Die hard
x = 8, y = 3, rule = B3/S23
6bo$2o$bo3b3o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
View static image
Pattern type
Methuselah
Number of cells
7
Bounding box
8 × 3
MCPS
11
Lifespan
130 generations
Final population
0
L/I
18.6
F/I
0
F/L
0
L/MCPS
11.8
Discovered by
Unknown
Year of discovery
Unknown
Die hard is a 7 -cell methuselah (essentially a collision between a block and the traffic light sequence) that vanishes after 130 generations, which is conjectured to be the limit for vanishing patterns of 7 or fewer cells. Note that there is no limit for higher numbers of cells, as eight cells suffice to have a glider heading towards an arbitrarily distant blinker or pre-block .
The original diehard is a semi-common sequence . In addition to a traffic light hitting a block, a common blinker predecessor can hit the same block, turning it into the diehard sequence. This version lasts 137 generations.
x = 4, y = 8, rule = B3/S23
b2o$b2o4$b3o$obo$bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ GPS 20 ]]
Please enable Javascript to view this LifeViewer.
A variant that lasts 137 generations (click above to open LifeViewer ) RLE : here Plaintext : here
"Die hard" as a general term
Alternatively, "die hard" or "diehard" may refer to any methuselah that eventually vanishes. Like with regular methuselahs, an arbitrarily long-lived diehard can be trivially constructed using only 8 cells from a single glider and either a blinker or a pre-block . Therefore, bounding box tends to be the preferred metric for the "size" of a diehard.
Natural diehards
Soups in Conway's Game of Life lasting at least 500 generations before disappearing completely are reported by apgsearch versions v4.69 and above and referred to as "messless methuselahs" on Catagolue .[1] As of 2022 , the longest-lasting known natural diehard lasts 1398 ticks, while the longest-lasting known semi-natural (i.e. symmetrical but still random) diehard lasts 2474 ticks. Both soups were found by Charity Engine in January and February 2022, respectively.[2] [3]
x = 16, y = 16, rule = B3/S23
2ob3ob3ob3o$o2bo3b4obobo$obob3ob2o2bo$2obo2bob3ob3o$b5obob4ob2o$o2bo7b
2obo$ob3o3b4o$b3ob2ob3o2bo$5obo3bob2obo$4ob2ob2o2bo$4b2o2bob2ob3o$6o6b
3o$o3bo2bo2b5o$obob4obo4bo$o2bo2bo2bo2b3o$2obobobobobo3bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 500 WIDTH 500 ]]
Please enable Javascript to view this LifeViewer.
Asymmetric 1398-tick diehard (click above to open LifeViewer ) RLE : here Plaintext : here
x = 32, y = 32, rule = B3/S23
7b2o2b3o4b2obobo3b2o$b2o3bob2obo2bobobob2o2b3ob3o$b4ob3obo2bo2b2o2b3ob
ob2ob2o$2obo2b2o3b2ob2ob3obobo4b2o$obo3bob5o2bobob2obo2b2o2bo$b2ob5o3b
o2bob2o2bobo2bo$bo2bo2bo6bo3b4ob2ob5o$b2o3bobob5obob6ob2ob2obo$o2bob3o
bo3b2obo3bobobob2ob3o$2bobo2b2o8b2obo2bo3bo2bo$4ob3o2b2obo2bobob2o2bo
2bobo$b2obob5o3bob3o2bo2bo2b2ob2o$o2b2ob2o5bo2bo7bob3o2bo$2obob3ob3ob
3o2b2obob2o4bobo$2b4o3bobo2bob3obo2b3o2bobo$b2o4b2ob3ob3obo7b3o$3b3o7b
ob3ob3ob2o4b2o$bobo2b3o2bob3obo2bobo3b4o$obo4b2obob2o2b3ob3ob3obob2o$o
2b3obo7bo2bo5b2ob2o2bo$2ob2o2bo2bo2b3obo3b5obob2o$2bobo2bo2b2obobo2bob
2o2b3ob4o$bo2bo3bo2bob2o8b2o2bobo$3ob2obobobo3bob2o3bob3obo2bo$ob2ob2o
b6obob5obobo3b2o$b5ob2ob4o3bo6bo2bo2bo$5bo2bobo2b2obo2bo3b5ob2o$2bo2b
2o2bob2obobo2b5obo3bobo$2b2o4bobob3ob2ob2o3b2o2bob2o$b2ob2obob3o2b2o2b
o2bob3ob4o$b3ob3o2b2obobobo2bob2obo3b2o$3b2o3bobob2o4b3o2b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 500 WIDTH 500 ]]
Please enable Javascript to view this LifeViewer.
Symmetric 2474-tick diehard (click above to open LifeViewer ) RLE : here Plaintext : here
Engineered diehards
Beginning in early 2022, there has been considerable interest in constructing artificial diehards within small bounding boxes. On March 1, Dean Hickerson shared a 9044-tick 32×32 diehard in a private email to Dave Greene . After a complex series of interactions between an active region and various still lifes, a single lightweight spaceship is produced which eventually catches up to and collides with 30P5H2V0 , producing a single loaf . Finally, an even slower 25P3H1V0.1 eventually collides with the loaf, destroying both of them.[4] On March 6, more optimized versions using different combinations of spaceships (including the especially slow copperhead ) were shared, including a 14,010-tick diehard at 32×32 and an 18,477-tick diehard at 36×36.[5]
Although Hickerson's results were not initially posted publicly, a forum thread was coincidentally started a few weeks later dedicated to diehards, including engineered ones.[6] On March 31, Pavel Grankovskiy posted a 50,716-tick diehard in which a Simkin glider gun and pulse-dividing glider reflectors are used to slowly eat through a series of tubs . Although significantly larger than Hickerson's constructions at 90×86, Grankovskiy's 50,716-tick diehard does not use the "spaceship-chasing" technique, meaning that throughout its evolution, the pattern only slightly exceeds its initial bounds. Using spaceship-chasing, however, the pattern's lifespan can be increased by an order of magnitude to 518,476 ticks without further increasing the bounding box.[7] Jiahao Yu optimized the bounding box of both of these patterns to 87×86,[8] as shown below.
x = 32, y = 32, rule = B3/S23
3b3obob3o$7b2o3b3o$b3obo2bo3bo$3b3o2b2o4bo$12b2o$2bo5b4obo2bobo2b3o$bo
b4o3b3o3bobob2o2bo$5bo5bobo3bo2b2obo$22bo$16bo8b3o$6b2o8b3o6b2ob2o$2b
2obo2bo7bo2bo6bobob2o$2b2ob2obo8b2o6b2o3b2o$6bob2o7b2o6b2obob2o$6bo2bo
3b2o12b3o$3b2ob2o5b2o10bo$3bo2bo10b2o5b2o$bobo2bobo7bobo2bo4bo$b2o4b2o
3bo3b2o3bo4b2o$11bobo8b5o$12bo12bo3$12b2o4bo2bo2bobo2bo$12bobo2bobo2bo
bob3o$14bo3bo2b3o5b2o$ob2ob3o6b2o3b2obo3b2o$o2b2ob2o10bo2b2ob3ob3o$2b
5o12bo2bobo4b2o$3o3bo6b2ob2obob6ob4o$obo2b2o6b2ob4obo2b3o2b2o$2b3o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 500 WIDTH 500 ]]
Please enable Javascript to view this LifeViewer.
32×32 30,273-tick diehard by Hickerson[9] (click above to open LifeViewer ) RLE : here Plaintext : here
x = 87, y = 86, rule = B3/S23
64bo9b2o$63bobo7bobo$44b2o18b2o7bo$44bo27b2o2$53bo25b2o$51b3o24bo2bo$
50bo28bobo$42b2o6b2o28bo2b3o$42bobo38bo$43bo40bo2$49bo$48b2o5b2o$56bo$
51bo$50bobo$38b2o11bo$39bo8bo10bo$47bobo9bo$48bo4b2o4bo$45bo7bobo3bo$
44bobo8bo$45bo9b2o$42bo$34bo6bobo$34b2o6bo7bo$39bo10b2o$38bobo13bo30bo
$39bo13bobo29b2o$36bo17bo$35bobo19bo$25b2o9bo11b2o6bobo$26bo6bo15b2o6b
o23bo$32bobo15bo9bo3b4o13b2o$15b4o14bo19b2o4bobo$30bo22bo6bo$29bobo19b
obo18bo$10b2o8bo9bo20b2o10b2o7b2o$10bo7b3o6bo6bo28bobo14bobo3bo$17bo8b
obo4bo30b2o14b2o3bo$2b2o13b2o8bo5b3o3bo40bo4b2o$3bo9bo9b2o13bobo27bo
11b2o3b2o$3bobo6bobo9bo14bo14bo6bo5bobo9bobo4bo$4b2o7bo40b2o5b2o5bo12b
o4bo$9bo6bo25b2o6bo34b2o$9b2o4bobo23bobo6b2o5bo13bo13b2o$16bo21b2o2bo
14b2o11bobo4bo7bo$o18bo17b2o32bo5b2o7bo$2o16bobo18bo23bo10bo7b2o$2o4bo
12bo34bo8b2o8bobo6bobo$o4bobo14bo11bo19b2o18bo9bo$5b2o14bobo10b2o25bo
7b2o13b2o$22bo37bobo7bo$30bo6bo12b2o9bo5b3o6bo$14b2o9bo4b2o5b2o12bo6bo
8bo8b2o$14bo9bobo30bobo$25bo32bo$20bo24bo9bo13b4o$19b2o7b2o15b2o7bobo$
28bobo24bo5b2o$29b2o9b2o10bo9bo14bo$39bobo6bo2bobo23b3o$39b2o6b2o3bo
27bo$25b2o9bo42b2o$26bo8bobo$22bo3bobo7bo16b2o$22bo4b2o4bo20bo19bo$22b
o9bobo38bobo$22bo10bo8b2o28bo2bo$30bo12bo4b2o23b2o$29bobo17b2o$30bo19b
o20b2o$25b2o43bobo$26bo5bo39bo$32b2o$49bo$38bo10b2o$37bobo10b2o$30b2o
6b2o$31bo$28b3o13bo$28bo14bobo$43b2o$36b2o$37bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 500 WIDTH 500 ]]
Please enable Javascript to view this LifeViewer.
87×86 50,716-tick diehard by Grankovskiy and Yu (click above to open LifeViewer ) RLE : here Plaintext : here
x = 87, y = 86, rule = B3/S23
7b2o6b2o47bo9b2o$7bobo5bobo45bobo7bobo$8bobo5bo27b2o18b2o7bo$9bo34bo
27b2o$13b3o8b2o$15bo8bo5bo22bo25b2o$14bo10b3o2b2o19b3o24bo2bo$27bo22bo
28bobo$30b2o10b2o6b2o28bo2b3o$25b6obo9bobo38bo$15b2o7bo2bo4bo10bo40bo$
14bo2bo6b2o3b3o$5b2o8bo2bo9b2o19bo$5bo10b2o30b2o5b2o$20b2o4bo29bo$19bo
bo3bobo23bo$19b2o5bo23bobo$9b2o27b2o11bo$9bo29bo8bo10bo$47bobo9bo$48bo
4b2o4bo$45bo7bobo3bo$2o42bobo8bo$o44bo9b2o$42bo$34bo6bobo$34b2o6bo7bo$
39bo10b2o$38bobo13bo30bo$39bo13bobo29b2o$36bo17bo$35bobo19bo$25b2o9bo
11b2o6bobo$26bo6bo15b2o6bo23bo$32bobo15bo9bo3b4o13b2o$15b4o14bo19b2o4b
obo$30bo22bo6bo$29bobo19bobo18bo$10b2o8bo9bo20b2o10b2o7b2o$10bo7b3o6bo
