User:Pifricted/Rules
From LifeWiki
Jump to navigation
Jump to search
Contents
Ant rl/3r
Langton's ant, but "many ants"(3 cells) follow the "head ant"(1 cell).When another ants stop head ant, it'll turn right, then go.
patterns
A head ant will turn into a sqrt(t) growth at about 3700 gens.
x = 1, y = 1, rule = Ant rl/3l
B!
@RULE Ant rl/3l
@COLORS
1 255 255 255
@TABLE
n_states:16
neighborhood:vonNeumann
symmetries:none
#
var q={10,11,12,13,14,15}
var a1={0,1,2,3,4,5,6,7,8,9,q}
var a2=a1
var a3=a1
var a4=a1
var e={2,6}
var s={3,7}
var w={4,8}
var n={5,9}
var c0={0,6,7,8,9}
var d0={2,3,4,5}
var c1={1,2,3,4,5}
var d1={6,7,8,9}
#
c0,s,a2,n,a4,0
c0,a1,w,a3,e,0
c0,a1,w,n,a4,0
c0,s,w,a3,a4,0
c0,s,a2,a3,e,0
c0,a1,a2,n,e,0
c0,s,w,n,a4,0
c0,s,w,a3,e,0
c0,s,a2,n,e,0
c0,a1,w,n,e,0
c0,s,w,n,e,0
#
c1,s,a2,n,a4,1
c1,a1,w,a3,e,1
c1,a1,w,n,a4,1
c1,s,w,a3,a4,1
c1,s,a2,a3,e,1
c1,a1,a2,n,e,1
c1,s,w,n,a4,1
c1,s,w,a3,e,1
c1,s,a2,n,e,1
c1,a1,w,n,e,1
c1,s,w,n,e,1
#
c0,s,a2,a3,a4,2
c0,a1,w,a3,a4,3
c0,a1,a2,n,a4,4
c0,a1,a2,a3,e,5
c1,s,a2,a3,a4,8
c1,a1,w,a3,a4,9
c1,a1,a2,n,a4,6
c1,a1,a2,a3,e,7
#
2,a1,q,a3,a4,3
3,a1,a2,q,a4,4
4,a1,a2,a3,q,5
5,q,a2,a3,a4,2
6,a1,q,a3,a4,7
7,a1,a2,q,a4,8
8,a1,a2,a3,q,9
9,q,a2,a3,a4,6
#
d0,a1,a2,a3,a4,10
10,a1,a2,a3,a4,11
11,a1,a2,a3,a4,12
12,a1,a2,a3,a4,1
d1,a1,a2,a3,a4,13
13,a1,a2,a3,a4,14
14,a1,a2,a3,a4,15
15,a1,a2,a3,a4,0
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ GPS 20 THUMBSIZE 2 ]] |
| Here is the ant. (click above to open LifeViewer) |
There are also have Ant rl/3r, Ant rl/5l, Ant rl/5r and Ant rl 7r.
x = 2, y = 4, rule = Ant rl/3r
2A2$2A$B!
