User:Galoomba/Longest diehards by bounding box
From LifeWiki
Jump to navigation
Jump to search
This table lists the longest-lasting known diehards fitting in a n×n bounding box.
| n | Lifetime | Pattern |
|---|---|---|
| 1 | 1 | x=1, y = 1, rule = B3/S23
o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 ZOOM 64 ]] |
| 2 | ||
| 3 | 9[1] | x=3, y = 3, rule = B3/S23
obo$3o$o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 ZOOM 64 ]] |
| 4 | 88[1] | x=4, y = 4, rule = B3/S23
4o$bobo$2obo$4o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 400 ZOOM 64 ]] |
| 5 | 259[1] | x=5, y = 5, rule = B3/S23
2o2bo$o2b2o$2o2bo$2bo$b2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 64 ]] |
| 6 | 798[2] | x=6, y = 6, rule = B3/S23
o2b3o$5bo$obobo$2bob2o$2obo$3ob2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 60 ]] |
| 7 | ||
| 8 | 1 002[3] | x=8, y = 7, rule = B3/S23
6bo$o5bo$4ob2o$bo4bo$2b2obobo$2o4bo$3ob3o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 52 ]] |
| 9 | 1 069[3] | x=9, y = 8, rule = B3/S23
o2bobob2o$ob2o$o2bobob2o$5bo2bo$6bo$2b2o2bo$2b4ob2o$4b3o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 48 ]] |
| 10 | ||
| 11 | 1 119[3] | x=11, y = 8, rule = B3/S23
3o$5b2o$7bo$o5bo$bob4o3bo$2bobo5bo$b2o2bo3b2o$2bo!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 44 ]] |
| 12 | ||
| 13 | ||
| 14 | ||
| 15 | ||
| 16 | 1 456[1] | x=16, y = 16, rule = B3/S23
4o2bo5bo$3b3o5b2o$8b2o4bo$o2b3o2bo3bo2bo$2o2bo6b3o$o3bobo6bo$bo2b2o9b
o$b2ob2o3bobo3bo$3obo4b3o3bo$8b2o3b2o$12bob2o$10b4o$2b2o4bobob4o$2bo6b
o3b3o$3bo3b2obo3bo$2b2o4b3ob3o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 28 ]] |
| 17 | ||
| 18 | 2 094[1] | x=18, y = 18, rule = B3/S23
2bo4bobo$2b2o2bob2o$3o2bo2bo5bo$2b2o3bo5bobo$2o2b3ob3o4b2o$bob2o2bobo
5bo$bobo5bo4bobo$2ob3o2bo7bo$8b2o7bo$9bo5bobo$15bobo$13b4o$8b2o2bobo$
5bo2bo3bobo$4bobobo6bo$3bobobo6b2o$2bo2bobobo3bobo$3b2o3b2o4bo!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 24 ]] |
| 19 | 2 272[1] | x=19, y = 19, rule = B3/S23
o4b2o7bobobo$o5bo9b2o$b2o2bo8b2obo$2bo2b2o$14bo$o2bo10b2obo$o8bobo2bo
b2o$4o5b2o5bo$2o8bo4bobo$16bo$2bob2o4b2o5bo$2bobobo2bobo3bobo$6bo2bo4b
o$5b2ob2o4bobo$3bo2bo$3b2obo8bobo$4bob2ob2o4bo$4bo2bob2o4bo$5b2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 24 ]] |
| 20 | 2 287 | x=20, y = 19, rule = B3/S23
o4b2o8bobobo$o5bo10b2o$b2o2bo9b2obo$2bo2b2o$15bo$o2bo6bo4b2obo$o9bobo
2bob2o$4o6b2o5bo$2o14bobo$17bo$2bob2o4b2o6bo$2bobobo2bobo4bobo$6bo2bo