6bo28bobo14bobo3bo$17bo8bobo4bo30b2o14b2o3bo$2b2o13b2o8bo5b3o3bo40bo4b
2o$3bo9bo9b2o13bobo27bo11b2o3b2o$3bobo6bobo9bo14bo14bo6bo5bobo9bobo4bo
$4b2o7bo40b2o5b2o5bo12bo4bo$9bo6bo25b2o6bo34b2o$9b2o4bobo23bobo6b2o5bo
13bo13b2o$16bo21b2o2bo14b2o11bobo4bo7bo$o18bo17b2o32bo5b2o7bo$2o16bobo
18bo23bo10bo7b2o$2o4bo12bo34bo8b2o8bobo6bobo$o4bobo14bo11bo19b2o18bo9b
o$5b2o14bobo10b2o25bo7b2o13b2o$22bo37bobo7bo$30bo6bo12b2o9bo5b3o6bo$4b
o9b2o9bo4b2o5b2o12bo6bo8bo8b2o$4b2o8bo9bobo30bobo$25bo32bo$20bo24bo9bo
13b4o$b2o4b2o10b2o7b2o15b2o7bobo$b3o2b3o19bobo24bo5b2o$4b2o23b2o9b2o
10bo9bo14bo$2bo4bo31bobo6bo2bobo23b3o$bo6bo30b2o6b2o3bo27bo$4b2o19b2o
9bo42b2o$2b2o2b2o18bo8bobo$4b2o16bo3bobo7bo16b2o$22bo4b2o4bo20bo19bo$
22bo9bobo38bobo$22bo10bo8b2o28bo2bo$30bo12bo4b2o23b2o$29bobo17b2o$30bo
19bo20b2o$25b2o43bobo$26bo5bo33bo5bo7bo$32b2o31bobo11bobo$49bo15b2o12b
2o$38bo10b2o$37bobo10b2o20b2o$30b2o6b2o31bobo$31bo40bo$7bo20b3o13bo$6b
o3bo3bo5bo7bo14bobo$7b3o3bo2bobo2bo21b2o21b2o$8bob2o4b2ob2o15b2o28bobo
$12b3ob2obo17bo29b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 500 WIDTH 500 ]]
Please enable Javascript to view this LifeViewer.
87×86 518,476-tick diehard by Grankovskiy and Yu (click above to open LifeViewer ) RLE : here Plaintext : here
Sawtooth-based designs
Using a sawtooth allows for the creation of extremely long-lasting diehards. On April 7, 2022, Pavel Grankovskiy successfully constructed a diehard using a sawtooth an expansion factor of 121 . The pattern fit within a bounding box of 99×101 (just barely meeting the 10,000-cell restriction specified in the original post[6] ) and lasts approximately 2.280624×10870 generations.[10] Further optimizations, with the help of toroidalet ,[11] Dean Hickerson,[12] EvinZL ,[13] Rocknlol ,[14] and Adam P. Goucher [15] increased its lifespan to ~1.33616×101443 ticks[16] and decreased its bounding box to 94×98.[17]
x = 94, y = 98, rule = B3/S23
15b2o12b3o2b4ob3o3bo3b2o$14bo2bo11bob2o2bo8b2ob3o$14bo3bo7bo3bo2b2o8b
3o21b2obo3b8ob3o$15bo3bo7b2obo6bo6b2o4bo13bob2o2b3o5b3o2bob2o$16b4o5b
2obo5b2obo6bobobobo14bo3b2o3bo8b2o$16bo9bo3b2o9b2ob4o17bobob2o4bo8bo$
16b2o8bo4bob2obo5bob3o17bo6bobo13bo3b2o$18bo6bo3bo10bo3bo13b2o3bobo2bo
3bo14b2o4bo$15bobo22b5o12bo2bo5bo5bo7bobo5bo2bo$16bo14b2o25b2o11bo9b2o
5bo3bo$31b2o5b4o2bo17b2o4bo12bo7bo3bo$28bo9bo2bo19bobo3bobo20bo2bo$22b