@RULE Ant rl/3r
@COLORS
1 255 255 255
@TABLE
n_states:16
neighborhood:vonNeumann
symmetries:none
#
var q={10,11,12,13,14,15}
var a1={0,1,2,3,4,5,6,7,8,9,q}
var a2=a1
var a3=a1
var a4=a1
var e={2,6}
var s={3,7}
var w={4,8}
var n={5,9}
var c0={0,6,7,8,9}
var d0={2,3,4,5}
var c1={1,2,3,4,5}
var d1={6,7,8,9}
#
c0,s,a2,n,a4,0
c0,a1,w,a3,e,0
c0,a1,w,n,a4,0
c0,s,w,a3,a4,0
c0,s,a2,a3,e,0
c0,a1,a2,n,e,0
c0,s,w,n,a4,0
c0,s,w,a3,e,0
c0,s,a2,n,e,0
c0,a1,w,n,e,0
c0,s,w,n,e,0
#
c1,s,a2,n,a4,1
c1,a1,w,a3,e,1
c1,a1,w,n,a4,1
c1,s,w,a3,a4,1
c1,s,a2,a3,e,1
c1,a1,a2,n,e,1
c1,s,w,n,a4,1
c1,s,w,a3,e,1
c1,s,a2,n,e,1
c1,a1,w,n,e,1
c1,s,w,n,e,1
#
c0,s,a2,a3,a4,2
c0,a1,w,a3,a4,3
c0,a1,a2,n,a4,4
c0,a1,a2,a3,e,5
c1,s,a2,a3,a4,8
c1,a1,w,a3,a4,9
c1,a1,a2,n,a4,6
c1,a1,a2,a3,e,7
#
2,a1,q,a3,a4,5
3,a1,a2,q,a4,2
4,a1,a2,a3,q,3
5,q,a2,a3,a4,4
6,a1,q,a3,a4,9
7,a1,a2,q,a4,6
8,a1,a2,a3,q,7
9,q,a2,a3,a4,8
#
d0,a1,a2,a3,a4,10
10,a1,a2,a3,a4,11
11,a1,a2,a3,a4,12
12,a1,a2,a3,a4,1
d1,a1,a2,a3,a4,13
13,a1,a2,a3,a4,14
14,a1,a2,a3,a4,15
15,a1,a2,a3,a4,0
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ GPS 20 THUMBSIZE 2 ]] |
| 5-cell inf growth in Ant rl/3r (click above to open LifeViewer) |
x = 1, y = 1, rule = Ant rl/5l
B!
@RULE Ant rl/5l
@COLORS
1 255 255 255
@TABLE
n_states:20
neighborhood:vonNeumann
symmetries:none
#
var q={10,11,12,13,14,15,16,17,18,19}
var a1={0,1,2,3,4,5,6,7,8,9,q}
var a2=a1
var a3=a1
var a4=a1
var e={2,6}
var s={3,7}
var w={4,8}
var n={5,9}
var c0={0,6,7,8,9}
var d0={2,3,4,5}
var c1={1,2,3,4,5}
var d1={6,7,8,9}
#
c0,s,a2,n,a4,0
c0,a1,w,a3,e,0
c0,a1,w,n,a4,0
c0,s,w,a3,a4,0
c0,s,a2,a3,e,0
c0,a1,a2,n,e,0
c0,s,w,n,a4,0
c0,s,w,a3,e,0
c0,s,a2,n,e,0
c0,a1,w,n,e,0
c0,s,w,n,e,0
#
c1,s,a2,n,a4,1
c1,a1,w,a3,e,1
c1,a1,w,n,a4,1
c1,s,w,a3,a4,1
c1,s,a2,a3,e,1
c1,a1,a2,n,e,1
c1,s,w,n,a4,1
c1,s,w,a3,e,1
c1,s,a2,n,e,1
c1,a1,w,n,e,1
c1,s,w,n,e,1
#
c0,s,a2,a3,a4,2
c0,a1,w,a3,a4,3
c0,a1,a2,n,a4,4
c0,a1,a2,a3,e,5
c1,s,a2,a3,a4,8
c1,a1,w,a3,a4,9
c1,a1,a2,n,a4,6
c1,a1,a2,a3,e,7
#
2,a1,q,a3,a4,3
3,a1,a2,q,a4,4
4,a1,a2,a3,q,5
5,q,a2,a3,a4,2
6,a1,q,a3,a4,7
7,a1,a2,q,a4,8
8,a1,a2,a3,q,9
9,q,a2,a3,a4,6
#
d0,a1,a2,a3,a4,10
10,a1,a2,a3,a4,11
11,a1,a2,a3,a4,12
12,a1,a2,a3,a4,13
13,a1,a2,a3,a4,14
14,a1,a2,a3,a4,1
d1,a1,a2,a3,a4,15
15,a1,a2,a3,a4,16
16,a1,a2,a3,a4,17
17,a1,a2,a3,a4,18
18,a1,a2,a3,a4,19
19,a1,a2,a3,a4,0
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ GPS 20 THUMBSIZE 2 ]] |
| Ant in Ant rl/5l (click above to open LifeViewer) |
Ruletable: here
Cellmath
Life, but have weighted 2,3,-1,-2 cells.Named by tommy.
x = 11, y = 13, rule = Cellmath
B2$7.B.CE$8.A$C6.E3$7.E$D$7.BA$6.E2$E!
