User:H. H. P. M. P. Cole/qfind results

From LifeWiki
< User:H. H. P. M. P. Cole
Revision as of 07:06, 23 August 2024 by DroneBetter (talk | contribs) (many result strengthenings (primarily from using rlifesrc in place of g/qfind), of which I will list the positive ones here. B34ar5in/S2i3-i4-nwz5ceny6cei7e8: 2c/4 (w22e, w27g, w29glide and w22glide), c/6d w21o found by me, c/7d w19g found by Cole; B2-ak3aj4aeq5aci6cn78/S1c2en3aeijn4aeir5aiy6-e78: c/5 w19o, 2c/6 w20glide (new fastest known!), 2c/8 w17o)
Jump to navigation Jump to search
Gemini.png This page is under construction. Sorry for the inconvenience.

Diagonal width is measured in half-diagonals. Where not otherwise specified, glide-symmetric and diagonal results are found with gfind for OT rules and rlifesrc for INT.

B34ar5in/S2i3-i4-nwz5ceny6cei7e8

(still coming up with a name for this rule)

Velocity Asymmetric Symmetric Gutter Glide-symmetric
odd even odd even
(1,0)c/2 12
23 (rlifesrc)
23
45 (rlifesrc)
24
44 (rlifesrc)
25
(1,0)c/3 4 9 4 9
4 9 9
(1,0)c/4 10 < w ≤ 14 19 14 21
13 (rlifesrc)[n 1]
(2,0)c/4 15 27[n 2] 22 27 29 22
(1,1)c/4 23 43 43 24
(1,0)c/5 6 13 12 13
13
(2,0)c/5 12
15 (rlifesrc)
23
27 (rlifesrc)
24
26 (rlifesrc)
25
(1,1)c/5 15 < w ≤ 17[n 3] 25
(1,0)c/6 9 17 18 19
(2,0)c/6 5 9 10 11 9 6
(3,0)c/6 12
15 (rlifesrc)
23 22
24 (rlifesrc)[n 4]
23
(1,1)c/6 13 21[n 5] 19 22[n 6]
(1,0)c/7 8 11 12 15
(2,0)c/7 11 19 20 23
(3,0)c/7 12 21 22 25
(1,1)c/7 9 17 19[1]
(1,0)c/8 7 13 14 15
(2,0)c/8 9 < x ≤ 13 13 14 15[n 7] 13 14[n 8]
(3,0)c/8 11 19 20 21
(4,0)c/8 10 19 20 21 19 20
(1,0)c/9 7[n 9] < w ≤ 11 11 12 13
(3,0)c/9 6 9 12 11[n 10]
(2,0)c/10 6 11 12 13 9 8
(1,0)c/11 6 9 10 11
(3,0)c/11 7 13 14 15

even symmetry at (1,0)c/11 is slightly more promising than odd, even at (3,0)c/11 more so

B2-ak3aj4aeq5aci6cn78/S1c2en3aeijn4aeir5aiy6-e78

Velocity Asymmetric Symmetric Glide-symmetric
odd even odd even
(1,0)c/2 14
40 (rlifesrc)
27
79 (rlifesrc)
28
80 (rlifesrc)
(1,0)c/3 13
30 (rlifesrc)
25
59 (rlifesrc)
26
60 (rlifesrc)
(1,0)c/4 8 17 16
(2,0)c/4 13
24 (rlifesrc)
25
37 (rlifesrc)
26
38 (rlifesrc)
39 42
(1,0)c/5 10 < x ≤ 18 19[n 11] 18
(2,0)c/5 11
16 (rlifesrc)
21
23 (rlifesrc)
22
24 (rlifesrc)
(1,0)c/6 7 17 16
(2,0)c/6 10
11 (rlifesrc)
19 20 19 20[n 12]
(3,0)c/6 12
16 (rlifesrc)
23
27 (rlifesrc)
24
26 (rlifesrc)
(1,0)c/7 8 < x ≤ 14 15 14
(2,0)c/7 9 17 18
(3,0)c/7 11 19 20
(1,0)c/8 8 < x ≤ 14 15 14
(2,0)c/8 7 17 16 13 14
(3,0)c/8 9 17 18
(4,0)c/8 10
13 (rlifesrc)
19
21 (rlifesrc)
20 23 22
(1,0)c/9 7 13 14
(2,0)c/9 8 15 16
(3,0)c/9 9 17 18
(4,0)c/9 10 17 18
(1,0)c/10 6 11 12
(2,0)c/10 6 11 12 11 10
(3,0)c/10 7 13 14
(4,0)c/10 8 15 16 13 14
(5,0)c/10 9 17 18
(1,0)c/11 6 11 12
(2,0)c/11 6 11 12
(3,0)c/11 6 11 12
(4,0)c/11 8 13 14
(5,0)c/11 9 17 18
(1,0)c/12 6 11 12
(2,0)c/12 6 11 12 7[n 13] 8
(3,0)c/12 6 11 12
(4,0)c/12 6 11 12 9 10
(5,0)c/12 7 13 14
(6,0)c/12 8 15 16 15 16

