User:H. H. P. M. P. Cole/qfind results
< User:H. H. P. M. P. Cole
Jump to navigation
Jump to search
Revision as of 17:05, 18 August 2024 by DroneBetter (talk | contribs) (add gutter where applicable and glide-symmetric where outer-totalistic (and thereby gfindable), split entries to also contain strict versions; many strengthenings, some positive results (excluding additions of gutter/glides): B34ar5in/S2i3-i4-nwz5ceny6cei7e8: first c/6 at w17o, complete 3c/9 w6a and 2c/10 w6a; B3/S35: complete 2c/6 w17o and w18e, 3c/6 w13g (Cole had falsely recorded w15o as minimal due to a known qfind bug), add May13's discovery of a c/4 w64e)
| This page is under construction. Sorry for the inconvenience. |
B34ar5in/S2i3-i4-nwz5ceny6cei7e8
(still coming up with a name for this rule)
| Velocity | Asymmetric | Odd-symmetric | Even-symmetric | Gutter-symmetric |
|---|---|---|---|---|
| (1,0)c/2 | 12 | 23 | 24 | 25 |
| (1,0)c/3 | 4 | 9 | 4 | 9 |
| 4 | 9 | 9 | ||
| (1,0)c/4 | 10 < w ≤ 14 | 19 | 14 | 21 |
| 12 (rlifesrc)[n 1] | ||||
| (2,0)c/4 | 15 | 21 < w ≤ 31 | 20 < w ≤ 32 | 25 < w ≤ 31 |
| (1,0)c/5 | 6 | 13 | 12 | 13 |
| 13 | ||||
| (2,0)c/5 | 12 | 21 | 22 | 23 |
| (1,0)c/6 | 9 | 17 | 18 | 19 |
| (2,0)c/6 | 5 | 9 | 10 | 11 |
| (3,0)c/6 | 12 | 23 | 22 | 23 |
| (1,0)c/7 | 8 | 11 | 12 | 15 |
| (2,0)c/7 | 9 | 17 | 18[n 2] | 19 |
| (3,0)c/7 | 11 | 21 | 20 | 23 |
| (1,0)c/8 | 7 | 13 | 14 | 15 |
| (2,0)c/8 | 9 < x ≤ 13 | 13 | 14 | 15[n 3] |
| (3,0)c/8 | 10 | 17 | 20 | 21 |
| (4,0)c/8 | 10 | 19 | 20 | 21 |
| (1,0)c/9 | 7[n 4] < w ≤ 11 | 11 | 12 | 13 |
| (3,0)c/9 | 6 | 9 | 12 | 11[n 5] |
| (2,0)c/10 | 6 | 11 | 12 | 13 |
| (1,0)c/11 | 5 | 9 | 10 | 11 |
| (3,0)c/11 | 7 | 13 | 14 | 15 |
even symmetry at (1,0)c/11 is slightly more promising than odd, even at (3,0)c/11 more so
B2-ak3aj4aeq5aci6cn78/S1c2en3aeijn4aeir5aiy6-e78
| Velocity | Asymmetric | Odd-symmetric | Even-symmetric |
|---|---|---|---|
| (1,0)c/2 | 14 | 27 | 28 |
| (1,0)c/3 | 13 | 25 | 26 |
| (1,0)c/4 | 8 | 17 | 16 |
| (2,0)c/4 | 13 | 25 | 26 |
| (1,0)c/5 | 9 < x ≤ 18 | 17 | 18 |
| (2,0)c/5 | 11 | 21 | 22 |
| (1,0)c/6 | 7 | 17 | 16 |
| (2,0)c/6 | 10 | 19 | 20 |
| (3,0)c/6 | 12 | 23 | 24 |
| (1,0)c/7 | 8 < x ≤ 14 | 15 | 14 |
| (2,0)c/7 | 9 | 17 | 18 |
| (3,0)c/7 | 10 | 19 | 20 |
| (1,0)c/8 | 8 < x ≤ 14 | 15 | 14 |
| (2,0)c/8 | 7 | 15 | 14 |
| (3,0)c/8 | 9 | 17 | 18 |
| (4,0)c/8 | 10 | 19 | 20 |
| (1,0)c/9 | 7 | 13 | 14 |
| (2,0)c/9 | 8 | 15 | 16 |
| (3,0)c/9 | 9 | 17 | 18 |
| (4,0)c/9 | 10 | 17 | 18 |
| (1,0)c/10 | 6 | 11 | 12 |
| (2,0)c/10 | 6 | 11 | 12 |
| (3,0)c/10 | 7 | 13 | 14 |
| (4,0)c/10 | 8 | 15 | 16 |
| (5,0)c/10 | 9 | 17 | 18 |
| (1,0)c/11 | 6 | 11 | 12 |
| (2,0)c/11 | 6 | 11 | 12 |
| (3,0)c/11 | 6 | 11 | 12 |
| (4,0)c/11 | 8 | 13 | 14 |
| (5,0)c/11 | 9 | 17 | 18 |
| (1,0)c/12 | 6 | 11 | 12 |
| (2,0)c/12 | 6 | 11 | 12 |
| (3,0)c/12 | 6 | 11 | 12 |
| (4,0)c/12 | 6 | 11 | 12 |
| (5,0)c/12 | 7 | 13 | 14 |
| (6,0)c/12 | 8 | 15 | 16 |
B3/S35
Diagonals and glide-symmetrics found with gfind
| Velocity | Asymmetric | Symmetric | Gutter | Glide-symmetric | ||
|---|---|---|---|---|---|---|
| odd | even | odd | even | |||
| (1,0)c/2 | 4 | 5 | 10 | 9 | ||
| 10 | 21 | |||||
| (1,0)c/3 | 9 | 17 | 18 | 19 | ||
| (1,0)c/4 | 10 | 19 | 20 < w ≤ 64[1] | 21 | ||
| (2,0)c/4 | 5 | 5 | 12 | 11 | 5 | 10 |
| 12 | 19 | |||||
| (1,1)c/4 | 12 | 23 | 25 | 24 | ||
| (1,0)c/5 | 10 | 17 | 18 | 19 | ||
| (2,0)c/5 | 11 | 21 | 22 | 23 | ||
| (1,0)c/6 | 9 | 17 | 18 | 19 | ||
| (2,0)c/6 | 9 | 17 | 18 | 19 | 17 | 16 |
| (3,0)c/6 | 10 | 13 | 18 | 13[n 6] | ||
| 15 | ||||||
| (1,0)c/7 | 8 | 15 | 16 | 17 | ||
| (2,0)c/7 | 9 | 17 | 18 | 19 | ||
| (3,0)c/7 | 10 | 19 | 20 | 21 | ||
| (1,0)c/8 | 7 | 13 | 14 | |||
| (2,0)c/8 | 8 | 13 | 14 | 15 | 11 | 10 |
| (3,0)c/8 | 10 | 17 | 18 | 19 | ||
| (4,0)c/8 | 5 | 9 | 8 | 11 | 5 | 14 |
| 7 | 17 | |||||
Notes
- ↑ specified part of longest w12 partial
.....oo.....
.....oo.....
...oo.......
...ooo.oooo.
.....oo..o..
.....oooo..o
........oo..
.....oo...o.
........oo..
............
....ooo.o...
....o.ooo...
.....oooo...
...ooo.oo...
.oo..o......
.oo..o......
o.o.o.......
o.oo.oo.....
.oo....o....
o..ooooo.oo.
.
if w=13, h>24 - ↑ 18*134 partial
8b2o$8b2o$7bo2bo$4b2o6b2o$2b3o2bo2bo2b3o$3bo3bo2bo3bo$bobobob4obobobo$6bob2obo$2b2o2b2o2b2o2b2o$3b3o2b2o2b3o$5bob4o
bo$4b4o2b4o$3b2ob6ob2o$4bobo4bobo$3obobo4bobob3o$2b3ob2o2b2ob3o$2ob3ob4ob3ob2o$2b2o2bo4bo2b2o$2bo2bob4obo2bo$5b2o4
b2o$7b4o$5bo6bo$4bo8bo$4bobob2obobo$5bo2b2o2bo$5b3o2b3o2$5b8o2$5b3o2b3o$5bo6bo$6bo4bo$7b4o$6b2o2b2o$2b2ob8ob2o$b4o8
b4o$b3o2bo4bo2b3o2$7bo2bo$5b2ob2ob2o$4b3o4b3o$2bobo3b2o3bobo$o2b2o3b2o3b2o2bo$bobo2bo4bo2bobo$2bob4o2b4obo$2b2obob
4obob2o$2bobobo4bobobo$bobo10bobo$o4bob4obo4bo$bo6b2o6bo$bob4o4b4obo$2bo3bo4bo3bo$3bob2ob2ob2obo$3bob8obo$5bo6bo$6b
2o2b2o$6b6o2$6b6o$5bobo2bobo$5b2ob2ob2o$3b5o2b5o$4bo8bo$4bob6obo$6b6o$2b3o2bo2bo2b3o$b2o2b8o2b2o$3bob8obo$2bo5b2o5
bo$4bob6obo$5b2ob2ob2o$5bobo2bobo$2bo2bo6bo2bo$2b2o2b2o2b2o2b2o$b4o2b4o2b4o$b2o12b2o$b2obob6obob2o$4bobo4bobo$bo2bo
bob2obobo2bo$2bo2bobo2bobo2bo$bobob8obobo$5bob4obo$7bo2bo$5bo6bo$4bo2bo2bo2bo$6bob2obo$5b2ob2ob2o$5b2o4b2o$5b2ob2o
b2o$4bob6obo$3b2o8b2o$3b2ob2o2b2ob2o$6bo4bo$5bob4obo$5bo6bo$3bobo6bobo$4b2o6b2o$4bobo4bobo$5bo6bo$6b6o$5b2o4b2o$4b2
o6b2o$4b2o6b2o$3b2o3b2o3b2o$3bob2ob2ob2obo$2b3obo4bob3o$6bo4bo$4bobo4bobo$3b2o8b2o$5bobo2bobo$6bo4bo$6bo4bo$5b3o2b
3o$8b2o$8b2o$3b4o4b4o$3b3ob4ob3o$2b3o8b3o$2b2o4b2o4b2o$2b4o6b4o$2b2o3bo2bo3b2o$4bobo4bobo$2b2o2bob2obo2b2o$3o3bob2o
bo3b3o$bo4bo4bo4bo$2o5b4o5b2o$b3ob2o4b2ob3o$b2o4b4o4b2o$2b2o2bo4bo2b2o$bob5o2b5obo$4o10b4o$3bo10bo$2bob10obo$6b6o! - ↑ 15*57 partial
3b2o5b2o$2b4o3b4o$2bo2bo3bo2bo$3bob2ob2obo$3b2o5b2o$bo11bo$bo3b2ob2o3bo$4b2o3b2o$5b2ob2o$5b2ob2o$4bobobobo$3b2obobob2o$4bobobo
bo$3b2obobob2o$3bo2bobo2bo$bo4bobo4bo$2bo2b2ob2o2bo$2bobobobobobo$3b2obobob2o$2bobobobobobo$4bobobobo$b2obobobobob2o$3b2obobob
2o$2bo2b2ob2o2bo$3b2obobob2o$5bo3bo$5bo3bo$3b2o5b2o$2bo2bo3bo2bo$2b3o5b3o$b2o2bo3bo2b2o$2bob2o3b2obo$3b4ob4o$bobo2bobo2bobo$4o
bo3bob4o$2bobobobobobo$6bobo$2bob3ob3obo$2bo2b2ob2o2bo$bo4bobo4bo$2b5ob5o$bo4bobo4bo$2o2bo5bo2b2o$bo4bobo4bo$4bobobobo$b2obobo
bobob2o$bobo2bobo2bobo$2b2ob2ob2ob2o$6bobo$b2o9b2o$b4o5b4o$o4bo3bo4bo$bo3b2ob2o3bo$3ob2o3b2ob3o$4b2o3b2o$ob2obo3bob2obo$2bo9bo! - ↑ 7*49 partial
2b3o$3b3o$2o$bob3o$o2b2o$bob3o$2bo2bo$3o2bo2$b3o$b3o$3bo$2bo$4b2o$2b2o$3bob2o
$bobobo$2bob2o3$b3o$2obo$3b2o$3bo2$b5o$2bo2bo$b5o3$3bo$3ob2o$3bobo$2bobo$3bob
o$4bo$bobo$bo$b2ob2o$4bobo$2b3o$bobo$2b2o$o3bo$2bo$3ob3o$b2o2bo$o3bobo$3o2bo! - ↑ longest partial decays into disjoint parts, including a c/3 wickstretcher
- ↑ logical width 6, yet not found by qfind until logical width 9 (due to known issue for period-multiplied ships)
References
- ↑ May13 (October 5, 2021). Re: Spaceships in Life-like cellular automata (edit 6), in which (after considerable effort) a c/4 was found in B3/S35