# [[
LABEL 0 0 16 "2"
LABEL 0 4 16 "3"
LABEL 0 8 16 "-1"
LABEL 0 12 16 "-2"
]]
# [[
LABEL 7 2 16 "2"
LABEL 9 2 16 "3"
LABEL 7 4 16 "-2"
LABEL 13 3 16 "2+3-2=3"
]]
# [[
LABEL 7 9 16 "2"
LABEL 13 9 16 "1+2=3"
]]
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 800 WIDTH 1000 THUMBSIZE 2 ]] |
| (click above to open LifeViewer) |
patterns
A weight-3 cell is a p3 oscillator.
P32 Pi hassler,P28,29,30,39 traffic light hasslers, P64,96 block hasslers are found.
x = 224, y = 230, rule = Cellmath
69.3D3.2D3.2D7.2D$69.D2.D.D2.D.D2.D2.D2.D2.D60.D$69.D2.D4.D.D2.D.3D.D
2.D28.D29.D.B63.D$69.3D4.D2.2D.D2.D3.2D27.D.B37.D25.D29.D.B$69.D5.D3.
D.2D5.D2.D.2D31.D55.D.B37.D$69.D4.D4.D2.D5.D2.D.D.D62.BD30.D$69.D4.4D
2.2D7.2D2.D.D30.BD94.BD$103.3D.3D57.3D.3D16.BD6.3D.3D$105.D.D13.A12.D
.D.D.D11.A14.D5.D24.D3.D.D$103.3D.3D10.A13.D.D.D.D10.A15.3D.3D24.3D.D
.D$105.D.D.D5.DB3.3A11.3D.3D5.DB3.3A15.D.D26.D.D.D.D$103.3D.3D26.D3.D
26.3D.3D9.A14.3D.3D9.A$116.D19.D3.D6.D34.A30.A$6.E8.A18.E3.E8.A74.B.D
28.B.D21.DB3.3A23.DB3.3A$5.2E3.2A2.A.A16.2E2.2E7.BA74.D30.D$6.E3.2A3.
B4.ACA11.E3.E49.D89.D30.D$6.E7.A.A17.E3.E4.AB41.D.B95.B.D28.B.D$5.3E7.
A17.3E.3E3.A50.D89.D30.D2$94.BD$51.B22.3D.3D9.A$50.B25.D.D.D8.A29.D31.
D$5.3E10.A15.E2.3E9.B24.3D.3D3.DB3.3A25.D.B29.D.B$7.E3.3A4.AC4.A8.2E4.
E8.B25.D3.D.D$5.3E3.ADA11.B8.E2.3E7.B26.3D.3D4.D40.D$5.E5.3A4.AC4.A.A
7.E2.E6.A.B44.B.D65.D$5.3E10.A14.3E.3E3.A.B45.D34.BD$44.B.A56.D.D.D.D
24.3D.3D18.BD$45.A57.D.D.D.D11.A12.D3.D.D$103.3D.3D4.DB4.A13.3D.D.D$105.
D3.D10.3A11.D.D.D.D4.DB6.A$5.3E26.E2.3E65.D3.D5.D18.3D.3D11.A$7.E18.A
6.2E4.E106.D5.3A$5.3E4.C6.CA4.CD7.E2.3E82.B.D$7.E17.E8.E4.E82.D$5.3E25.
3E.3E114.B.D$154.D2$102.3D3.2D3.2D6.D2.D$19.A82.D2.D.D2.D.D5.D2.D2.D$
5.E.E12.BE12.E2.E.E8.B23.3D3.2D22.D2.D4.D.D4.3D.D2.D$5.E.E11.A.C11.2E
2.E.E5.A.B24.D2.D.D2.D21.3D4.D2.3D3.D2.4D71.D$5.3E2.A.C8.A.A10.E2.3E4.
A.B25.D2.D4.D21.D5.D3.D2.D8.D.2D6.D30.D28.D.B$7.E15.C.A8.E4.E5.B.A24.
3D4.D22.D4.D4.D2.D8.D.D.D3.D.B28.D.B$7.E15.EB8.3E3.E4.B.A25.D5.D4.2D17.
D4.4D2.2D9.D.D.D$25.A46.D4.D5.D.D110.3A5.D$72.D4.4D2.D.D48.3A5.D22.3A
5.D24.A$118.3D.3D11.A30.A29.A6.BD$44.A.A49.B23.D.D.D10.A6.BD5.3D.D.D10.