B3/S35

Diagonals and glide-symmetrics found with gfind

Velocity Asymmetric Symmetric Gutter Glide-symmetric
odd even odd even
(1,0)c/2 4 5 10 9
10 21
(1,0)c/3 9 17 18 19
(1,0)c/4 10 19 20 < w ≤ 64[2] 21
(2,0)c/4 5 5 12 11 5 10
12 19
(1,1)c/4 12
17 (rlifesrc)
23
29 (rlifesrc)
25 24
28 (rlifesrc)
(1,0)c/5 10 17 18 19
(2,0)c/5 11
14 (rlifesrc)
21
23 (rlifesrc)
22
24 (rlifesrc)
23
(1,1)c/5 9
13 (rlifesrc)
17
21 (rlifesrc)
19
(1,0)c/6 9 17 18 19
(2,0)c/6 9 17 18 19 17 16
(3,0)c/6 10 13 18 13[n 14]
15
(1,1)c/6 7
11 (rlifesrc)
13
19 (rlifesrc)
15 14
18 (rlifesrc)
(1,0)c/7 8 15 16 17
(2,0)c/7 9 17 18 19
(3,0)c/7 10
11 (rlifesrc)
19
21 (rlifesrc)
20 21
(1,0)c/8 7 13 14
(2,0)c/8 8 13 14 15 11 10
(3,0)c/8 10 17 18 19
(4,0)c/8 5 9 8 11 5 14
7 17

Notes

collapsed due to considerable length
  1. specified part of longest w13 partial
    ........o....
    ..oooo.o..o..
    ..oooooo..oo.
    o...oo....oo.
    ..o.o.o.oooo.
    .ooo.o.......
    ...o..o...o..
    ..ooooooo....
    ..oo.....o...
    oo....ooo....
    .o...........
    .ooo..oo.....
    ...o.oo......
    ......o......
    ........o....
    .............
    .......o.oo..
    .......oo.o..
    ......oo..oo.
    .....o....oo.
    ....o.o.o.o..
    ..oo.o.o..o.o
    .oo.oo..o.oo.
    o.o.oo....oo.
    ooo.......oo.
    ...ooo...o...
    ..oooo...ooo.
    .............
    ....ooo..o...
    .oooooo......
    o...ooo.ooo..
    oo.........o.
    ..o.o....oo..
    ..oo.o...o...
    .oo..o.o...o.
    .o  o  .
  2. for non-gutter-preserving, h>23
  3. no w17a in 28*28
  4. specified part of longest w24 partial
    ...........oo...........
    .........oooooo.........
    ........oo....oo........
    ......oo.o.oo.o.oo......
    .....o.o..o..o..o.o.....
    ....oo.o........o.oo....
    ...ooo............ooo...
    .o.ooo.o........o.ooo.o.
    ..oo................oo..
    ...ooo..o......o..ooo...
    ..oooo.o........o.oooo..
    ...oooo..........oooo...
    ..o.o...o.oooo.o...o.o..
    ..ooo..oo......oo..ooo..
    .o.o.....oo..oo.....o.o.
    ..oo.....o....o.....oo..
    .ooo................ooo.
    ...ooo....o..o....ooo...
    ..oo.oo..oooooo..oo.oo..
    .o...oo...oooo...oo...o.
    ..oo.o.ooo.oo.ooo.o.oo..
    .o..ooo....oo....ooo..o.
    ...o.....oooooo.....o...
    ..o.o...o......o...o.o..
    .oo.ooo.o......o.ooo.oo.
    ...o...oo......oo...o...
    oo.oo.o...oooo...o.oo.oo
    .o..o.o...oooo...o.o..o.
    .o....o.oooooooo.o....o.
    ....o.oooooooooooo.o....
      oo....oooooooo....oo
  5. none in 48*48
  6. longest w22 partial
    4b4o$5b3o$2b3o4b2obo$2b2o2b2o3bo$2bobo2bo2bo2bo$b3obo5b2o$bo3bob2o4b2obo$obobobo6b4o$bobo2bo7bo3bo$3b2o7b3ob2obo$4b2o7b3o3bo$3bo2bo4b3obo4bo$5b3obo4bob2obo$4bobobo2bo2bo2bo2bo
    $5bob3ob2o2b2obo$7b3obo2bobo3b3obobo$10b3obob2o3b2ob2obo$11bo3bobobobo3b2o$11b3ob2o2bobo$12bobobo7b4o$11bo2bo2bobo7bobo$14bobobo8bo$15b2ob2o5bobob2o$18bobo6bo$16b2ob2o3b3o3b4o
    $16b2o2b2o2b3o2b6o$20bo2bobo2b2obob2o$20bo2b2o3b2obob3o$20b4obo4bo2bo2b2o$23b3ob2o3b6o$24b2obob2o$24bobob2obob4obo$26bo6b3o3bo$25b2ob2o3b3o2bo$26bo4bob4obob2o$26bobobo6b3obobo
    $27b2o3b3o3bobobo$28bo2b4o4bobo2bo$33bo6bo3b2obo$37bo2bo3b2o2bo$36b2o3bo2b2ob2o$35b2obo8bob2o$35b3o2bo5b3ob3o$37b2o2bo4bo4bo$38b2obo6b2o2bo$40b2obo4b4o$39bob3obo2bo2bo$38bo2bo
    3b2o$39b3obob2o4b4o$40bob2o4bo3bo2bo$42b4ob2o3bob3o$43bobo3bo5bo$50b2o3b4o$50bob2o3bo$49b2ob2obobo$51bobo3bo$52b5obobob2o$53b2obobo3b2o$54bobo3bo$54b8obo2bo$59bo4b4o$57bo7bo2b
    o$57bo2bo5b4o$56bob2obo$57bo4bo6bo$61bo5b2o$60b3o4b2o3bo$60b3ob3obob2obo$62bo2bo4bobobo$62bo4b2o$66b2o4bob2o$67bo3b2ob3obo$68bo2bo2b2ob2o$70b2obo3b3o$69bo2b2o4bo$69b3obo2b2obo
    4bo$71b2obobo2bo2b2ob2o$71b3o3b2o3bobo2bo$73b2ob8o2bo$73bobo3b2o3bobo$78b2obobo2bo$78b3obo3bob2o$78b3o5b4o$77b2o11b2o$77b2o7bob2o$78bob3obobo3b3o$78bob3o4b3o2bo$79b2ob3o5b2ob2
    o$81b4o2b3o4bo$81bob2o2b4o4b2o$82bo5b2ob2ob2o$85b2obob2o2bob2obo$86b4o3b2ob2ob3o$86bob3obobobob2obo$89b5o7b2o2bo$90bo3b5o2b4obo$93b3obo3b2obobo$91b2o2bob3ob4o$95bo3bo2bo2bo$92
    b3ob5obo2bo$95b2ob2ob3o$99bo2bo2bobo$94bob2ob3ob2ob3o$95bo3b3ob3o2bo$96b3o5b2ob3o$96b3o4b2obo3b2o$101bobo2b4obo$103bo3bobobob2o$103bo5b3obo$105bobobo3b3o$104b4o3bo$105bob2o2b2
    obo$113bo$108bo3b3obob4o$110bo2bo3b3o2b2o$109bobo3bo2b4obo$116bo6b2o$113b2o2bobo3bo$113b2obo2b5o3bo$112b2o2bobo3b2ob5o$112b2ob2ob3obob2o$116bob2o3b3o2bobo$117bo2bobo2bobob3o$1
    17bobo2bob2obo$119bob2o2bobo2bo$118b2o2b4obo$119bo2b2o4b3o3bo$120b2o7bo2bobobo$120bo3b2ob6o2bo$123bobob2ob3o2bob2o$123bobob2obobob2o$122bobo3b2o3bo2b3o$129bo5b2o$129bobo4bo3b2
    o$128b2o2b2o3b7o$128b2o3b3o2b2obobo$128b3o2bo4bo2bo2bo$134bobob4obo$133b2obo2b2o3bo$132bo10bob3o$132bo7b2o3b2o$133b4o9b2obo$137b3ob2o2bo2bo$136bo2b4o2bo2b3o$136bo3b2o4b5o$138b
    3obo2bobo2bo$141b5ob5ob2o$141b2o4b3obo2b3o$142bo2bob2o2bo2b3o$145b2o4b2o3bo$144b2ob3ob2o5bo$145bo2bob3o3bobo$145b2o6bo3b3o$148b5o3bo4bo$148b2ob2ob2ob2o2bobo$153b2o2bob3o$148b7
    o2bo2bo2b3o$148b3ob2o2bobo5b2o$151bobobo8b2o$155bo8bobo$154bo2bo7b2o$153b3obo8bo$155b2o2bo6b2ob2obo$156bob2o2b4o3b3obo$157b2ob2o3bo2bo4bo$158b2o2bo7bob3o$159bo3bo5bobob2o$159b
    ob2o2bo3b3o3b2o$160bo4bo2b6obobo$162bo2bo3b2ob3ob2o$162bo4b2obobob3obo$163b2o4b2o4bo$163bobobobob2o2bob3o$164bo3bobo3b4obob2o$167bob4ob2obob3obo$168b2o4bo3bo4bo$167bo3b3o4bobo
    3b2o$168b2o5b2o2b4ob2o$170bob2o4b3o2b3obo$179bobo3b3o$173bob2ob2o2bob2ob3o$174bobo3b2o4bob2o$174bob2o5b3obobo$175bobobobo2bo$177b3o2bo$179bo2b4o$178b2o2b4o$180bobo$181bo$181bo!
  7. 15*57 partial
    3b2o5b2o$2b4o3b4o$2bo2bo3bo2bo$3bob2ob2obo$3b2o5b2o$bo11bo$bo3b2ob2o3bo$4b2o3b2o$5b2ob2o$5b2ob2o$4bobobobo$3b2obobob2o$4bobobo
    bo$3b2obobob2o$3bo2bobo2bo$bo4bobo4bo$2bo2b2ob2o2bo$2bobobobobobo$3b2obobob2o$2bobobobobobo$4bobobobo$b2obobobobob2o$3b2obobob
    2o$2bo2b2ob2o2bo$3b2obobob2o$5bo3bo$5bo3bo$3b2o5b2o$2bo2bo3bo2bo$2b3o5b3o$b2o2bo3bo2b2o$2bob2o3b2obo$3b4ob4o$bobo2bobo2bobo$4o
    bo3bob4o$2bobobobobobo$6bobo$2bob3ob3obo$2bo2b2ob2o2bo$bo4bobo4bo$2b5ob5o$bo4bobo4bo$2o2bo5bo2b2o$bo4bobo4bo$4bobobobo$b2obobo
    bobob2o$bobo2bobo2bobo$2b2ob2ob2ob2o$6bobo$b2o9b2o$b4o5b4o$o4bo3bo4bo$bo3b2ob2o3bo$3ob2o3b2ob3o$4b2o3b2o$ob2obo3bob2obo$2bo9bo!
  8. specified part of longest w14 partial
    ...o.o.oo.....
    ....oo.oooo...
    .oo...o..o.oo.
    .o.o.ooo.o.ooo
    oo.oo.oo..ooo.
    .o.oo..oo..o..
    .o.o...oo.o...
    ..o...o.o.o...
    ......o.oo....
    ..o......oo...
    ...o......o...
    ...oo.....o...
    .oooo..o...o..
    ...o..o.o.oo..
    .oo.oo.o......
    ..o...o...ooo.
    .o.oo...oo.o..
    .....o.oooooo.
    ...ooo.oo.....
    .....oo..oo...
    ...o....oo....
    ....o..o.oo...
    ...o.oooo.....
    .....oo..oo...
    ........ooo...
    .........oo...
    ..o..ooo.oo...
    ..ooo.oo......
    .....o.o...o..
    ..o..oo..oo...
    ....o..ooo....
    ...oo.o.o.o...
    ..........o...
    ...o.oo...o...
    .....o.oo.....
    .....oooooo...
    ....ooo..oo...
    ....oo.oooo...
    .oo.ooo.ooo...
    .....o...o.o..
    ..oo.oooooo...
    .......o...o..
    ..o..o.o.ooo..
    ..o.ooo..oo.o.
    .oo.....oo..o.
    .oo..o....o..o
    oo......ooo.o.
    .o..o.oo.oo..o
    oo.o..o.ooo.o.
    ..oooo.o.....o
    ......o.ooooo.
    .....o.o......
    ...oo.o.oo.o..
    .o.oo.o.o..o..
    ..ooo.....o.o.
    .oooo.o.ooo...
    ..oo.o.oo..oo.
    ....ooo.oo.o..
    ..o.o.o.o.....
    ......o..ooo..
    ...oo.oo..oo..
    ...oooo.oooo..
    ....ooo..ooo..
    .oo.oo.ooo....
    ..o.o.o...o...
    ......o..o....
    ..oo....oo....
    .o..oo..ooo...
    .oo...ooo.o...
    .ooo.ooo.o..o.
    ....oo.o...ooo
    oo.o....oo.oo.
    ...oo...o.ooo.
    ...o....oo.oo.
    ...o.oo..o....
    ..o..o.o.o....
    ....oo.o.o....
    ......o.o.....
    ...o.o........
    ....o..oo.o...
    ...ooo..oo....
    ....o.o..oo...
    ..o..oooooo...
    ..o.oo..ooo...
    ...o..o..oo...
    ..oo.oooo.oo..
    .ooo.....oo...
    .o...oo...o...
    .....o..oo.o..
    ..oo..o.oo.o..
    ...o....o.o.o.
    ....o....o.o..
    .ooo..oo...oo.
    .o....oo.oo.oo
    ..o..oooo...o.
    .oooooooo.oooo
    .o..o..o.oo.o.
    ...o..ooo.o..o
    oo..o.ooo..oo.
    ..o.oo.....o.o
    o.oo....o.o.o.
    .o.o.o..oo.o..
    ooo.ooo.ooo.o.
    .oo..o.o.o.ooo
    ...oo......oo.
    ..oo.o.oooo...
    ..oo.o.oo.oo..
    ..oo..o..o..o.
    ..oo..o....o.
  9. 7*49 partial
    2b3o$3b3o$2o$bob3o$o2b2o$bob3o$2bo2bo$3o2bo2$b3o$b3o$3bo$2bo$4b2o$2b2o$3bob2o
    $bobobo$2bob2o3$b3o$2obo$3b2o$3bo2$b5o$2bo2bo$b5o3$3bo$3ob2o$3bobo$2bobo$3bob
    o$4bo$bobo$bo$b2ob2o$4bobo$2b3o$bobo$2b2o$o3bo$2bo$3ob3o$b2o2bo$o3bobo$3o2bo!
  10. longest partial decays into disjoint parts, including a c/3 wickstretcher
  11. 299 cells, longer backend variant is 246
  12. removing the back two rows from any phase turns it into a wickstretcher, there are many others at w20glide
  13. wickstretcher powered by lightspeed signals is possible at w7
    bo$3bo$2bobo$2b2obo$2o4bo$2o3b2o$2o3b2o$3o2b2o$2obob2o$2o3b2o$2o3b2o$2o3b2o$2o2b3o$2obob2o$2o3b2o$2o3b2
    o$2o3b2o$3o2b2o$2obob2o$2o3b2o$2o3b2o$2o3b2o$2o2b3o$2obob2o$2o3b2o$2o3b2o$2o3b2o$3o2b2o$2obob2o$2o3b2o!
  14. logical width 6, yet not found by qfind until logical width 9 (due to known issue for period-multiplied ships)

References

  1. H. H. P. M. P. Cole (August 22, 2024). B34ar5in/S2i3-i4-nwz5ceny6cei7e8, in which the first c/7d was found at w19g
  2. May13 (October 5, 2021). Re: Spaceships in Life-like cellular automata (edit 6), in which (after considerable effort) a c/4 was found in B3/S35