5bo$5b2ob2o5bobo$3bo2bo$3b2obo9bobo$4bob2ob2o5bo$4bo2bob2o5bo$5b2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 24 ]] |
| 21 | 2 308 | x=21, y = 19, rule = B3/S23
o4b2o9bobobo$o5bo11b2o$b2o2bo10b2obo$2bo2b2o$11bobo2bo$o2bo7b2o3b2obo$
o11bo3bob2o$4o14bo$2o15bobo$18bo$2bob2o4b2o7bo$2bobobo2bobo5bobo$6bo2b
o6bo$5b2ob2o6bobo$3bo2bo$3b2obo10bobo$4bob2ob2o6bo$4bo2bob2o6bo$5b2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 24 ]] |
| 22 | 6 579[1] | x=22, y = 21, rule = B3/S23
7bo$8bo2bo$8bobob2o$4b2o5b2ob2o$4b2o5b2ob2o$8bobob2o4bo$bo6bo2bo5bobo
$2bo4bo9bobo$3o16bo$19b2o$18bobo$2o4b2o3b2o$obo2bobo3bo3bo3b3o$2bo2bo
6b4o3bobo$2b2ob2o11bobo$5bo2bo3b4o4b2o$5bob2o3bo2bo$b2ob2obo12bo$b2ob
o2bo10bobo$5b2o11bobo$19bo!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 540 ZOOM 24 ]] |
| 23 | 6 803[1] | x=22, y = 23, rule = B3/S23
2b3obob3o$6b2o3b3o$3obo2bo3bo$2b3o2b2o4bo4bo$11b2o4bobo$bo5b4obo6b2o$
ob4o3b3o7bo$4bo5bobo5bobo$16bo3bo$14b2o5bo$15b2o2bobo$2o16bo2bo$obo$2b
o16b3o$bo18b2o$b2o4b2o4b2o4bo$7bo3bo2bo5b2o$10bo7bobo$b2o6b3obo5bo$2b
o2b2o3b2o$bo11bo$o3bo2b2ob3o$2o5b4o2bo!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 520 ZOOM 20 ]] |
| 24 | 6 998[1] | x=24, y = 24, rule = B3/S23
3b3ob2o$5b2o2b2o$2o4bo4bo$2o4bo4bo$5b2o2b2o9bo$3b3ob2o6b2o2bobo$14b3o
4b2o$21bo$17bo2bobo$18bo3bo$16b2o5bo$21bobo$2o18bo2bo$obo$2bo18b3o$bo
20b2o$b2o4b2o4b2o6bo$7bo3bo2bo7b2o$10bo9bobo$b2o6b3obo7bo$2bo2b2o3b2o
$bo11bo$o3bo2b2ob3o$2o5b4o2bo!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 530 ZOOM 20 ]] |
| 25 | 7 483[1] | x=25, y = 25, rule = B3/S23
2b3obob3o$6b2o3b3o$3obo2bo3bo$2b3o2b2o4bo7bo$11b2o7bobo$bo5b4obo7bobo
$ob4o3b3o10bo$4bo5bobo9b2o$21bobo2$22b3o$obo19bobo$2o3bo15bobo$5o18b2o
$obobob2o$3bob2o16bo$o2b2o8bo7bobo$bo4bo6b3o5bobo$b2ob2o10bo5bo$obob2o
bo5b3obo$o2bo9bo3bo$3b3obo6b3o$o4b2o4b3o$3obobo3bo3b2obo$bo2bobo3b2o2b
ob2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 540 ZOOM 20 ]] |
| 26 | 10 320[1] | x=26, y = 26, rule = B3/S23
11bo2b2o$11b2o3bobo$9b2o4bo2bo$9bo5bo2bo$2bob2o3bob2o3bobo3bo$o4bo5bo
2b2o5bobo$obo6bo13b2o$5o18bo$2o3b2o15bobo$2o2bo19bo$4bo20bo$o3bo18bob
o$obobo17bo2bo$obo2b2o10bobo$bobobo11bobo3b3o$bobob2o8bob2o5b2o$bo14b
o2b2o2bo$13bob2o2bo4b2o$5b2o4bo6b2o2bobo$5b2o2b2o3bo4bo3bo$7bo3b2ob2o
2bo$7b2obo3b2o2b2o$9b3o7bo$9bo2bo2bo3bo$6b2ob2ob4o2bo$6b2obo2bo4b4o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 560 ZOOM 20 ]] |
| 27 | 10 420[1] | x=27, y = 26, rule = B3/S23
10bo2b2o$10b2o3bobo$8b2o4bo2bo$3bo4bo5bo2bo$o2b2o3bob2o3bobo5bo$2bo7b