A6.BD4.3D.3D$5.3E7.C.E16.E2.3E5.C.A47.B22.3D.D.D26.D.D.D25.D.D.D$5.E18.
2A7.2E2.E6.A3.A45.B25.D.D.D24.3D.3D23.3D.3D$5.3E3.E.C10.B9.E2.3E5.A.B
.A41.A.B24.3D.3D3.DB6.A14.D3.D25.D.D.D$7.E11.A.A2.2A8.E4.E6.A24.D3.D.
3D.D.D6.A.B42.A13.3D3.D2.DB6.A12.3D.3D2.DB6.A$5.3E12.C12.3E.3E7.A.B.A
19.D.D.D.D.D.D.D7.B.A35.D5.3A27.A29.A$20.A31.A18.D.D.D.3D.3D6.B.A66.D
5.3A21.D5.3A$49.A.B19.D.D.D3.D3.D5.B$50.A2.2A17.D.D2.3D3.D4.B48.B.D$11.
A40.ABA82.D29.B.D27.B.D$5.3E3.C.A38.2A113.D29.D$5.E5.EB.A$5.3E5.A.A$5.
E.E6.A.BE$5.3E7.A.C35.B$17.A32.2A$34.E2.3E10.ABA$33.2E2.E13.2A137.D$34.
E2.3E9.B103.D34.D.B$5.3E26.E2.E.E6.2A19.3D4.D3.2D6.D2.D26.D34.D.B$7.E
25.3E.3E6.ABA18.D2.D2.2D2.D2.D2.D2.D2.D24.D.B$7.E3.C2.B32.2A18.D2.D3.
D2.D2.D.3D.D2.D100.3A$7.E37.B21.3D4.D3.3D2.D2.4D63.3A36.A$7.E59.D6.D5.
D8.D.2D23.3A36.A14.3E2.E15.A$67.D6.D5.D8.D.D.D24.A14.3E.3E14.A17.E.2E
$67.D4.4D.3D9.D.D.D4.3E.3E12.A8.D8.E3.E24.D5.3E2.E26.D$100.E3.E28.3E3.
E32.E2.E$19.2A77.3E.3E18.A2.BD5.E5.E21.A2.BD4.3E.3E22.A2.BD$5.3E10.A.
BA76.E5.E7.2A7.A.A9.3E3.E8.2A9.A.A22.2A11.A.A$5.E.E9.2A2.A76.3E.3E7.A
.A7.2A24.A.A9.2A22.A.A11.2A$5.3E3.AB5.B.A87.DB2.A31.DB2.A31.DB2.A$5.E
.E4.D4.A.A$5.3E101.D8.A26.D35.D$117.A37.A$117.3A34.A37.A$154.3A34.A$16.
A174.3A$5.3E9.B101.B.D$5.E.E10.A100.D36.B.D$5.3E7.B140.D36.B.D$7.E4.A
180.D$5.3E5.B$14.A3$190.E.A$2.E2.3E142.E.A38.B.A$.2E2.E.E104.E.A36.B.
A36.E.A$2.E2.E.E59.3D2.4D2.2D6.D2.D23.B.A34.E.A42.2A$2.E2.E.E59.D2.D.
D4.D2.D5.D2.D22.E.A40.2A38.A.A$.3E.3E59.D2.D.D7.D2.D2.D2.D27.2A36.A.A
37.A$67.3D3.2D4.D2.3D.4D27.A.A35.A$67.D7.D4.D2.D5.D.2D4.3E.3E13.A8.E.
E5.3E2.E25.E.E38.E.E$67.D4.D2.D.D2.D8.D.D.D3.E5.E23.B6.E3.2E26.B40.B$
67.D5.2D3.2D9.D.D.D3.3E3.E22.A.A5.3E2.E25.A.A38.A.A$99.E3.E23.A6.E.E2.
E26.A7.3E.3E26.A$97.3E3.E7.A22.3E.3E7.A25.E3.E8.A$110.A12.3A21.A14.3A
9.3E.3E5.A16.3A$.3E.3E6.D2.D92.3A12.A21.3A14.A9.E.E3.E5.3A16.A$3.E3.E
19.D5.D90.A38.A10.3E.3E23.A$.3E.3E100.A36.A38.A$3.E.E30.D70.A.A34.A.A
36.A.A$.3E.3E2.D5.3A2.D3.D82.B36.B38.B$16.A.A12.3A73.E.E8.A25.E.E36.E
.E$16.A.A12.A.A82.A.A37.A$10.D10.D9.A.A83.2A35.A.A39.A$16.A.A102.A.E31.
2A37.A.A$16.A.A12.A.A2.D83.A.B36.A.E33.2A$25.D5.A.A87.A.E34.A.B38.A.E
$14.D2.D13.2A126.A.E36.A.B$28.D5.D164.A.E5$.3E.E.E26.D5.D$.E3.E.E4.D5.
D$.3E.3E23.D5.2A$.E.E3.E6.2A5.D15.A.A2.D70.E.A30.E.A30.E.A$.3E3.E2.D2.
A.A12.2A2.2A5.A74.B.A6.E.E21.B.A6.E.E21.B.A6.E.E$13.A5.2A7.2A.A5.A.A73.
E.A8.B21.E.A8.B21.E.A8.B$13.A.A5.A10.2A3.2A28.3D3.D2.4D2.3D6.2D30.A.A
4.E.3E.3E17.A.A3.E2.3E.3E17.A.A$14.2A3.2A46.D2.D.2D2.D4.D8.D2.D6.E2.3E
.E.E14.A4.2E3.E3.E18.A3.2E2.E.E.E.E18.A$31.D35.D2.D2.D2.D4.D5.D2.D2.D
5.2E2.E3.E.E6.A13.E3.E.3E23.E2.3E.E.E$21.D20.D24.3D3.D3.2D2.3D2.3D2.2D
7.E2.3E.3E5.A14.E3.E.E11.A13.E2.E.E.E.E$10.D56.D5.D5.D.D2.D2.D2.D2.D.
2D3.E2.E.E3.E5.3A11.3E2.E.3E8.A13.3E.3E.3E8.A$33.D5.D27.D5.D2.D2.D.D2.
D5.D2.D.D.D.3E.3E3.E37.3A29.A$13.D5.D47.D4.3D2.2D3.2D7.2D2.D.D15.A65.
3A$112.A.A30.A$113.B8.A.E19.A.A30.A$112.E.E6.A.B21.B8.A.E19.A.A$34.D5.
D81.A.E19.E.E6.A.B21.B8.A.E$12.D5.D135.A.E19.E.E6.A.B$31.D5.2A147.A.E
$21.D15.A.A2.D$.3E.3E2.D5.3A9.2A2.2A5.A$.E.E.E9.A3.A8.2A.A5.A.A111.E.
A$.3E.3E7.2A.2A12.2A3.2A77.E.A33.B.A$3.E.E.E109.B.A31.E.A$.3E.3E23.D84.
E.A8.E.E33.E.E$21.D20.D85.B35.B$10.D4.A.A81.E2.3E.3E18.A.A3.E2.3E.3E20.
A.A$15.A.A15.D5.D58.2E2.E.E.E.E19.A3.2E2.E.E.E23.A$13.D2.A2.D79.E2.3E
.E.E9.A14.E2.3E.3E9.A$99.E2.E.E.E.E8.A15.E4.E.E.E8.A$98.3E.3E.3E8.3A12.
3E.3E.3E8.3A2$115.A33.A$114.A.A31.A.A$3.2E3.2E11.2E3.2E8.2E3.2E72.B33.
B$5.E.E2.E12.E.E2.E9.E.E2.E70.E.E8.A.E20.E.E$5.E.E2.E12.E.E2.E9.E.E2.
E80.A.B33.A.E$3.2E3.2E11.2E3.2E8.2E87.A.E31.A.B$2.E7.E9.E4.E2.E9.E.E2.
E116.A.E$2.E7.E9.E4.E2.E9.E.E2.E$3.2E3.2E11.2E3.2E8.2E3.2E$117.E.A32.
