User:Galoomba/Longest diehards by bounding box

From LifeWiki
< User:Galoomba
Revision as of 11:57, 16 October 2023 by Galoomba (talk | contribs)
Jump to navigation Jump to search

This table lists the longest-lasting known diehards fitting in a n×n bounding box.

n Lifetime Pattern
1 1
x=1, y = 1, rule = B3/S23 o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 ZOOM 64 ]]
2
3 9[1]
x=3, y = 3, rule = B3/S23 obo$3o$o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 ZOOM 64 ]]
4 88[1]
x=4, y = 4, rule = B3/S23 4o$bobo$2obo$4o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 400 ZOOM 64 ]]
5 259[1]
x=5, y = 5, rule = B3/S23 2o2bo$o2b2o$2o2bo$2bo$b2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 64 ]]
6 798[2]
x=6, y = 6, rule = B3/S23 o2b3o$5bo$obobo$2bob2o$2obo$3ob2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 60 ]]
7
8 1 002[3]
x=8, y = 7, rule = B3/S23 6bo$o5bo$4ob2o$bo4bo$2b2obobo$2o4bo$3ob3o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 52 ]]
9 1 069[3]
x=9, y = 8, rule = B3/S23 o2bobob2o$ob2o$o2bobob2o$5bo2bo$6bo$2b2o2bo$2b4ob2o$4b3o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 48 ]]
10 1 118[4]
x=10, y = 9, rule = B3/S23 o$o$o4bo$4bobo$3bob2o$4obo3bo$5bo3bo$2o6b2o$bo! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 48 ]]
11 1 119[3]
x=11, y = 8, rule = B3/S23 3o$5b2o$7bo$o5bo$bob4o3bo$2bobo5bo$b2o2bo3b2o$2bo! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 44 ]]
12 1 143[4]
x=12, y = 9, rule = B3/S23 5bobo$2bo3b4o$2obo5bobo$2bo3bo3b2o$obob2o2bo2bo$b3o4bo$2o4b2o2bo$3b3o$ 5bo! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 40 ]]
13
14
15
16 1 456[1]
x=16, y = 16, rule = B3/S23 4o2bo5bo$3b3o5b2o$8b2o4bo$o2b3o2bo3bo2bo$2o2bo6b3o$o3bobo6bo$bo2b2o9b o$b2ob2o3bobo3bo$3obo4b3o3bo$8b2o3b2o$12bob2o$10b4o$2b2o4bobob4o$2bo6b o3b3o$3bo3b2obo3bo$2b2o4b3ob3o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 28 ]]
17
18 2 094[1]
x=18, y = 18, rule = B3/S23 2bo4bobo$2b2o2bob2o$3o2bo2bo5bo$2b2o3bo5bobo$2o2b3ob3o4b2o$bob2o2bobo 5bo$bobo5bo4bobo$2ob3o2bo7bo$8b2o7bo$9bo5bobo$15bobo$13b4o$8b2o2bobo$ 5bo2bo3bobo$4bobobo6bo$3bobobo6b2o$2bo2bobobo3bobo$3b2o3b2o4bo! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 24 ]]
19 2 272[1]
x=19, y = 19, rule = B3/S23 o4b2o7bobobo$o5bo9b2o$b2o2bo8b2obo$2bo2b2o$14bo$o2bo10b2obo$o8bobo2bo b2o$4o5b2o5bo$2o8bo4bobo$16bo$2bob2o4b2o5bo$2bobobo2bobo3bobo$6bo2bo4b o$5b2ob2o4bobo$3bo2bo$3b2obo8bobo$4bob2ob2o4bo$4bo2bob2o4bo$5b2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 24 ]]
20 2 287
x=20, y = 19, rule = B3/S23 o4b2o8bobobo$o5bo10b2o$b2o2bo9b2obo$2bo2b2o$15bo$o2bo6bo4b2obo$o9bobo 2bob2o$4o6b2o5bo$2o14bobo$17bo$2bob2o4b2o6bo$2bobobo2bobo4bobo$6bo2bo 5bo$5b2ob2o5bobo$3bo2bo$3b2obo9bobo$4bob2ob2o5bo$4bo2bob2o5bo$5b2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 24 ]]
21 2 308
x=21, y = 19, rule = B3/S23 o4b2o9bobobo$o5bo11b2o$b2o2bo10b2obo$2bo2b2o$11bobo2bo$o2bo7b2o3b2obo$ o11bo3bob2o$4o14bo$2o15bobo$18bo$2bob2o4b2o7bo$2bobobo2bobo5bobo$6bo2b o6bo$5b2ob2o6bobo$3bo2bo$3b2obo10bobo$4bob2ob2o6bo$4bo2bob2o6bo$5b2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 500 ZOOM 24 ]]
22 6 579[1]
x=22, y = 21, rule = B3/S23 7bo$8bo2bo$8bobob2o$4b2o5b2ob2o$4b2o5b2ob2o$8bobob2o4bo$bo6bo2bo5bobo $2bo4bo9bobo$3o16bo$19b2o$18bobo$2o4b2o3b2o$obo2bobo3bo3bo3b3o$2bo2bo 6b4o3bobo$2b2ob2o11bobo$5bo2bo3b4o4b2o$5bob2o3bo2bo$b2ob2obo12bo$b2ob o2bo10bobo$5b2o11bobo$19bo! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 540 ZOOM 24 ]]
23 6 803[1]
x=22, y = 23, rule = B3/S23 2b3obob3o$6b2o3b3o$3obo2bo3bo$2b3o2b2o4bo4bo$11b2o4bobo$bo5b4obo6b2o$ ob4o3b3o7bo$4bo5bobo5bobo$16bo3bo$14b2o5bo$15b2o2bobo$2o16bo2bo$obo$2b o16b3o$bo18b2o$b2o4b2o4b2o4bo$7bo3bo2bo5b2o$10bo7bobo$b2o6b3obo5bo$2b o2b2o3b2o$bo11bo$o3bo2b2ob3o$2o5b4o2bo! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 520 ZOOM 20 ]]
24 6 998[1]
x=24, y = 24, rule = B3/S23 3b3ob2o$5b2o2b2o$2o4bo4bo$2o4bo4bo$5b2o2b2o9bo$3b3ob2o6b2o2bobo$14b3o 4b2o$21bo$17bo2bobo$18bo3bo$16b2o5bo$21bobo$2o18bo2bo$obo$2bo18b3o$bo 20b2o$b2o4b2o4b2o6bo$7bo3bo2bo7b2o$10bo9bobo$b2o6b3obo7bo$2bo2b2o3b2o $bo11bo$o3bo2b2ob3o$2o5b4o2bo! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 530 ZOOM 20 ]]
25 7 483[1]
x=25, y = 25, rule = B3/S23 2b3obob3o$6b2o3b3o$3obo2bo3bo$2b3o2b2o4bo7bo$11b2o7bobo$bo5b4obo7bobo $ob4o3b3o10bo$4bo5bobo9b2o$21bobo2$22b3o$obo19bobo$2o3bo15bobo$5o18b2o $obobob2o$3bob2o16bo$o2b2o8bo7bobo$bo4bo6b3o5bobo$b2ob2o10bo5bo$obob2o bo5b3obo$o2bo9bo3bo$3b3obo6b3o$o4b2o4b3o$3obobo3bo3b2obo$bo2bobo3b2o2b ob2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 540 ZOOM 20 ]]
26 10 320[1]
x=26, y = 26, rule = B3/S23 11bo2b2o$11b2o3bobo$9b2o4bo2bo$9bo5bo2bo$2bob2o3bob2o3bobo3bo$o4bo5bo 2b2o5bobo$obo6bo13b2o$5o18bo$2o3b2o15bobo$2o2bo19bo$4bo20bo$o3bo18bob o$obobo17bo2bo$obo2b2o10bobo$bobobo11bobo3b3o$bobob2o8bob2o5b2o$bo14b o2b2o2bo$13bob2o2bo4b2o$5b2o4bo6b2o2bobo$5b2o2b2o3bo4bo3bo$7bo3b2ob2o 2bo$7b2obo3b2o2b2o$9b3o7bo$9bo2bo2bo3bo$6b2ob2ob4o2bo$6b2obo2bo4b4o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 560 ZOOM 20 ]]
27 10 420[1]
x=27, y = 26, rule = B3/S23 10bo2b2o$10b2o3bobo$8b2o4bo2bo$3bo4bo5bo2bo$o2b2o3bob2o3bobo5bo$2bo7b o2b2o7bobo$o7bo15b2o$obobo19bo$obobo18bobo$3bo21bo$2obobo20bo$bob2o19b obo$23bo2bo$18bobo$2b4o12bobo3b3o$4bo11bob2o5b2o$17bo2b2o2bo$14bob2o2b o4b2o$6b2o4bo6b2o2bobo$6b2o2b2o3bo4bo3bo$8bo3b2ob2o2bo$8b2obo3b2o2b2o $10b3o7bo$10bo2bo2bo3bo$7b2ob2ob4o2bo$7b2obo2bo4b4o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 HEIGHT 560 ZOOM 20 ]]
28 16 560[1]
x=28, y = 28, rule = B3/S23 2bo2b2o$2b2o3bobo$2o4bo2bo$o5bo2bo$ob2o3bobo$2bo2b2o10bo$o13b5o$11bob o5bo$12bob2o2bo$16b2o$3o3bo4bo11b2o$o3b3o3b2obo7bobobobo$bo2b4o3bo2bo 9bo2bo$obo2b3o3bo2bo6bobobobo$5o7b2o9bo3bo$ob2obo18b2obo$22bobo$22b2o bobo$18bobo2bo$b2o4b2o9b2o3bo$bobo2bobo11b3o2bo$3bo2bo15bo$3b2ob2o4b2o $6bo2bo2b2o$6bob2o8b2o2b2o$2b2ob2obo10bo3bo2b2o$2b2obo2bo5b2o2bo3bo3b 2o$6b2o6b2o2b2o2b2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 620 HEIGHT 620 ZOOM 20 ]]
29 16 570
x=29, y = 28, rule = B3/S23 2bo2b2o$2b2o3bobo$2o4bo2bo$o5bo2bo$ob2o3bobo$2bo2b2o11bo$o14b5o$12bobo 5bo$13bob2o2bo$17b2o$b3o3bo4bo11b2o$bo3b3o3b2obo7bobobobo$2bo2b4o3bo2b o9bo2bo$bobo2b3o3bo2bo6bobobobo$b5o7b2o9bo3bo$bob2obo18b2obo$23bobo$ 23b2obobo$19bobo2bo$2b2o4b2o9b2o3bo$2bobo2bobo11b3o2bo$4bo2bo15bo$4b2o b2o4b2o$7bo2bo2b2o$7bob2o8b2o2b2o$3b2ob2obo10bo3bo2b2o$3b2obo2bo5b2o2b o3bo3b2o$7b2o6b2o2b2o2b2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 640 HEIGHT 640 ZOOM 20 ]]
30 16 660
x=30, y = 28, rule = B3/S23 2bo2b2o$2b2o3bobo$2o4bo2bo$o5bo2bo$ob2o3bobo$2bo2b2o10bo$o13b5o$11bobo 5bo$12bob2o2bo$16b2o$3o3bo4bo13b2o$o3b3o3b2obo9bobobobo$bo2b4o3bo2bo 11bo2bo$obo2b3o3bo2bo8bobobobo$5o7b2o11bo3bo$ob2obo20b2obo$24bobo$24b 2obobo$20bobo2bo$b2o4b2o11b2o3bo$bobo2bobo13b3o2bo$3bo2bo17bo$3b2ob2o 4b2o$6bo2bo2b2o$6bob2o8b2o2b2o$2b2ob2obo10bo3bo2b2o$2b2obo2bo5b2o2bo3b o3b2o$6b2o6b2o2b2o2b2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 640 HEIGHT 640 ZOOM 20 ]]
31 31 013[1]
x=31, y = 31, rule = B3/S23 2b3obob3o$6b2o3b3o$3obo2bo3bo$2b3o2b2o4bo$11b2o$bo5b4obo2bobo2b3o$ob4o 3b3o3bobob2o2bo$4bo5bobo3bo2b2obo$21bo3bo$15bo9b2obo$5b2o8b3o8bo2bo$b 2obo2bo7bo2bo6b2o3bo$b2ob2obo8b2o7b2o3bo$5bob2o7b2o8b2ob2o$5bo2bo3b2o $2b2ob2o5b2o8bob5o$2bo2bo10b2o5b4o$obo2bobo7bobo8bo$2o4b2o3bo3b2o4bob 2obobo$10bobo9b2obo$11bo9b2obobobo3$2b3o6b2o4bo2bo2bobo2bo$11bobo2bob o2bobob3o$obo3b2o5bo3bo2b3o5b2o$b3o9b2o3b2obo3b2o$2bo3bo10bo2b2ob3ob3o $2o3b2obo9bo2bobo4b2o$obo2bo6b2ob2obob6ob4o$o2b2ob2o4b2ob4obo2b3o2b2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 680 HEIGHT 660 ZOOM 20 ]]
32 1 120 271[5]
x=32, y = 32, rule = B3/S23 obo2bob2obo9bo$2o3b2ob2obo6b3o8b2o$bo9bo5bo11bo$11b2o5bo6b2o4bo$3bo2b 2o4bo4b2o5bobo3b2o$2bo2bobo3bo9bo2bo$5obo5b3o6b3obo$2bo2bo3b3o2bo9bo4b 2o$3bo4bo2bo7b3obo4bobo$9b2o7bo2b2o5bo$2ob3o7b2o4bo6b2obo$2o2bo2bo4bob o3b2ob2o4bobo$o6bo3bobo5bobo5bob2o$2o2bo2bobo2bo6bobo4b2obo$2bo4bo5b3o 2b2ob2o3bo2bo$3bo2bobo6bo3bobo5bob2o$5bo12bo2bo6bo$2bob3o3bo8b2o8bobo$ 4bo5bo19b2o$3bo3bo2b2o$12bo10bo$12b3o7bobob2o2b2o$18bo3bobobo3b2o$16bo 6b2o2bo$12bo4b4o4b2obo$14bobo8bo2bo$14b2o5bo4b2o$2o2bo8b2o3bob2o6b3o$o bobo7bo3bo4bobo4bo2bo$obo11bo2bo8b2o2bo$b2obo13bob2o3bo2b2o$3b2o13b4o 3b2o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 720 HEIGHT 700 ZOOM 20 ]]
33
...
51
52
53 1 826 659 985 823 844 806[6]
x=53, y = 53, rule = B3/S23 4b6o2b4ob4ob2o10b5o10bob2o$6bo7b4obobo2bo15bo9b3o$10bo6bobo2bo6bo4bob 2o14bo$5b5o6bo3bobo8b4o2bobo9b2obo$7b2o21bo2b2o4bo8bob3o$4bob2o23b3o3b o13b2o$7bo4b2o8bo8bo3bo11b3ob2o$15bobobo2b3o23bo$12b2obobobo5bo21bo3bo $22b2obo8b2obo10bo$bo10bob3obo3bobo3b2o4b2obo$obo10bo2b2o10b2o2b4o3bo$ bobo9bo2b2ob2o11b2o3bo$bo2bo3bo4bobo2bo5b2o11b2o$b2o5bo5bobobobo3b2o6b 3o2b2o$bo5bo6bo2bob2o14b2o$6bo14b2o10b2o5bo5b2obo$11b2obobob2obo16b2o 5bo5b2o$17bo3b2o23b2ob2obo$13b2o2bo4b2o11b2o8b3obob2o$16b3o3bob2o10bo 9bo4b2o$15b2o5bob2o7b3o8bobo2bo2bo$ob3o12b2o14bo10b2obobo$ob4o11b2o8bo 18bo2bob2o$o5bo19bo2bo9bo6bo2bo2bo$bobobo2b3o3b2o10bo2bo7b3o11b2o$2bob ob4o4b2o12bo7bo7b2obo4bo$3bo2bob2o26b2o10b2ob2o$3bo3b3obo12b2o26bo$4b 3o2b2obo4b2o5b2o7b3o7b2obo3bo$10bobo4b2o9b2o3b3o7bob2o$11bob2o13b2o11b obo$12bo2bo24bobo2b2o$13b2o3bo22bo4bo$14b5o7b2o3b2o3b2o7bo$15b4o6bobo 4b5o8b2o$15bobo7b2o6b3o4bob2obo$14bob2obo14bo5b2obo2bo$14bo3bobo22bob 2o$14bo2bo2b2o18b2obobo4bobo$15b2obob2o18bobo2bo5bo$17bo2b2o4b2o2bo10b o3b2o3bobo$18bo10b2o20b2o$19b3o4bo2bo19bo2bo$obo2b2o3bo13b3o2bo21b2o$b 2o2bo4b2obo12bo2bo3b2o12b3o2bo$2bo2bob2o3b2o10bob2ob2o2b2o17bo$o5bo4bo bo8b4obo21bo$b3obo5bob2o4bo2bo4b4o$bob2obo3bo3bo2bo3bo4bo2bo3bo$2o2bo 3b2o3bo5bo5bo4b3o$4b2o2bob2o6bo2b3o5b2o2bo$5b2o2b5o2b5obo2b7o! [[ THUMBNAIL THEME 6 GRID GRIDMAJOR 0 THUMBSIZE 4 WIDTH 720 HEIGHT 700 ZOOM 12 ]]

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 Dean Hickerson (October 1, 2023). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
  2. b3s23love (October 3, 2023). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
  3. 3.0 3.1 3.2 Pyry Virtanen (August 9, 2023). Re: Thread for small diehards (discussion thread) at the ConwayLife.com forums
  4. 4.0 4.1 Pyry Virtanen (October 13, 2023). Re: Thread for small diehards (discussion thread) at the ConwayLife.com forums
  5. Tim Coe (September 14, 2023). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
  6. b3s23love (October 15, 2023). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums