A Garden of Eden is a pattern that has no parents and thus can only occur in generation 0. The term was first used in connection with cellular automata by John W. Tukey, many years before Conway's Game of Life was conceived. It was known from the start that Gardens of Eden exist in Life because of a theorem by Edward Moore that guarantees their existence in a wide class of cellular automata.
Garden of Eden theorem
The Garden of Eden theorem was proved by Edward Moore and John Myhill pre-1970 and shows that a wide class of cellular automata must contain Garden of Eden patterns. Of particular interest is that Conway's Game of Life falls into this class, and thus Gardens of Eden were known to exist right from the day it was conceived.
Statement of the theorem
A finite pattern (or finite configuration) is a pattern with a finite number of cells . A cellular automaton is said to be injective over finite patterns if no two distinct finite patterns map into the same finite pattern. It is said to be surjective if every pattern is mapped to by some other pattern. Thus, by definition a cellular automaton contains Gardens of Eden if and only if it is not surjective.
The Garden of Eden theorem states that the class of surjective cellular automata and those which are injective over finite configurations coincide. In other words, a cellular automaton has a Garden of Eden if and only if it has two different finite configurations that evolve into the same configuration in one step.
As a corollary, every injective cellular automaton (i.e., one with one-to-one global mapping for both finite and infinite patterns) is surjective and hence bijective. However, surjective cellular automata do not need to be injective over infinite patterns (and thus need not be injective in general).
Application to Conway's Game of Life
The theorem applies to Conway's Game of Life because it is easy to find two different finite patterns that are mapped into the same configuration. The configuration in which every cell is dead, and the one in which exactly one cell is alive both lead to the one in which every cell is dead. The Garden of Eden theorem then implies that there must exist a Garden of Eden pattern.
Pre-block and
grin are both
parents of the
block . The Garden of Eden theorem thus says that Gardens of Eden exist in Conway's Game of Life.
Orphans
A related concept to Gardens of Eden is that of orphans , which are finite patterns, including both live and dead cells, that cannot occur as part of the evolution of another pattern. That is, they are Gardens of Eden that can be extended in any way to form other Gardens of Eden. A minimal orphan is an orphan that, if any subset of its cells is removed, is no longer an orphan.[1]
Explicit examples
Several Gardens of Eden and orphans have been constructed, the first by Roger Banks et al. at MIT in 1971 . It had a bounding box of size 33 × 9 and had 226 cells . Jean Hardouin-Duparc found the second and third orphans by computer search in 1973, which had bounding boxes of size 122 × 6 and 117 × 6 . It was long suspected that no height-5 Gardens of Eden exist, but in April 2016 , Steven Eker found a Garden of Eden fitting inside a 5 × 83 bounding box.[2] Eker also proved that any Garden of Eden must have a height greater than 3. On June 11, 2023 , Andrew J. Wade proved that there are no height-4 orphans, assuming that all specified cells (living and dead) are counted.[3] It remains an open question whether there exist Gardens of Eden where live cells are restricted to four consecutive rows.[4]
Many smaller Gardens of Eden have been found in more recent years. Garden of Eden 2 was found by Achim Flammenkamp in 1991 , contained 143 cells, and had a bounding box of size 14 × 14 . Garden of Eden 3 was found by Achim Flammenkamp in 2004 , contained 81 cells, and had a bounding box of size 13 × 12 . The smallest known Garden of Eden for about five years was Garden of Eden 4,[5] which was also found by Achim Flammenkamp in 2004. It contained 72 cells and had a bounding box of size 12 × 11 . Smaller Gardens of Eden were subsequently found, including Garden of Eden 5 and Garden of Eden 6, which contains 56 live cells and a bounding box of 10 × 10 and was found on December 14, 2011 . For the smallest Garden of Eden currently known, refer to the table below.
Computer searches have revealed that there are no Gardens of Eden contained within a 6 × 6 bounding box .[6]
#N Gardens of Eden
#O Nicolay Beluchenko
#C Many Gardens of Eden found in 2009.
#C www.conwaylife.com/wiki/index.php?title=Garden_of_Eden
x = 276, y = 141, rule = b3/s23
o2bob3obobo2b5o12bo2b3ob8obo12b2ob2obob3ob3o2b2o197b$obobo2b2obobobob
2o13b2o2b5ob2ob3obo12b2o2bobob4ob4o198b$2obo2bob2obob6o13b3o2bob6ob3o
11bob2o2b3ob2o3bobo198b$ob2obob2obobo2bo2bo13bo2b2o3bo2bobobo12b2ob2ob
ob2ob4obo2bo196b$3obobo3b2o3b2o14bo2bob3ob2o2bob3o11b4obob3o2b2o4b3o
195b$3o2bobobob4o2bo13b2ob3ob2o2bob3obo12bo2bobobob3ob3ob3o195b$bobo2b
obob3obobobo11bo2b2o2bobobobobob2o11bobob4obobobob2obo197b$obob2obobob
ob3ob2o12bobob2ob3ob3obobo12bobob2obob9o197b$o2b2obob3ob2ob4o12b4ob3ob
4obo2bo11bobob2obobo2b3obo199b12$bobob2o2bob3o2bo13b6obob3o2b2o230b$3o
b5obobo2b2o13b3obobobo2b2obob2o228b$bob2obo2bobob2obo13b2obobob5obob2o
229b$ob4obob2ob2obo14bob5ob3obo2b3o228b$2obob5obob4o13b2ob2ob5ob4o230b
$obob3ob3obo2bo14b3ob4obobob6o227b$2obobobo2b6o14b4ob3o2b6ob2o227b$ob
3obo2b4obo15bobobobob4o2b3obo227b$b3obob4ob2obo14b2obobobob3ob2obobo
227b$ob4o2b3o2b2o15b11ob6o228b11$b2ob2o2bob2o8b4o2bo4bobo242b$ob3ob4o
10b2o2b2o2bob3o243b$2ob3ob3obo8b3obobo2bo3bo242b$b3ob3ob2o9bob2obob4ob
o243b$3o2b5obo9b4obob2obobo242b$ob3obob3o10bobob4obo2bo242b$2obobo2bob
2o8bobobobob5o243b$ob3o2bob3o9bob3obob3o244b$bo2b3obob2o8bob2ob2obobob
2o242b$3ob3o2bobo9bob3obo3b2o243b$3b3o2bobo9bobob3obob4o242b10$b2o2b4o
2bo8b4ob5obo8b2obobob5o8b11obo7bo2bobo2b3o10bobob2obob2o9bob2ob2o2b3o
8b2o2b2o2b3o9b2o2b3o2bobo7b2o2bob3ob2o8bob3obobob4o6b2ob8obo8bo3b2o3bo
b3o9bob4ob2ob2o$b2obobo2bobo9bob3ob4o9b5obobo2bo8b2obob5obo8b3obob2obo
10bobobo2bobob2o8b5obob3o8b3obob2ob2o9bob2o3bob4o8b2o2bobobo2bo7bob2ob
obob2o9b3obobo2bob2o9bobo2bob3obo8b2obo2bob2o3bo$3bobobo2bo9bobobobo2b
o10bobob2ob2obo10b4o2bobo10bobo2bo2b2obo9b3obo2bo2bo8bob2o2bo3b3o7bob
2obob3obo8bobobobo2bobo8bo2b4obob3o8b2obob3obo2bo6bo2bobobob3obo7bobob
ob2o2b2o8bob3obobo2bobob$obobobobo2bo8b2obob3ob2o10bobob2ob4o9bob3o2b
5o8b4obobobobo7b3obobo2b2obo7bobobo2bobob2o8bo2b5o2bo9bobobob2obobo7bo
bob2obob2o9bo2bob2obo2b2o7bobob3o2bob3o8b3obob2obob2o5bob2ob2obobo2bob
o$2ob2o2bob2o9bob3obobo2bo8bob4obob2o9bob3obob3obo7b2obo3b6o9bo2bobobo
b2o8bobobo2bo3bo7b4obob2obobo7bob4o2b2obo8b2ob4obob2o8bobobob2ob3obo6b
2obobobob2ob2o8bob2obob2o3bo7bobo2bo3bobo2b$obo2bob2o2bo9bobobobobobo
9bobobo2b4o8b3o2bob4o11bob3obobo9bo2bo2bobo3bo7bobobobo2bobo8b3obobo2b
2obo8bo3bob3o10bobobo2bobo2bo7bo2bob4obobo7bob3obob6o7b2obob4ob4o6bo4b
obobobob2o$2obob2o2bobo8bobob3obobo9bobobob3o2bo9b3ob3o2b3o7b3o2bobob
3o9b2obo2bo2bo10bo3bobob4o7bob2ob2o2bobo8bobobob2ob2obo7bob2obob5o9b5o
bo3b3o7b2ob2ob2obobo7b4obobob2obobo6bob3obobobobobo$bo2b2obo2bo10b3obo
bo2b2o8b4ob3ob3o8b2ob3ob5o9b3o2bobo2bo9b3o2bob2ob2o7b3ob2o2bo2b2o8b2ob
ob3obo9bo2b3ob2o2b2o8b2obobob2o10b3ob3obob3o7b5ob2obobobo6bobob3obob4o
6b3obobobobo4bo$ob2obo2b2obo8bobobob5o9bobo2b5o10bob3obob3o9b3obob2o2b
o9b3obo2bo2bobo8bob2o2bobob2o7bobo2bo2b2ob2o8bob2o2bobobo8bob2obob2ob
2o9b4o2b5obo6bobo2bob2obob2o6b2obob2o2bobo9bob3obobob5o$3obo2bob2o10bo
bobobobobo9bob4ob4o9b2ob8o8bo2bob2o2bob2o9bo2bobo4bo7bobobo2bo2b2o9bob
2o2bob2obo10bob2o2b2obo7b2o2bobob3o10bob3o2b2o2b2o6b2ob2obo2b3obo7b4o
2b2obobobo8bobo2bo2bobobo$2b2ob5obo8bob3obob4o8bobobob3obo9bob2ob3ob3o
8b2ob3o2bobo11b3ob3ob2o9bob4ob5o7b5obob2obo9b2o2bobob3o8b2obobob3o10bo
b3obobob2obo6bobob3ob3o2bo8bobob2ob2o2b2o7bobob2ob2obobob$2bobo2bo2bo
16bob2o14bob3obo9bobob7o9b3ob5o11b3obobob2obo7bob2ob2obobobo7bobob2obo
bo11bob2o3bob2o8bobob4ob3o8b3o2bobobob3o6b2ob11o6bo3bo2b2obobobo6bob5o
bob3obo9$obo17bob2o2bobo2bo9bob2o3bo3bo9b2obobobo2bo7b4ob3obobo8b3obob
2ob2obo7bo2b2o2bobobo8bobo2bo2bo2b2o8b4obob4obo6b2o6bo2bo9bobobo2b2obo
bo6bob4ob3ob2o43b$bob4o2b2obo7b3ob4obob2o7bo2bob3o2bobo7b3obo2b3obo8b
8o2bo10bobobo2b4o9bobo2bobob2o9bo2b2obobo2bo7b2o2b5obobo8b2o2bobobobob
o7bo2bo2bo2b3o8bo2bo2bobob2o43b$2bob4obobo9b3ob3o2bobo9bobo4bobo10b5ob
ob3o7bobobobob2obo8bobobobobobobo9bob2o3b2o9bob2o2bo3b2o8b3obob2ob3obo
8bob3ob3ob2o7b3ob2o2b2ob2o6b2ob8obo43b$bob2obo2b2obo7b2ob3obobob2o8bob
obobo2bobo8bob3obobobo8b2obobob4o9b2obob3obobo8b2ob2obobo2bo9bobobobob
obo10b2o2bob3o9b2obobobob3obo7b2obo2bobobo8bobo2bobobobo44b$obob2ob3ob
o8bo2b6obobo7bobobobob2o10bobob3obob3o7bob3obob3o9bob3obobob3o7b3ob2ob
obobo12b2o2bob2o10b6obobobo7b4obob5o7bo2bobo2bobobo7b5ob3ob3o43b$ob7ob
obo7b3obob2obobo8bobo2b4o2bo9b3obobobo10b2obobob2o2bo9bobobo3b2o10bo3b
4obobo7b2obobob3o2bo7b2obob4obob2o6b2ob3obobobo9bo2bob2obob2o9bob6o2bo
43b$b3obo2b2o11bobo2bobobobo8bo2b2o2bobobo8bo2bob3obobo7bobob4ob2o9bob
ob7o9bob2o2bo2bo12bobob2o2bo2bo8bobobob3ob2o8bobob4o2b2o6bobo2bo2bo2bo
9b4obob2o2bo43b$bob3o2bob3o7b3o2bobob2o9bo2bobo2b2o10bobob2ob6o7b2obob
7o9bobobobob3o8b2ob3obob2obo12bo2bo2bo9bob2o3b2obobo6b4obob6o8bobobo2b
obo9bo3b2ob6o43b$3ob8o8bo2b2obob5o8b2obob3obobo7b5ob4ob2o7b3obobob5o7b
obobob3o2bo8bobobo2b2o2b2o8bob2o2bobob2o7bobob5o3bo8b2ob4ob3obo8bobo2b
obo2bo7b2o2bobo2bob3o42b$3b2o2bob2obo9b2obobo2bobo7bo2bobobobobo8b4obo
2bobobo7b2ob3obobobo9bobob2o2bo10b2obob3obob2o9b2o2bobobo2bo6bo2bobob
5obo6b2ob3obo2b4o9bob2obobo9bob4ob3o2bo43b$obobobobob3o7b2obo2b2obob2o
7bobobobo3b3o9bob4ob3o8bobobobob3obo9bo2bob2ob2o8b3o2bo2bobobo7b3o2bob
o2b3o9bobob2o2bobo7bob3obob2obobo6b4o2bo2bobo9b2obob4obobo42b$2ob3obob
ob2o7bob4ob2ob2o9bobob2o2bo2bo8bob4obo2b2o8b2ob2o2b4o9bob3o2bo2bo9bob
2o2bob3o9bobob2o2bobobo7bob4obob3o8b2ob3ob3obo8b2o2bobob4o9b2obobobob
2o43b$2o3bob2obobo14bo2b2o8b3obo3b2obo8bo3bo15b3ob4obob2o7bo3bo2b5o8bo
bobobo2bo2bo7bobobo2b2obo2bo6bobobob2obo2bo7bob4ob2ob2obo6b2ob2o2bob2o
bo7b3obobo3b3o43b13$3ob4ob5o6b2ob3obo3bobo6b5ob3obob2o6bob3ob5obo203b$
2obobob5obo6bobob2o2bob4o7b13o6b3obob2obob2o203b$b8ob4o6b2ob2ob4o2bo7b
4o2b2ob5o6bobob2o2bobobo203b$12obo8bob3ob3ob2o6b5obob4obo7bobo2bob2ob
2o203b$ob3ob2ob2ob2o8b2ob4ob2o8b6obobo2b2o6bob3o2b2ob3o203b$2ob4ob4o8b
2ob3obob4o7b3ob3obob4o7bo2b2obo2bo205b$b9ob3o6bob3o3b2obobo7b4ob5ob2o
6b2obobo3bob2o203b$4ob3ob5o6b2ob2ob2ob2obo8bobob3ob4o9bo2bob2o207b$b4o
b8o8bob6ob3o6bobob3obo2b3o7bo2b2obob3o204b$4ob2ob3o2bo6bob2ob4ob3o8bob
3obob3obo6bo2b2obobobobo203b$2ob6ob4o6b2ob3o2b3ob2o6b4o2bobob4o6bob2ob
o3b4o203b$4obob5obo6bob3o4b3obo6b2ob3ob7o7b3o2bobobo205b$ob3o2b3ob3o8b
5obo2b3o6bob7ob3o7b4obob3obo204b$7b5obo8bo4b3o3bo13b3ob3o10bob5o205b8$
45bo3bo14bo2b2o2bo13bob4o2bo10bob4ob3o162b$bobob2obob2o10bob3o15b3obob
ob3o11bob4obo10b2ob3ob3ob2o7b2obo2bobobo163b$ob4ob4obo8b4obo2bobo9bobo
b5obobo9bobob2obobo9b5ob3obobo7b4obob3obo162b$4ob3ob3o10b2obobob4o8b2o
bob3obob2o7b2obob4obob2o7bobob2obob4o8b4obob4o162b$b4ob7o8b4o2b5o9bob
2ob3ob2obo9bobob2obobo9b2ob2obobob2o8b2obobobo2bobo161b$2obobobobobo
11bobobobob2o7bobo2bobobo2bobo7bobob4obobo8b3ob2obob4o9bob4obobo162b$b
4obobob3o9b3obobobobo8b4ob3ob4o7b14o7b2ob6ob3o8bobob4obo163b$ob2ob3ob
2obo7b2o3b3o3b2o9b11o8b14o7b2ob6ob3o7bobo2bobobob2o161b$3obobob4o8bobo
bobob3o10b4ob3ob4o8bobob4obobo8b3ob2obob4o8b4obob4o162b$bobobobobob2o
