$b2o2bobo3bobo2b2o$b2o5bobo5b2o$3bo2bobobobo2bo$bob5o3b5obo$7bo3bo$2o4bo5bo4b2o$b3o11b3o$bo3bob2ob2obo3bo$bob2o2bo3bo2b2obo$2bo3bo5b
    o3bo$b3obo7bob3o$b3o11b3o$2bo4bo3bo4bo$7ob3ob7o$bob4o5b4obo$2ob5o3b5ob2o$5bobo3bobo$3b2o3bobo3b2o$3b3o2bobo2b3o$3bob2o2bo2b2obo$3b3o2bobo2b3o$3o3b3ob3o3b3o!
  46. 20*30 partial
    8b4o$6b8o$5b3o4b3o$8bo2bo$3bo3bob2obo3bo$4b2o2bo2bo2b2o$2b2o2bo2b2o2bo2b2o$2b2ob2obo2bob2ob
    2o$3bob10obo$3bo3bo4bo3bo$3bobo2bo2bo2bobo$5bo8bo$5b3ob2ob3o$5b4o2b4o$5bobo4bobo$7b6o$6bo6b
    o$2b3ob3o2b3ob3o$4bob2ob2ob2obo$b3ob3ob2ob3ob3o$bob3o8b3obo$2b2o2b2o4b2o2b2o$5b2o6b2o$3bobo
    bo4bobobo$b3obobob2obobob3o$bo2bo3bo2bo3bo2bo$o5bobo2bobo5bo2$ob3obo6bob3obo$bo4b3o2b3o4bo!
  47. tied for minimal population (170) is this backend variant
  48. although shortest, it is 62 cells, a longer one is 61
  49. first found in [11] and rediscovered with gfind
    disproven up to 20 with both qfind and gfind
  50. under ikpx2's metric, this spaceship is of minimal width 10
  51. 70 cells, though there is a different midsection joint that makes it 74 cells
  52. found by yujh with rlifesrc (they say it's probably minimal), after preceding width disproven by me
    their 64-cell w18glide from [8] also works in here
  53. was first found in [15], is smallest w18e at 274 cells (with second-smallest being 316)
  54. 914 cells, second shortest is 1166
  55. 55.00 55.01 55.02 55.03 55.04 55.05 55.06 55.07 55.08 55.09 55.10 though preceding width has been disproven, this was not found with qfind so is not guaranteed to be of minimal height
  56. 17*49 partial
    7b3o$6bo3bo$6bo3bo$4bob5obo$4bobo3bobo2$6b2ob2o$3bo9bo$3bo2b2ob2o2bo$5bobobobo$5b2o3b2o$4b3o3b3o3$7bobo$8bo$8bo$5b3ob3o2$4b4ob4o$3b4o
    3b4o$4b2o5b2o$8bo$7bobo$7bobo$3bobo5bobo$3bobo5bobo$3b2o7b2o$6b2ob2o$4bo2bobo2bo$5bobobobo$2bo11bo$b3o9b3o2$b3o9b3o$2b3o2b3o2b3o$b2o
    bo2bobo2bob2o$3obo2b3o2bob3o$4bo2bobo2bo$7b3o$5bo5bo$4b2o5b2o$2bobo2b3o2bobo$bo5b3o5bo$b3o9b3o$ob3ob2ob2ob3obo2$2bo2b2o3b2o2bo$o15bo!
  57. 57.0 57.1 15*44 partial
    6b3o$5bo3bo$5bo3bo$3bob5obo$3bobo3bobo2$5b2ob2o$2bo9bo$2bo2b2ob2o2bo$4bobobobo$4b2o3b2o
    $3b3o3b3o3$6bobo$7bo$7bo$4b3ob3o2$3b4ob4o$2b4o3b4o$3b2o5b2o$7bo$6bobo$6bobo$2bobo5bobo
    $2bobo5bobo$2b2o7b2o$5b2ob2o$3bo2bobo2bo$4bobobobo$bo11bo$3o9b3o2$3o9b3o$2b2ob2ob2ob2o$
    2bo3bobo3bo$obo2b2ob2o2bobo$3ob2o3b2ob3o$3bobo3bobo$3bo3bo3bo$3bo3bo3bo$7bo$2bobo5bobo!
  58. 16*34 partial (becomes width-18 on generation 2)
    b2o10b2o$2o12b2o$4bo6bo$5bo4bo3$b5o4b5o$2b2ob6ob2o$6bo2bo$3bo2bo2bo2bo$3bo2bo2bo2bo2$5b2o2b2o$5b2o2b2o$4b2o4b2o$3bo8bo$2bo10bo$2b2obo4bob2o$2bo3b
    4o3bo$o2b3o4b3o2bo$o4bob2obo4bo2$2o2bo6bo2b2o$3o10b3o$2bo2bo4bo2bo$bo2b2o4b2o2bo$4bobo2bobo$o14bo$2o12b2o$o5b4o5bo$b5o4b5o$bo12bo$5bo4bo$b5o4b5o!
  59. 19*42 partial
    2b2o11b2o$bo15bo$5bo7bo$5bo7bo$2b5o5b5o$3bo11bo$2o2b3o5b3o2b2o$8bobo$bobo4bobo4bobo$5b3o3b3o$5bobo3bobo$5bo7bo$
    8bobo$3b3o7b3o$5bo2bobo2bo$4bo2bo3bo2bo$6bo5bo$6bo5bo$4b2o2bobo2b2o$7b2ob2o$3bo3bo3bo3bo$2b3obobobobob3o$3bo2bo
    bobobo2bo2$bobo11bobo$4b3o5b3o$bobobob2ob2obobobo$3bo2bo5bo2bo$3bo2bo5bo2bo$6bo5bo$2bobo9bobo$7bo3bo$bo3bo2bobo
    2bo3bo$2bob2o7b2obo$6bo5bo$5b2obobob2o$4bo3bobo3bo$3b2obo5bob2o$3bo4bobo4bo$2bo3bobobobo3bo$b2o13b2o$ob6o3b6obo!
  60. 10*32 partial
    4b2o$4bo2bo$5bo2bo$4bo$3b2obobo$3bo$3b2o2bo$3bo$4bo2bo$5b2o2$2b3o$bo2b5o$b4o3bo$2b2obo2bo$3bobo$2bo
    2b2o$bo4bo2$bo2b2obo$5bobo$2b5o$bo$b3obo2b2o$4bo$o3bo$2b2o2bo$3b2o2b2o$bo6bo$2bo3b2o$2b3o$bo3bo2bo!
  61. seemingly first found in [23]
  62. 10*42 partial
    4bo2b2o$3bob2obo$2bo2b3o$5b2o$5bo$4bo2$3b4o$3o$2bo$5bob2o$3b2obobo$7bo$2b3obo$2b5o$b3o2bo$4b2o$6bo$6bo$3bo2bo$3bo2bo$5b3
    o$2bo3bo$2bobo$7bo$3bobo2bo$4b2o$3b2ob2o$3bo5bo$3bo4bo$5bo$2bo$2bo$6b2o$3b3o$3bo3bo$6b3o$2bo6bo$3b5obo$2b2o4bo$b9o$o6b3o!
  63. 17*48 partial
    5b3ob3o$4b2o5b2o$3bo3bobo3bo$2bo11bo$5bo5bo$bo2bo7bo2bo$bo2bo7bo2bo$bo13bo$bo3bo5bo3bo$4bobo3bobo2$7bobo$7bobo$8bo$5bob3obo$
    6bobobo$2bo4b3o4bo$bo13bo$4bo7bo$bob2obo3bob2obo$2bobo7bobo$4bo3bo3bo$4bo7bo$b2obo7bob2o$4b2o5b2o$2o2bo7bo2b2o$obo2bob3obo2b
    obo$b4o3bo3b4o$2b3o2b3o2b3o$4bo7bo$4bo3bo3bo$2bobo2b3o2bobo2$6b5o$2bo3bobobo3bo$bob2o7b2obo$2bob2ob3ob2obo$3bobo2bo2bobo$o2b
    o3b3o3bo2bo$2o2bo7bo2b2o$b2o2bo5bo2b2o$obo3b2ob2o3bobo$2o3b2o3b2o3b2o$2b2obo5bob2o$b3ob3ob3ob3o$2bo11bo$bo3bo5bo3bo$b3o9b3o!
  64. 18*41 partial
    3b2o8b2o$2bo12bo$b4o8b4o$bo14bo$5bo6bo$3bo2bo4bo2bo$3bob2o4b2obo$3b2obo4bob2o$4b3o4b3o$5bo6bo2$3
    b3o6b3o$3b5o2b5o2$obo4bo2bo4bobo$ob3obo4bob3obo$3b3o6b3o2$4b3o4b3o$6bo4bo$3bo3b4o3bo$2bo12bo$3b3
    obo2bob3o$3bo10bo$2b2o10b2o$bo14bo$2bo3bo4bo3bo$6b2o2b2o$3obo8bob3o$b2o2b3o2b3o2b2o$6bob2obo$4bo
    3b2o3bo$5bo6bo$5b8o$4b2o6b2o$3b2obo4bob2o$3bobo6bobo$3bobo6bobo$3b3o6b3o$5bo2b2o2bo$2bo4bo2bo4bo!
  65. 20*62 partial
    8b4o$7b6o$6b2o4b2o$7bo4bo$7bo4bo$7bob2obo$9b2o$5bo8bo$5b2o6b2o$5bo3b2o3bo2$9b2o$6b2o4b2o$4bo10bo$4bo10bo2$8bo2bo$6bobo2bob
    o$7b2o2b2o$4b2o8b2o$5bo3b2o3bo$5bo3b2o3bo$3bo12bo$2bo14bo2$bo2b4o4b4o2bo$4b2obo4bob2o$4bo3b4o3bo$bobobob6obobobo$5bobob2ob
    obo$7bo4bo$3bo3bo4bo3bo$4bo10bo$5bo2b4o2bo$6bo6bo$7bo4bo$7bo4bo$7bo4bo2$3b2o3bo2bo3b2o$2bo2b3o4b3o2bo$6bo6bo$2bo4bo4bo4bo$
    2bo4bo4bo4bo$7bo4bo$2bo3bo6bo3bo$b5obo4bob5o$2b2o2b2o4b2o2b2o$3b4o6b4o$b3o2bo6bo2b3o$ob2obo8bob2obo$2o7b2o7b2o$3bo2bo6bo2b
    o$2b2o3bo4bo3b2o$2bob2o2bo2bo2b2obo$2bobob2ob2ob2obobo$3b5o4b5o$4bo10bo$4bo3b4o3bo$3b2o2b2o2b2o2b2o$bo3bo8bo3bo$bo7b2o7bo!
  66. there is also a width-18 version which has the same backend as the w17o (and as such can be considered its even variant)
  67. 117 cells, next shortest is 166
  68. second shortest nontrivial is not a tagalong
  69. 10*33 partial
    5bo$4bobo$5bo$5bo$5bo$4bo2bo2$5bob2o$5bobobo$6b3o$6b2o$5bo$4b2o$4b2o$4bo2bo$4bo2bo$7bo$3bob3o$3b
    obobo$3b3o2bo$4b2o$4bobo$3bo2bo$3bo2bo$2b2o$2b2o3bo$2bobob2o$2b4o$bobobo2bo$o4bo2bo$5o3bo2$o8bo!

    looks alike the Statue of Liberty
  70. this one has a smaller population but a backspark that increases its bounding box
  71. not sure of minimality of length, also is 466 cells and beaten in population by an a 204-cell asymmetrical backend variant of itself (by me) and a 299-cell w23o (by dreamweaver)
  72. 24*19 partial
    10b4o$8bobo2bobo$8b8o$8b8o$4b4ob6ob4o$4b6ob2ob6o$2bobob2obo4bob2obobo$2b3obo2bo4bo2bob3o$2bobobo2bo4bo2bobobo$b2obob4o4b4obob2o$ob3obo2bo4
    bo2bob3obo$2bobob4ob2ob4obobo$3obobo3b4o3bobob3o$6bo3b4o3bo$bo6bo2b2o2bo6bo$b2obobo2b6o2bobob2o$b2o3bobo2b2o2bobo3b2o$bobo6b4o6bobo$10b4o!
  73. 20*46 partial
    7b6o$5bob2o2b2obo$3bobob6obobo$bob3ob6ob3obo$bob14obo$ob4obob2obob4obo$b5ob6ob5o$b18o$b4obo6bob4o$3b3o8b3o$bobobo8bobobo$bob3o8b3obo$2b2o5b2o5b2o
    $ob5o2b2o2b5obo$obobobobo2bobobobobo$2bobobob4obobobo$4bob8obo$2b5ob4ob5o$2bobob2o4b2obobo$3b5ob2ob5o$2b5o6b5o$2bob4o4b4obo$4b2o8b2o$2b3obobo2bo
    bob3o$3b4o2b2o2b4o$b8o2b8o$4bobob4obobo$3b4ob4ob4o$bob2obob4obob2obo$bob14obo$bob5o4b5obo$4b4o4b4o$b7o4b7o$4bo2b2o2b2o2bo$2b3obo6bob3o$4bobo6bob
    o$2b2o12b2o$2b16o$2bobo2b2o2b2o2bobo$2bo2bobob2obobo2bo$4b2ob6ob2o$b2o3b3o2b3o3b2o$2b4o3b2o3b4o$4o2bo2b2o2bo2b4o$ob3ob8ob3obo$2bobob2ob2ob2obobo!