E.A36.E.A$118.B.A32.B.A36.B.A$117.E.A32.E.A36.E.A$4.D2.D$35.D10.D20.3D
3.D3.2D3.2D6.D2.D36.E.E$D19.D8.D37.D2.D.2D2.D2.D.D2.D5.D2.D37.B34.E.E
$5.3A14.3A13.3A3.3A20.D2.D2.D2.D2.D4.D2.D2.D2.D6.E2.3E.3E20.A.A2.E3.E
2.3E22.B6.E3.E2.E.E22.E.E$5.3A6.D7.A.A13.A.A3.A.A20.3D3.D2.2D.D3.D2.3D
.4D5.2E2.E.E.E23.A2.2E2.2E2.E.E21.A.A4.2E2.2E2.E.E23.B$5.3A14.3A13.3A
3.3A20.D5.D2.D.2D2.D4.D5.D.2D3.E2.E.E.3E7.A17.E3.E2.E.E7.A14.A6.E3.E2.
3E7.A14.A.A$D66.D5.D2.D2.D.D11.D.D.D2.E2.E.E.E.E6.A10.3A5.E3.E2.E.E6.
A22.E3.E4.E6.A16.A$20.D8.D5.D10.D20.D4.3D2.2D2.4D8.D.D.D.3E.3E.3E6.3A
10.A4.3E.3E.3E6.3A9.3A7.3E.3E3.E6.3A$4.D2.D15.D2.D12.D2.D85.A36.A37.3A
$114.A34.A14.A23.A16.A$113.A.A32.A.A36.A.A14.A$114.B34.B38.B$113.E.E32.
E.E36.E.E2$126.A.E$4.2E3.2E12.2E3.2E95.A.B34.A.E$6.E4.E13.E.E2.E95.A.
E32.A.B38.A.E$6.E4.E13.E.E2.E131.A.E36.A.B$4.2E3.2E12.2E3.2E172.A.E$6.
E.E16.E4.E$6.E.E16.E4.E$4.2E3.2E12.2E3.2E3$4.D4.D$24.D3.D$66.3D2.D2.3D
.3D5.3D$.D10.D53.D.D.2D2.D.D.D.D2.D2.D.D$7.3A13.3A40.3D2.D2.D.D.3D.3D
.3D.2D$7.A.A10.D2.3A40.D4.D2.D.D.D.D2.D2.D.D.D.D63.D$7.A.A13.3A40.D3.
3D.3D.3D5.3D.D.D33.D29.B.D$97.D28.B.D31.E.E$.D10.D84.B.D30.E.E28.B$24.
D3.D72.E.E27.B28.A.A$102.B27.A.A28.A$4.D4.D69.E3.E2.3E5.A6.A.A27.A$78.
2E2.2E4.E4.A8.A3.E2.3E.3E5.A13.E2.3E.3E5.A$79.E3.E2.3E4.3A9.2E4.E.E.E
4.A13.2E4.E.E.E4.A$79.E3.E2.E19.E2.3E.E.E4.3A12.E2.3E.3E4.3A$78.3E.3E
.3E2.A14.E2.E3.E.E19.E2.E3.E.E$90.A.A12.3E.3E.3E2.A15.3E.3E.3E2.A$91.
B25.A.A26.A.A$90.E.E25.B28.B$94.D.B20.E.E26.E.E$96.D24.D.B26.D.B$123.
D28.D3$97.D25.D$97.B.D23.B.D2$82.3E.E.E$84.E.E.E5.A12.3E.3E$84.E.3E4.
A13.E.E3.E5.A$84.E3.E4.3A11.3E.3E4.A$84.E3.E18.E.E.E6.3A$91.A15.3E.3E
$90.A.A9.BD12.A11.BD$91.B23.A.A$90.E.E9.D13.B11.D$94.D.B18.E.E$96.D22.
D.B$121.D!
D!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 1200 WIDTH 1800 THUMBSIZE 2 ]] |
| A big collection of oscillators in Cellmath (click above to open LifeViewer) |
Weight--1,-2 cells always kill and stop cells borning, but also have still lifes.
This rule is omniperiodic.
Others
The idea is from excel.
Ruletable: Rule:Cellmath
FuseArt
A hybrid of B3/S34 and B3/S5678.No better rules I found.
Ruletable: Rule:FuseArt
vNline & vNline2
Clisky
2PointShip
B2e3i4a/S235
34a567/34a/n
Hidden category: