Lx65 Duplicator (full technical name: Lx65_R64 ) is an elementary Herschel fanout conduit. It was discovered by Mitchell Riley on September 13, 2024 .[1] It is a duplicator which acts as an R64 conduit and an Lx65 conduit. Both ghost Herschels mark the output locations.
Its recovery time is 46 ticks if both of the FNG 's are suppressed -- e.g., if both output Herschels are connected to dependent conduits . Both FNGs will hit and destroy each other if both are left unperturbed, allowing for a repeat time of 142 ticks. If the FNGs are eaten , through the use of 7x9 eaters with one welded to an eater 5 , the recovery time is 61 ticks.
The Lx65 duplicator is a completely stable Lx65 conduit, which means that conduits with unusual periods can use this duplicator to rotate and flip a Herschel left. It is also both compact and spartan, consisting of two blocks , one eater 1 , and one loaf which acts as a transparent object .
Gallery
x = 62, y = 65, rule = B3/S23
53b2o$52bo2bo$53b2o5$37bo$37b3o$40bo2b2o$39bo2bobo3b2o$35bo2bob2o7bo$
35b4obo8b3o$31b2o7bo2bo$32bo2b2o3bobobo$32bobobo2b2ob2o15bo$19bo13bo
23b3o$17b3o36bo$16bo18bo20b2o$16b2o16bobo$35bo$3b2o27b3o21bo$4bo27bo
22bobo$4bobo47bo2bo2b2o$5b2o48b2o3b2o$15b2o2b2o15bo$8b2o5bo3b2o15bo$8b
obo2b3o20b3o15b2o$10bo27bo15b2o$6b4o$5bo$5b2ob2o$6bobo29b2ob2o$6bobo
19bob2o4bo2bobobo$7bo18b3ob2o4b2obo2bo$25bo13bo8b3o$25b4ob2o7b2o7bo$4b
2o9b2o11bobo6b2o2bobo3b2o$3bobo2b2o5b2o6b4obobo5bo2bo2b2o$2bo2bobobo
12bo3bobob2o5b2o$2b2obobo14b2o4bobo$5bob2o19bobo$2b2obo20bobob2o$o2bob
o20b2o$2o2bo4b2o$8bo2bo11b2o27b2o$2o2bo4b2o11bo2bo25bo2bo$o2bobo12b2o
2bobo27b2o$2b2obo13b2o2bo$5bob2o9bo$2b2obobo$2bo2bobobo14b2o$3bobo2b2o
14bo2bobob2o$4b2o19b3ob2obo$28bo$25b2obo$25bobo6$3b2o$2bobo$4bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ AUTOSTART ZOOM 6 GPS 20 WIDTH 700 HEIGHT 500 PAUSE 2 T 150 PAUSE 2 T 215 PAUSE 2 T 216 PAUSE 2 LOOP 317 ]]
Please enable Javascript to view this LifeViewer.
Composite conduit with an Lx65_R64 conduit improved with repeat time 61[2] (click above to open LifeViewer ) RLE : here Plaintext : here
x = 66, y = 84, rule = B3/S23
46b2o$46b2o$54b2o$54bo$47b2o3bobo$46bo2bo2b2o$42b2o2bobo$42b2o3bo3$58b
o$35bo22bo$35bo22b3o3b2o$28b2o3b3o24bo3b2o$28b2o3bo9$42b2o$43bo8b2o$43b
3o6bo$53b3o$28bo27bo$18b2o7bobo23b3o$18b2o7bobo21b3o$26b2obobo18bo$26b
o3b2o18b2o$19b2o3bobo$18bo2bo2b2o$14b2o2bobo29bo$14b2o3bo29bobo$48bo2b
o2b2o$49b2o3b2o$30bo$7bo22bo$7bo22b3o15b2o$2o3b3o24bo15b2o$2o3bo6$42b
3o$42bo$41b2o$14b2o$15bo8b2o$15b3o6bo$25b3o13b2o$28bo12b2o$2o23b3o$bo
21b3o$bobo18bo$2b2o18b2o3$22bo$21bobo$20bo2bo2b2o$21b2o3b2o$2bo$2bobo
$2b3o15b2o$4bo15b2o7$14b3o$14bo$13b2o4$13b2o$13b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ AUTOSTART ZOOM 5 GPS 60 WIDTH 700 HEIGHT 500 PAUSE 2 LOOP 320 ]]
Please enable Javascript to view this LifeViewer.
Chain of Lx65 conduits[3] (click above to open LifeViewer ) RLE : here Plaintext : here
x = 75, y = 75, rule = B3/S23
52b2o$51bo2bo$52b2o12$23b2o$23b2o8b2o23bo$15b2o17bo21b3o$16bo17bobo18b
o$16bobo3b2o11b2o18b2o$17b2o2bo2bo$bo5b2o13bobo2b2o$obo2b2obo14bo3b2o
10b3o13bo$obo2bo33bob2o11bobo$bo3bobo32bob2o9bo2bo2b2o$6b2o2bobo27bob
o11b2o3b2o$11b2o22bo4b2o$11bo23bobo$35b2o16b2o$53b2o5$59bo$57b3o$56bo
$56b2o2$17b2o$18bo$15b3o$15bo5$20b2o$20b2o3$14b2o3b2o$14b2o2bo2bo51bo
$18bobo51bobo$19bo26b2o3bo20bobo$46b2o2bobo20bo$50bo2bo2b2o$18b2o18b2o
11b2o3bobo$19bo18bobo17bo$16b3o21bo17b2o$16bo23b2o8b2o$50b2o12$21b2o$
20bo2bo$21b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ AUTOSTART ZOOM 6 GPS 60 WIDTH 700 HEIGHT 500 LOOP 256 ]]
Please enable Javascript to view this LifeViewer.
period-256 Herschel factory [4] (click above to open LifeViewer ) RLE : here Plaintext : here Catagolue : here
x = 164, y = 28, rule = B3/S23
14b2o63b2o63b2o$15bo13b2o49bo64bo$15b3o11bobo48b3o62b3o$31bo2b2o$26bo
2bob2o2b2o$2o23bobobo5bobob2o24b2o63b2o$bo22b2o5b2o2bob2obo25bo23bo3b
2o35bo23b2o$bobo20b2o3b2o2bobo30bobo20bobobobo35bobo20bo2bo$2b2o19bo3b
obob2o2bo31b2o20bobobo38b2o20bobobo$22bo2b2o2bobo3b2o51b2obob2o58b2obo
bo$22bo4b3obo55bo3bo3bo59bobob2o$22bo8b2o54bo4bobobo53b2o2b2obo2bo$22b
o4b3obo55bo3b2o3bo59bobobob2o$22bo2b2o2bobo3b2o50bo4bob2o57b2obob3o2bo
$23bo3bobob2o2bo51bo3bo62bo2bo3b2o$2bo21b2o3b2o2bobo31bo20b2obob5o34bo
21bob5o$2bobo19b2o5b2o2bob2obo26bobo19bobo2bo2bo34bobo20bo4bo$2b3o20bo
bobo5bobob2o26b3o19bo2bo39b3o21b4o$4bo21bo2bob2o2b2o32bo20b2o42bo23bo$
31bo2b2o124bo$29bobo127b2o$29b2o4$14b3o62b3o62b3o$14bo64bo64bo$13b2o
63b2o63b2o!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ HEIGHT 320 WIDTH 1100 ZOOM 6 GPS 10 AUTOSTART T 0 PAUSE 2 T 64 PAUSE 2 T 65 PAUSE 2 LOOP 66 ]]
Please enable Javascript to view this LifeViewer.
Periodic p4, p5 and p6 Herschel duplicators based on Lx65.(click above to open LifeViewer )
References
See also