7b2obobobobo10bobo2bobobo2bobo8bobob2obobo9b2ob2obobob2o9bob3obob4o
161b$7ob4o9b5o2b4o9bob2ob3ob2obo7b2obob4obob2o7bobob2obob4o9bobobo2bob
2o161b$b3ob3ob4o7b4obobob2o10b2obob3obob2o9bobob2obobo9b5ob3obobo8b3ob
4obo163b$ob4ob4obo8bobo2bob4o9bobob5obobo10bob4obo10b2ob3ob3ob2o181b$b
2obob2obobo14b3obo11b3obobob3o11bo2b2o2bo13bob4o2bo182b$45bo3bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBSIZE 2 ZOOM 2 ]]
Please enable Javascript to view this LifeViewer.
Many Gardens of Eden found by Nicolay Beluchenko in 2009(click above to open LifeViewer ) RLE : here Plaintext : here
Records
The following is a list of Gardens of Eden. Numbers marked red are records. Width of the bounding box is more than or equal to height.
Year
Author
Bounding box width × height
Orphan
Population
Density
Symmetry
Pattern
Note
1971
Roger Banks et al.
33 × 9 = 297
226
0.7609
C1
x = 33, y = 9, rule = B3/S23
33o$2obob3ob3ob2obobobobobobobobobo$obob3ob3ob4ob3obobobobobobo$5ob3ob
3ob4ob14o$obob2ob3ob3obob3obobobobobobo$4ob3ob3ob5ob2obobobobobobo$b2o
b3ob3ob3obobob13o$2ob2ob3ob3ob2ob4obobobobobobo$18ob14o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
Garden of Eden 1, which is still a Garden of Eden even after removing the five rightmost columns[2]
1973
Jean Hardouin-Duparc
122 × 6 = 732
size = 732
576
0.7869
C1
-
not a GoE, one predecessor[2]
1973
Jean Hardouin-Duparc
117 × 6 = 702
-
-
-
-
-
[2]
1991
Achim Flammenkamp
14 × 14 = 196
143
0.7296
C1
x = 14, y = 14, rule = B3/S23
2obobobob2obo$ob3ob3ob2obo$4ob3ob2obo$3obobobob4o$b3obob3ob2o$7ob4obo$
bobob8o$ob3ob2obobobo$6ob6o$ob2ob5obobo$3ob9o$b3obobobob3o$3obobobob2o
bo$ob12o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
Garden of Eden 2[2]
2004
Achim Flammenkamp
13 × 12 = 156
size = 134 (alternative form from Nicolay Beluchenko, 2006)
81
0.5956
C1
x = 13, y = 12, rule = B3/S23
2bob3o$2obob5obo$obob2obobo$b4obob3o$obob2ob3obo$b3ob2obobo$2bo3b3o2b
2o$bob2obobob2o$3ob4obobo$bob4o3bo$bobob2o2bo$b2obo2b2o2bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
Garden of Eden 3[2]
2004
Achim Flammenkamp
12 × 11 = 132
72
0.6372
C1
x = 12, y = 11, rule = B3/S23
bob2ob2o2bo$2bob3ob3o$2b2ob3obobo$bob3ob3obo$5o2b4o$b2ob3obo2bo$b3obob