o4bobo32bo5b2o16b2o3b3o$21bobo4bobo14b2o34b2o3bobobob2o$11b2o8bobo5bob
o8b2obo2bo34bo7bo3bo$12bo9bo7bobo7b2ob2o21b2o14b3o2b2o4bo$12bobo16bobo
32bobo15bo5b2obo$13b2o3bo13bobo32bo19b3o3bo$2b2o3b2o8bobo13bobo6b2o14b
2o33bo$2b3ob3o9bo15bobo5b2o13bo2bo15b2o11bo3bo$3b2ob2o7bo5bo7b2o4bobo
20bobo14bo2bo11bob2o$14bobo3bobo7bo5bobo20bo15bobo10bobo$o2b3o2bo6bo5b
o5b3o7bobo36bo12bo$2bo4b2o3bo5bo8bo10bobo5bo16bo20b2o$ob2ob3o3bobo3bob
o19bobo3bobo13b3o19bobo$ob2ob4o3bo5bo21bo5bo13bo14b2o7bo$obo3b2obo5bo
27bo16b2o12bo2bo$4bo3bobo3bobo5b2o18bobo29bobo$2ob4o2bo5bo6b2o13bo5bo
31bo$bo10bo23bobo$2o4bo4bobo22b2o13bo2bo29b2o$3obobobo3bo12b2o23bo3bo
9b2o5b2o11b2o$bo3b2o2bo15b2o14b2o7bo4bo8b2o5b2o$bo2b5obo30b2o7bo4bo$3o
2b2o2bo12b2o27bo3bo11b2o$2o2bo3bo13b2o28bobo12b2o17b2o$ob4o8b2o70bobo$
4o2bobo6bo23bo47bo$2o3bo9bobo21bo$b2o13b2o21bo4b2o43b2o$o2bobo2bo35b2o
43bobo$2bo3bo79bo3b2o$12b3o25b2o5b2o21b2o13bobo$2bo5bo31b2o5b2o21b2o
14bo$2bo5b3o72bo5bo$2bo8bo70bobo3bobo$10b2o71bo5bo$65bo20bo$52b2o6bo3b
obo4b2o12bobo$2bo49b2o5bobo3bo4bo2bo12bo$o48bo10bo10b2o$obo3b2o10b3o
12b2o13bobo$o5b2o8b2ob2o8b3obobo13bo31b2o4b2o2b2o$o15b2ob2o11bo2bo19bo
25bo5bobo2bo$3b2o12b2o9bo24b3o6b2o9bo9bo5bobo$3b2o47bo10bo8bobo7b2o5b
2o$52b2o9bobo5bobo6bo3b2o$41b2o21b2o4bobo7b4o2bo$33b2o6b2o17b2o7bobo3b
2o6bob2o$26b2o5b2o24bo2bo5bobo4b2o3b2obobo$26b2o10bo20bo2bo4bobo10b2ob
obo$37bobo20b2o4bobo14bob2o$23b2o5b2o6bo26bobo15bo$23b2o5b2o32bobo14bo
bo$34b2o29bo15b2o$3bo29bobo26bo11b2o9b2o$33b2o13b5o8bobo11bo9bo$2ob3o
41bob3obo8bo7b2o3bob2o4bobo$2o2bo2bo40bo3bo17b2o2b2obo2bo2b2o$o6bo21b
2o13b2o3b3o5b2o7b2o9bob2o$2o2bo2bobo11bobo4bobo13b2o4bo6b2o7b2o2b2o5bo
5b4o$2bo4bo14b2o4b2o31b2o7bo5b2o4bo3bo$3bo2bobo13bo32bo5bo10bo8bobo$5b
o41b2o5bobo5bo8b2o9b2o$2bob3o3bo37bo6bo5b2o$4bo5bo28bo5b3o4bo5bo$3bo3b
o2b2o9b2o15bobo4bo5bobo3bobo5b2o$12bo7bobo16bo12bo5bo6b2o$12b3o5b2o27b
o5bo$39bo8bobo3bobo$38bobo8bo5bo3b2o$15bo22bo2bo3bo6bo6bobo$14bob5o18b
2o3bobo4bobo7bo$13b2o5bo23b2o6bo8b2o12b2o$13b2o3bo2bo52bobo$21bo53bo$
15b2obo2bo26bo$18bo2bo25b2o2bo$19b2o7bo20bo3bo2b2o$19b2o6bobo15b2o4bo
4b2o$27b2o20b2o20bo$46b2o5bo17bo$44bo4bo3bo9bo7bo$17b2o7b2obo18b2ob2ob
o7bobo$18bo4b2o2b4o16b2ob2o2bo6bo2bo$17bobo2bo8bobo13bo6b2o6b2o$17bo2b
2obo2bo3bo2bo8bo2b2o5b2o$18b3obo2b3ob7o5b9ob5o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 500 WIDTH 500 ]]
Please enable Javascript to view this LifeViewer.
94×98 exponential diehard by Grankovskiy et al. (click above to open LifeViewer ) RLE : here Plaintext : here
On April 9, Grankovskiy posted a concept for a pattern whose lifespan is measured via tetration , the next hyperoperator after exponentiation. Originally posted in the form of a methuselah,[18] the diehard version was completed on April 11.[19] With optimization by Tanner Jacobi [20] and toroidalet,[21] [22] its lifespan is somewhere between 15 10 and 16 10 ticks.[23]
x = 111, y = 90, rule = B3/S23
21b6o23b8obo$19b10o21b2obobo4b3o24b2o15bo$21bo4bo26bo3b2o28b2o8bo6bo$
43b2o13b2o2bo34b2o5bo$44bo12bo40bo8b2o$44bobo6b2o3bobobo21b2o21bobo$
45b2o6bobo28b2o22bo$56bo7b2o$39b3o11bo2bo7b2o21b2o8bo$30b2o6b3o15bo30b
2o6b3o4b2o$30b2o13bo7bobo38bo7b2o$44bobo6b2o39b2o$45bo$23b2o17bo5bo50b
2o7b3o$23b2o6bo9bobo3bobo18bo30b2o6bobo$31b2o7bobo5bo3b2o13bobo37bo$
31b2o6bobo3bo6b2o14b2o32bo2bobob2o$32bo5bobo3bobo9bo5b2o22bobo13b2o3b
2obo$37bobo5bo9bobo3bo2bo23bo17bobobo$36bobo17bobo3b2o20bobo21b2o$35bo
bo19bobo24bo23bo$34bobo21bo24bobo$33bobo6b2o5b2o4bo27b2o$21b2o3b2o4bob
o7b2o5bo4bobo3b2o20bo$22b5o6bo13bobo5bo4bobo20b2o$22b2ob2o20b2o12b2o
13b2o6bo$22b2ob2o10b2o37b2o$23b3o4b2o5b2o$30b2o23b2o22b2o$55bo23b2o$
42bo10bobo13b2o$41bobo9b2o14bobo13b2o$21b2o4b2o5b2o4bob2o26b2o4b2o6bob
o4b3o$22bo4bobo4b2o3b2ob2o22bo9b2o6b2o5b3o$19b3o6b2o10bob2o21bobo13bo
8bo3bo$19bo21bobo22bo6bo6bobo8b5o10bobo$31bo10bo29bobo4bobo10b4o11b4o$
30bobo39bobo3bobo24bob2o$25b2o4bobo39bo5bo6bo18bo4bo$27bo4bobo25b2o8bo
5bo7b3o18b3ob2o$24bo8bo25bobo7bobo3bobo5bo7b2o13b3obo$25b2o31bo2bobo6b
o5bo6b2o6b2o12bo3b2o$43bo14b2o2b2o3bo5bo33bobo$20bo16b2o3bobo10bo10bob
o3bobo12bo17bo2bobo$20b3o8bo5b2o4bo10bobo10bo5bo7bo5bo18bobo$23bo7b2o
22bo8bo5bo9b3o4bo$13bo8b2o7b2o9bo20bobo3bobo7bo3bo8bo$12bo6bo12bo9bobo
19bo5bo7bob3obo7bo$12b3o3bobo6bo14b2o17bo5bo11b5o8bo$17bo2bo6b2o31bobo
3bobo$17bobo7b2o32bo5bo$18bo3bo5bo35bo$21bobo39bobo$21bo2bo39bo$22bobo
47bo25bo$12bo10bo22bo25b3o23b2o$12bobo4bo25bobo27bo23b2o$5bo6b2o5b2o
24b2o5bo21b2o15b2o$4bo14b2o30bobo29b2o6b2o$4b3o13bo31bo3b2o25bo$15bo9b
o29bobo26b3o$15b2o7bo2bo14bo12b2o29bo7b2o$15b2o4b2obo2bo14b2o7bo42b2o
9bo2bobo$16bo5bo5bo13b2o6bobo53bobobo$11bo11b5o15bo7b2o38b2o14bo$11b2o
11bobobo62b2o17bo$11b2o11b5o79bo$o11bo12bo7bo72b2o2bo$obo4bo18b4o75b3o
b2o$2o5b2o18bo3b2o19bo7b2o5bo37b2o3bo$7b2o4bobo17bo17bobo5bobo4bobo36b
obob2o$8bo4b2o19bo2bo14bo6bo6b2o38bo$o13bo20bo13bo8b2o45b3o2bo$b3obo
29bo12bobo54b2obobo$bo2b2o43bo5bo$4bo31bo17bo2bo15bo$ob2obo30bob2obo4b
2o6bo2bo5b2o3bo4b2o$2o33b2obobob2o2b2o8bo6b2o2b2o5b2o$o35bob3o27b2o4bo
26b3o4bo$bobo33b2obo3bo6b2o16bo3bo26bo2bo4b2o$38b3ob2o6bo2bo46bo2bo2bo
bobo$40bo10bo2bo52b2obo$41b2o4bo4b2o51bobob2o$9b4o29bo3bo2bo6b2o7bo2b
2o23bo13bo$9bo3bo2b2o2b2o3bo20bo2bo5bo2bo4b3o2b2o2bo16bob5o3b2o5b2obo$
9bo6b3o4bo10b2obobo2bo5bo5bo2bo8b2o2b3o18b2ob2o4bo4bob2obo$10bo4b4obo
2bo11bobo3bo13b2o9b2o2b3o19b2o2b2o11bo$15b2obobobobo10bo4b2o3b2o19b2o
6bo2bo9b2o2b2obo14bo$16b10o10b3o2b2obo22bo6b3o10bo3b2ob6o2bo$35b9o2bo
41bo2bo3b5o2b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 500 WIDTH 500 ]]
Please enable Javascript to view this LifeViewer.
111×90 tetrational diehard by Grankovskiy et al. (click above to open LifeViewer ) RLE : here Plaintext : here
In other rules
In HighLife , despite the instability of the traffic light sequence, the die hard still works, disappearing after 119 generations.
References
↑ Ian07 (December 11, 2018). Re: apgsearch v4.0 (discussion thread) at the ConwayLife.com forums
↑ Ian07 (January 13, 2022). Re: Soup search results (discussion thread) at the ConwayLife.com forums
↑ Ian07 (February 21, 2022). Re: Soup search results (discussion thread) at the ConwayLife.com forums
↑ Dave Greene (March 31, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Dave Greene (March 31, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ 6.0 6.1 squareroot12621 (March 30, 2022). (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Pavel Grankovskiy (March 31, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Jiahao Yu (March 31, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Dean Hickerson (April 7, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Pavel Grankovskiy (April 7, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ toroidalet (April 7, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Dean Hickerson (April 7, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ EvinZL (April 9, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Rocknlol (April 10, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Adam P. Goucher (April 10, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Dean Hickerson (April 10, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ toroidalet (April 10, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Pavel Grankovskiy (April 9, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Pavel Grankovskiy (April 11, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Pavel Grankovskiy (April 11, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ toroidalet (April 13, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ toroidalet (August 2, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums
↑ Brett Berger (April 17, 2022). "Telling the tale of two tetrations ". a blog by biggiemac42 . Retrieved on April 17, 2022.
External links
Pavel Grankovskiy (April 12, 2022). Re: (Engineered) diehards (discussion thread) at the ConwayLife.com forums (analysis of the tetrational diehard's total runtime)