  74. 57 cells, smallest known is 41 cells at width 8, first found by [27]
  75. 235 cells, shortest width-15 is 146 cells

other such tables alike this

references

  1. wwei47 (May 14, 2024). Re: Thread for your miscellaneous posts and discussions, in which the scheme for non-orthogonal width notation was specified
  2. 2.0 2.1 2.2 2.3 2.4 2.5 wwei47 (May 21, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which various results were found for diagonal spaceships in B36/S245
  3. wwei47 (May 24, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which a minimal-width[2] c/5 diagonal in B36/S245 was found
  4. 4.0 4.1 4.2 4.3 DroneBetter (March 3, 2024). Re: B36/S245, in which the currently smallest-known c/5d (146 cells) was found, the 2c/7 w16e was found minimal, and the first (but not smallest) w16 glide-symmetric c/6d was found
  5. 5.0 5.1 5.2 velcrorex (July 21, 2015). Re: Move/Morley (245/368), in which the shortest w15s c/5d at (which is the smallest by population of the thinnest possible family) was found, polyglottic to B36/S245
  6. wwei47 (June 1, 2024). Re: B36/S245, in which [5]'s minimal-width w15s c/5d was noted to be minimal-width
  7. May13 (March 3, 2024). Re: B36/S245, in which a symmetrical width-19 c/5d was found
  8. 8.0 8.1 yujh (July 13, 2024). Re: B36/S245, in which the smallest known c/6d's of width 16 and 18 were found (with rlifesrc, per personal correspondence)
  9. LaundryPizza03 (December 21, 2020). Re: B36/S245, in which a (2,1)c/6 was found (the first knightship)
  10. lordlouckster (August 15, 2022). Message in #bots-and-mute-this on the Conwaylife Lounge Discord server, in which the first 2c/7 in B36/S245 was found, at the minimal[4] width of w16e
  11. Bullet51 (September 5, 2015). Re: Move/Morley (245/368), in which the smallest 2c/5 w22e was first found
  12. AforAmpere (December 18, 2020). Re: Move/Morley (245/368), in which the first (2,1)c/5 was found
  13. 13.0 13.1 velcrorex (July 23, 2015). Re: Move/Morley (245/368), in which the first known c/6d (w17s) and the smallest even 3c/6 were found
  14. AforAmpere (July 15, 2024). Re: Move/Morley (245/368), in which the first (2,1)c/6 was found
  15. lordlouckster (September 1, 2022). Re: Move/Morley (245/368), in which the first (and smallest w18e) 2c/7 was found
  16. LaundryPizza03 (March 25, 2024). Re:B3/S12 (Flock), noting Lapin Acharné's 2c/8
  17. 17.0 17.1 17.2 17.3 wwei47 (May 13, 2024). Re: B3/S12 (Flock), in which bounds upon c/3 widths were found with JLS
  18. 18.0 18.1 18.2 18.3 18.4 wwei47 (May 14, 2024). Re: B3/S12 (Flock), in which considerably improved bounds were found with ikpx2
  19. 19.0 19.1 May13 (May 17, 2024). Re: B3/S12 (Flock), in which a width-71 gutter-preserving c/3 was found with LSSS (which also works in Pedestrian Flock)
  20. 20.0 20.1 amling (May 18, 2024). Re: amling questionable searches/ideas firehose, in which dark magic was utilised to achieve the impossible of finding a minimal-width w38a c/3
  21. wwei47 (April 27, 2024). Re:RLE copy/paste thread - everyone else, in which minimal-width c/3's were found in HighFlock with JLS
  22. wwei47 (June 9, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which the existence of a width-11 c/5 in HighFlock was disproven with gfind
  23. lordlouckster (December 15, 2022). Message in #naturalistic on the Conwaylife Lounge Discord server, in which the thinnest odd-symmetric 2c/5 in B36/S12 was found
  24. wwei47 (June 5, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which a negative gfind search was completed for B38/S12 c/4 w12a (meaning the w13a from wwei's B3/S12 search is minimal-width in B38/S12 as well)
  25. wwei47 (June 7, 2024). Re: Thread for your LLS/JLS/WLS search dumps, in which a negative gfind search was completed for B38/S12 c/5 w13a
  26. wwei47 (April 25, 2024). Re:RLE copy/paste thread - everyone else, in which width-15 c/3's were found in Holstein (per personal correspondence, with JLS and also disproving lower widths)
  27. anonymousdeveloper (March 4, 2021). Message in #naturalistic on the Conwaylife Lounge Discord server, in which the smallest width-8 2c/4 in Geology was found (with rlifesrc, per personal correspondence)
  28. lordlouckster (December 9, 2023). Message in #naturalistic on the Conwaylife Lounge Discord server, in which the first (2,1)c/5 in Geology was found
  29. saka (March 4, 2021). Message in #naturalistic on the Conwaylife Lounge Discord server, in which the smallest w11o c/7 in Geology was first found
  30. H. H. P. M. P. Cole (May 31, 2024). Re: Spaceships in Life-like cellular automata, in which a c/7 w15g in Geology was disproven (with qfind, per personal correspondence)
  31. LaundryPizza03 (September 11, 2020). Re: B3578/S24678, in which the smallest w14e 2c/7 was first found (apparently they didn't remember to do w13o otherwise they would have a considerably smaller one)
    verified with qfind, next shortest w14e is this one
  32. saka (March 5, 2021). Message in #naturalistic on the Conwaylife Lounge Discord server (further down they explain it was found with qfind)