o2bo$b2ob3o2b2o$ob3ob3obo$o2b2o2bobobo$10bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
Garden of Eden 4[5]
2004
Achim Flammenkamp
13 × 10 = 130
90
0.6923
C1
x = 13, y = 10, rule = B3/S23
bob3ob6o$3ob3obobobo$ob3ob3obo$4o2b4ob2o$2ob3obo2bobo$3obobo2b4o$2ob3o2b3obo$b3ob3ob3o$4o2b3ob2o$ob3obob3obo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
x = 15, y = 12, rule = B3/S23
o2b3o6b2o$2bo6b2o2b2o$b2o3b2ob2o$bo2b2obo3bo2bo$bo2bo5bo2bo$2bo2b2ob2o3bo$bo3bo3b2ob2o$o2b2o2bo2bo$bo4bo7bo$3bo3bobob4o$obob3o2b2o2bo$o4bobo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
not a GoE, one unique predecessor[5]
2009
Nicolay Beluchenko
11 × 11 = 121
69
0.6330
C4_1
x = 11, y = 11, rule = B3/S23
b3o2b2o$b2obobob3o$b3o2b5o$obobobobobo$4obobobo$4b3o$bobobob4o$obobobo
bobo$5o2b3o$3obobob2o$3b2o2b3o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
Flower of Eden, or Garden of Eden 5[7]
2009
Nicolay Beluchenko
11 × 11 = 121
size = 113
59
0.5221
C1
-
[7]
2009
Nicolay Beluchenko
11 × 11 = 121
size = 110
49
0.4455
D2_x
-
[8]
2009
Nicolay Beluchenko
13 × 11 = 143
size = 139
58
0.4173
C1
-
[8]
2009
Nicolay Beluchenko
11 × 11 = 121
size = 115
47
0.4087
D2_x
-
[9]
2009
Nicolay Beluchenko
11 × 11 = 121
size = 107
51
0.4766
D2_x
-
[9]
2009
Nicolay Beluchenko
11 × 11 = 121
45
0.3982
D2_x
x = 11, y = 11, rule = B3/S23
3b2o3bo$2bo2bobobo$bobo2bo3bo$obobo2bobo$o2bobo2bo$bo2b3o2bo$2bo2bobo
2bo$bobo2bobobo$o3bo2bobo$bobobo2bo$2bo3b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
45-cell Garden of Eden, the smallest known in terms of population[10]
2009
Nicolay Beluchenko
12 × 12 = 144
size = 129
50
0.3876
C1
-
[10]
2011
Marijn Heule et al.
11 × 11 = 121
size = 93
65
0.6989
D8_1
-
almost Garden of Eden 6
2011
Marijn Heule et al.
11 × 11 = 121
size = 119
45
0.3781
D8_1
-
almost Garden of Eden 6
2011
Marijn Heule et al.
10 × 10 = 100
56
0.6087
C4_4
x = 10, y = 10, rule = B3/S23
bob3obo$2bobobo2bo$ob3o2b2o$bob5obo$o2bo2b4o$4o2bo2bo$ob5obo$b2o2b3obo
$o2bobobo$2bob3obo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
Garden of Eden 6[11] [12] ranked third place in the Pattern of the Year 2011 competition on the ConwayLife.com forums, behind the lobster and the fully universal Turing machine .[13]
2012
Marijn Heule et al.
13 × 13 = 169
49
0.3203 [note 1]
D8_1
-
[15]
2015
Steven Eker
11 × 9 = 99
66
0.6667
C1
-
[16]
2016
Steven Eker
12 × 8 = 96
57
0.5938
C1
x = 12, y = 8, rule = B3/S23
o2b2obo2b3o$b2o2b2obobo$obobo2bobobo$b4o2b2o2bo$o3b3ob4o$2obobo2bob2o$
obo2b3obobo$b4obob4o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
Garden of Eden 8×12, the smallest known in terms of bounding box[16]
2016
Steven Eker
83 × 5 = 415
284
0.6927
C1
-
[2]
2016
Steven Eker
45 × 5 = 225
139
0.6233
D2_+1
x = 45, y = 5, rule = B3/S23
2obobo2bob3obo2b3ob7o2b6o2bobobobo$b2obob2obobobobobob3obobobobobobob
3obobobo$2b2ob2o2b4o2b6o2b6o2b5ob5obo$b2obob2obobobobobob3obobobobobob
ob3obobobo$2obobo2bob3obo2b3ob7o2b6o2bobobobo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 WIDTH 800 ]]
Please enable Javascript to view this LifeViewer.
Garden of Eden 5×45, the shortest known with the smallest height[17]
2016
Steven Eker
9 × 11 = 99
55
0.6180
C1
-
[17]
2017
Steven Eker
9 × 11 = 99
50
0.5682
C1
x = 11, y = 9, rule = B3/S23
2b2ob3obo$bo2bobobo$ob3o2b3o$bobobo2bobo$b3o2b2o2bo$2o3b2o2bo$obobob3o
$o2bobo2bo$b3o2b4o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ THUMBNAIL THUMBSIZE 4 ZOOM 16 ]]
Please enable Javascript to view this LifeViewer.
Garden of Eden 11, with the smallest known orphan[18]
↑ Orphans with arbitrarily low density can be constructed using two copies of American Dream [14] so the record in this table only applies to small, compact orphans.
See also
References
↑
Dave Greene (July 16, 2022). Re: Belated POTY 2012 nomination thread (discussion thread) at the ConwayLife.com forums
↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Achim Flammenkamp (January 27, 2017). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
↑
Andrew J. Wade (June 11, 2023). There Are No 4 Row High Orphans in Conway's Game of Life (discussion thread) at the ConwayLife.com forums
↑
Andrew J. Wade (June 11, 2023). Re: There Are No 4 Row High Orphans in Conway's Game of Life (discussion thread) at the ConwayLife.com forums
↑ 5.0 5.1 5.2 Achim Flammenkamp (December 1, 2009). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
↑ Gardens of Eden at Game of Life News . Posted by Adam P. Goucher on January 14, 2012.
↑ 7.0 7.1 Achim Flammenkamp (December 1, 2009). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
↑ 8.0 8.1 Achim Flammenkamp (December 1, 2009). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
↑ 9.0 9.1 Achim Flammenkamp (December 21, 2009). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
↑ 10.0 10.1 Achim Flammenkamp (December 21, 2009). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
↑ Achim Flammenkamp (December 17, 2011). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
↑ Marijn J. H. Heule et al. (August 9, 2013). "Symmetry in Gardens of Eden ". Electron. J. Comb. . Retrieved on January 5, 2021.
↑ beebop (February 28, 2012). Patterns of the Year 2011 (discussion thread) at the ConwayLife.com forums
↑ Ilkka Törmä (January 18, 2022). Message in #cgol on the Conwaylife Lounge Discord server
↑ Achim Flammenkamp (February 2, 2012). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
↑ 16.0 16.1 Achim Flammenkamp (April 13, 2016). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
↑ 17.0 17.1 Achim Flammenkamp (September 18, 2016). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
↑ Achim Flammenkamp (January 27, 2017). "Garden of Eden / Orphan ". Achim's Game of Life Page . Retrieved on December 24, 2020.
External links
Forum threads