o2b2o7bobo$o7bo15b2o$obobo19bo$obobo18bobo$3bo21bo$2obobo20bo$bob2o19b
obo$23bo2bo$18bobo$2b4o12bobo3b3o$4bo11bob2o5b2o$17bo2b2o2bo$14bob2o2b
o4b2o$6b2o4bo6b2o2bobo$6b2o2b2o3bo4bo3bo$8bo3b2ob2o2bo$8b2obo3b2o2b2o
$10b3o7bo$10bo2bo2bo3bo$7b2ob2ob4o2bo$7b2obo2bo4b4o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 560 ZOOM 20 ]] |
| 28 | 16 560[1] | x=28, y = 28, rule = B3/S23
2bo2b2o$2b2o3bobo$2o4bo2bo$o5bo2bo$ob2o3bobo$2bo2b2o10bo$o13b5o$11bob
o5bo$12bob2o2bo$16b2o$3o3bo4bo11b2o$o3b3o3b2obo7bobobobo$bo2b4o3bo2bo
9bo2bo$obo2b3o3bo2bo6bobobobo$5o7b2o9bo3bo$ob2obo18b2obo$22bobo$22b2o
bobo$18bobo2bo$b2o4b2o9b2o3bo$bobo2bobo11b3o2bo$3bo2bo15bo$3b2ob2o4b2o
$6bo2bo2b2o$6bob2o8b2o2b2o$2b2ob2obo10bo3bo2b2o$2b2obo2bo5b2o2bo3bo3b
2o$6b2o6b2o2b2o2b2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 620 HEIGHT 620 ZOOM 20 ]] |
| 29 | 16 570 | x=29, y = 28, rule = B3/S23
2bo2b2o$2b2o3bobo$2o4bo2bo$o5bo2bo$ob2o3bobo$2bo2b2o11bo$o14b5o$12bobo
5bo$13bob2o2bo$17b2o$b3o3bo4bo11b2o$bo3b3o3b2obo7bobobobo$2bo2b4o3bo2b
o9bo2bo$bobo2b3o3bo2bo6bobobobo$b5o7b2o9bo3bo$bob2obo18b2obo$23bobo$
23b2obobo$19bobo2bo$2b2o4b2o9b2o3bo$2bobo2bobo11b3o2bo$4bo2bo15bo$4b2o
b2o4b2o$7bo2bo2b2o$7bob2o8b2o2b2o$3b2ob2obo10bo3bo2b2o$3b2obo2bo5b2o2b
o3bo3b2o$7b2o6b2o2b2o2b2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 640 HEIGHT 640 ZOOM 20 ]] |
| 30 | 16 660 | x=30, y = 28, rule = B3/S23
2bo2b2o$2b2o3bobo$2o4bo2bo$o5bo2bo$ob2o3bobo$2bo2b2o10bo$o13b5o$11bobo
5bo$12bob2o2bo$16b2o$3o3bo4bo13b2o$o3b3o3b2obo9bobobobo$bo2b4o3bo2bo
11bo2bo$obo2b3o3bo2bo8bobobobo$5o7b2o11bo3bo$ob2obo20b2obo$24bobo$24b
2obobo$20bobo2bo$b2o4b2o11b2o3bo$bobo2bobo13b3o2bo$3bo2bo17bo$3b2ob2o
4b2o$6bo2bo2b2o$6bob2o8b2o2b2o$2b2ob2obo10bo3bo2b2o$2b2obo2bo5b2o2bo3b
o3b2o$6b2o6b2o2b2o2b2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 640 HEIGHT 640 ZOOM 20 ]] |
| 31 | 31 013[1] | x=31, y = 31, rule = B3/S23
2b3obob3o$6b2o3b3o$3obo2bo3bo$2b3o2b2o4bo$11b2o$bo5b4obo2bobo2b3o$ob4o
3b3o3bobob2o2bo$4bo5bobo3bo2b2obo$21bo3bo$15bo9b2obo$5b2o8b3o8bo2bo$b
2obo2bo7bo2bo6b2o3bo$b2ob2obo8b2o7b2o3bo$5bob2o7b2o8b2ob2o$5bo2bo3b2o
$2b2ob2o5b2o8bob5o$2bo2bo10b2o5b4o$obo2bobo7bobo8bo$2o4b2o3bo3b2o4bob
2obobo$10bobo9b2obo$11bo9b2obobobo3$2b3o6b2o4bo2bo2bobo2bo$11bobo2bob
o2bobob3o$obo3b2o5bo3bo2b3o5b2o$b3o9b2o3b2obo3b2o$2bo3bo10bo2b2ob3ob3o
$2o3b2obo9bo2bobo4b2o$obo2bo6b2ob2obob6ob4o$o2b2ob2o4b2ob4obo2b3o2b2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 680 HEIGHT 660 ZOOM 20 ]] |
| 32 | 1 120 271[4] | x=32, y = 32, rule = B3/S23
obo2bob2obo9bo$2o3b2ob2obo6b3o8b2o$bo9bo5bo11bo$11b2o5bo6b2o4bo$3bo2b
2o4bo4b2o5bobo3b2o$2bo2bobo3bo9bo2bo$5obo5b3o6b3obo$2bo2bo3b3o2bo9bo4b
2o$3bo4bo2bo7b3obo4bobo$9b2o7bo2b2o5bo$2ob3o7b2o4bo6b2obo$2o2bo2bo4bob
o3b2ob2o4bobo$o6bo3bobo5bobo5bob2o$2o2bo2bobo2bo6bobo4b2obo$2bo4bo5b3o
2b2ob2o3bo2bo$3bo2bobo6bo3bobo5bob2o$5bo12bo2bo6bo$2bob3o3bo8b2o8bobo$
4bo5bo19b2o$3bo3bo2b2o$12bo10bo$12b3o7bobob2o2b2o$18bo3bobobo3b2o$16bo
6b2o2bo$12bo4b4o4b2obo$14bobo8bo2bo$14b2o5bo4b2o$2o2bo8b2o3bob2o6b3o$o
bobo7bo3bo4bobo4bo2bo$obo11bo2bo8b2o2bo$b2obo13bob2o3bo2b2o$3b2o13b4o
3b2o!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 720 HEIGHT 700 ZOOM 20 ]] |
| 33 | ||
| ... | ||
| 52 | ||
| 53 | ||
| 54 | 125 276 733 251 984[5] | x=54, y = 54, rule = B3/S23
5b4o4b2o3b2ob2o12b3o$13b2o4bob2o12b3o11bo2b2o$7bobo9bo14bo3bo10b2o2bo$
10bo9b3o9bob5o10bo2b2o$9b2o11bo7b3o3b2o11bobobo$30bo20b3o$6b2o22b2obo
14bob2obo$6b2o14bo8bo16bob3o$22b3o25bo$25bo23b2o2bo$22b2obo$bo20bobo3b
2o$obo13b3o9b2o5bo$bobo13bo15b3o$bo2bo3bo15b2o7bo$b2o5bo7bo2bo4b2o7b4o
$bo5bo7b2o2bo15bobo$6bo10bo3bo$20b2o26bobo$15b2o35b2o$23b2o10b2o12bo$
3bo19bobo10bo7b2o3b3obo$24b2o7b3o8b2o2b2obobo$2ob3o11b2o14bo16b2obo$2o
2bo2bo9b2o8bo21bobobo$o6bo18bo2bo9bo8bobob2o$2o2bo2bobo4b2o10bo2bo7b3o
8bo2bo$2bo4bo6b2o12bo7bo13bo2bo$3bo2bobo27b2o10b4obo$5bo18b2o23bo2b2o$
2bob3o3bo6b2o5b2o17b2obo2bobo$4bo5bo6b2o9b2o13bob2o$3bo3bo2b2o16b2o11b
obo$12bo27bobo2b2o$12b3o26bo4bo$18bo7b2o3b2o3b2o7bo$16bo8bobo6bo10b2o$
12bo4b4o4b2o4bo5bo2bob2obo$14bobo15b2ob2o3b2obo2bo2b2o$14b2o5bo11bobo
7bob2o$13b2o3bob2o12bo5b2obobo3b4o$12bo3bo4bobo10bo5bobo2bo$14bo2bo23b
o3b2o$18bob2o27bob3o$18b4o6b2o19b2ob2o$24b2o2b2o21bobo$24bob2ob2o2b2o
18bo$21bo7b2o2b2o16bo$25b3obo$20bob3ob2o$20bo4b2o2bo2b2o$21bo5bo2bo2bo
$20b4o2b2o4b3o$22bob8o2bo!
[[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 720 HEIGHT 700 ZOOM 12 ]] |
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 Dean Hickerson (October 1, 2023). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
- ↑ b3s23love (October 3, 2023). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
- ↑ 3.0 3.1 3.2 Pyry Virtanen (August 9, 2023). Re: Thread for small diehards (discussion thread) at the ConwayLife.com forums
- ↑ Tim Coe (September 14, 2023). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
- ↑ b3s23love (October 12, 2023). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
Hidden category: