OCA:2×2

From LifeWiki
Jump to navigation Jump to search
2×2
x=0, y = 0, rule = B36/S125 ! #C [[ THEME Inverse ]] #C [[ RANDOMIZE2 RANDSEED 1729 THUMBLAUNCH THUMBNAIL THUMBSIZE 2 GRID ZOOM 6 WIDTH 600 HEIGHT 600 LABEL 90 -20 2 "#G" AUTOSTART PAUSE 2 GPS 8 LOOP 256 ]]
LifeViewer-generated pseudorandom soup
Rulestring 125/36
B36/S125
Rule integer 19528
Character Chaotic
Black/white reversal B012458/S0134678

2×2 is a Life-like cellular automaton in which cells survive from one generation to the next if they have 1, 2 or 5 neighbours, and are born if they have 3 or 6 neighbours. It thus has rulestring "B36/S125". Patterns under the rule have a chaotic evolution similar to those under the standard Life, but the chaos tends to die out much more quickly.

Its name comes from the fact that patterns made up of 2 × 2 blocks continue to evolve as patterns made up of 2 × 2 blocks.

Block evolution

The 2×2 rule can emulate a simpler cellular automaton that acts on each 2 × 2 block. The emulated automaton is a block cellular automaton that makes use of the Margolus neighbourhood and evolves according to the following six rules:

The 2×2 block evolution rule

Note that, as this emulates a Margolus neighbourhood, the resulting block appears at the center of the original four blocks. Thus, patterns that are originally made up of 2 × 2 blocks will forever be made up of 2 × 2 blocks, but the block partition will be offset by one cell in the odd generations from the even generations. By examining the image above, one can see that an isotropic cellular automaton will emulate a Margolus block cellular automaton if and only if the following four equations are satisfied: B4w = S4q, B5a = S6a = S7c, B3i = S5i, B1c = B2a = S3a, where the first equation for example means that the birth condition for cells with four neighbours must equal the survival condition for cells with four neighbours. There are 212 = 4096 such rules, which emulate 26 = 64 different block cellular automata. Any arrangement of cells that fits within a 2 × 2 bounding box can simulate these using isotropic non-totalistic rules.

This rule can be seen to satisfy the above equations because 4 is neither a birth condition nor a survival condition, 5 is not a birth condition and 6 and 7 are not survival conditions, 3 is a birth condition and 5 is a survival condition, and 3 is not a survival condition and 1 and 2 are not birth conditions.

The non-totalistic cellular automaton B3i4int5ey6k7e/S1e2k3ey4irt5i can be used to simulate this rule. 1 × 1 cells simulate the clusters of 2 × 2 blocks, and only every second generation plays, since odd generations have the offset. Since this rule is self-similar when scaling up (patterns made of 4 × 4 blocks will remain made of 4 × 4 blocks every second generation, 8 × 8 every fourth, etc.) this rule itself can simulate the mentioned 2 × 2 oscillators.

Notable patterns

A large variety of still lifes and oscillators appear spontaneously from randomly generated starting states. There is also a somewhat rare naturally-occurring spaceship, which travels at c/8 diagonally.

Still lives

Still lives are generally smaller in 2×2 than in Life, with the smallest occurring having a population of just 2 cells. These still life patterns still tend to be similar to Life patterns in terms of structure, for example often having islands that stabilise each other. Many still lives from Life are also still lives in 2×2, for example, the beehive, tub, loaf, pond and mango.

x = 38, y = 12, rule = B36/S125 19bo10b2o6b$12bo5bo5bo9b2o2b$6bo4bo5bo4b3o3b4o6b$bo3bo4bo5bo6b3o12b$o 3bo4bo5bo7bo4b2o6bob$35bobo$35bo2b$bo4bo4b2o4b2o5bo8bobo2b$obo2bobo2bo 2bo2bo2bo3bobo3b2o2bobobo$bo3bobo3bobo2bo2bo2bo2bo2bo7bob$6bo5bo4b2o3b obo4b2o7b$23bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 ZOOM 14 ]]
Some sample still lifes
(click above to open LifeViewer)
RLE: here Plaintext: here

Enumerating still lives

The following table catalogs all still lives in the 2×2 rule with 10 or fewer cells.[1]

Size Count Image Links
1 0
2 2 2x22cellstilllifes.png Download RLE: click here
3 1 2x23cellstilllifes.png Download RLE: click here
4 3 2x24cellstilllifes.png Download RLE: click here
5 4 2x25cellstilllifes.png Download RLE: click here
6 9 2x26cellstilllifes.png Download RLE: click here
7 10 2x27cellstilllifes.png Download RLE: click here
8 27 2x28cellstilllifes.png Download RLE: click here
9 48 2x29cellstilllifes.png Download RLE: click here
10 126 2x210cellstilllifes.png Download RLE: click here

Common still lives

The following table lists the twenty most common strict still lifes that arise after several generations of a random starting pattern.[2] The "approx. rel. freq." column gives an estimate of the proportion of all randomly-occurring still lives that will be of the given type.

Rank Pattern # of cells Approx. rel. freq. (out of 1.00)
1 2x2 stilllife rank1.png (domino) 2 0.582
2 2x2 stilllife rank2.png (duoplet) 2 0.251
3 2x2 stilllife rank3.png 5 0.052
4 2x2 stilllife rank4.png 3 0.0498
5 2x2 stilllife rank5.png 6 0.0252
6 2x2 stilllife rank6.png 4 0.019
7 2x2 stilllife rank7.png 5 0.00725
8 2x2 stilllife rank8.png (beehive) 6 0.00384
9 2x2 stilllife rank9.png (tub) 4 0.00322
10 2x2 stilllife rank10.png 5 0.00195
Rank Pattern # of cells Approx. rel. freq. (out of 1.00)
11 2x2 stilllife rank11.png 4 0.00124
12 2x2 stilllife rank12.png (loaf) 7 5.8 × 10-4
13 2x2 stilllife rank13.png 6 5.63 × 10-4
14 2x2 stilllife rank14.png 6 4.04 × 10-4
15 2x2 stilllife rank15.png 7 2.56 × 10-4
16 2x2 stilllife rank16.png (aircraft carrier) 6 2.23 × 10-4
17 2x2 stilllife rank17.png (pond) 8 1.94 × 10-4
18 2x2 stilllife rank18.png (mango) 8 1.28 × 10-4
19 2x2 stilllife rank19.png 5 9.6 × 10-5
20 2x2 stilllife rank20.png 6 7.68 × 10-5

Oscillators

A large variety of oscillators of various periods occur naturally in 2×2.

Period two oscillators

Many of the period 2 oscillators in 2×2 have a single-cell 'on-off' rotor, with small variations in the stator of the oscillator. These occur fairly frequently naturally.

x = 51, y = 16, rule = B36/S125 49b2o$34b2o11b2obo$27b2o4bobo4bo5bobo2b$2b2o3b2o4b2o4b3o4bo13bo5bo4b$ 3bo3b2o6bo2bobobo2bobo3bobo4bobobo4bobob$b2o4b2o3b2o4bobobo2bo5b2o5b2o 2bo5b2ob$7b2o42b3$37b2o6b2o4b$2b2o5b2o7bo7bo2bo6bo2bo5bo5b$3bo5bob2o5b ob2o5b3o4b3obo4bob4o2b$o3b2o5b2o7bobo3b3o4bo9b4obo2b$2o3bo5b2obo3bob2o 4bo2bo4b2o10bo4b$2bo10b2o3bo26b2o4b$2b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 AUTOSTART GPS 2 ]]
Some period 2 oscillators
(click above to open LifeViewer)
RLE: here Plaintext: here

Higher-period oscillators

One of the most interesting aspects of the 2×2 rule is the large number of naturally-occurring higher-period oscillators. Oscillators with periods 3, 4, 5, 6, 10, 14, 22 and 26 are all relatively frequent, and oscillators are also known for periods 7, 8, 11, 12, 17, 20, 24, 28, 30, 60, 62 and 126.

x = 321, y = 327, rule = B36/S125 78bo6bo$49b2o28bo4bo$35bo8bo6bo5b2ob2o2bo9b2o6bo46b2o3b2o3b2o3b2o3b2o 3b2o3b2o3b2o3b2o3b2o4b2o$3bobobo9b4o3b2o3b2o4bobo12bobo11bob2o13b3o30b obobo12bo4bo4bo4bo4bo4bo4bo4bo4bo4bobob2obo$3bobobo9b4o4bo5bo4bo5b2ob 2o4bo6b3o5bobo4bobo4b3o31bobobo8b50ob2o2b2o57b2o3b2o5b2o$8b2o13b2o3b2o 7b2o3bobobo5b2o6bo3bob2o3bobo7bo30b2o13b50o$58b2o4bo14bo4bo46bo4bo4bo 4bo4bo4bo4bo4bo4bo4bo28b2o4b2o28b2o3b2o5b2o$8b2o61b2o5bo6bo26b2o15b2o 3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o4b2o25bobob2obo$178bob2obo7b2o10b 5ob2o2b2o26b2o3b2o5b2o$8b2o102b2o64b2o2b2o6bo12b5o40bobobo11bo7bo46bo$ 3bobobo15b4o5b2o80bobobo7b6o58b5o12bo33b2o5bobobo11bo8bo40bo3bo$3bobob o15b4o5b2o10b2o38b2o28bobobo7bob2obo56bob5o10b2o3b2o41b2o7b3o18b12o16b o3bo$b2o12bobo14b2o11bo2b2ob2o2b2o9b2o3b2o2bo10bo3b2o2b2o2bo20b2o6bo2b o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o7bobo21bo28b2o22b2o8b2o6b12o 10b2o9bo$15bo16b2o8bobo3bo3bo12bo2bo2bobobo5bob3o4bobobobobo37bo4bo4bo 4bo4bo4bo4bo4bo4bo4bo9b2o17bo54bo8b3o28bo9b2o$b2o13b2obo5b4o5b4o2bobo 6b3o4b3o7bo6bo6bo2bo8bo3bo22b2o13bo4bo4bo4bo4bo4bo4bo4bo4bo4bo22b6o2bo 30b2o10b2o18bo32bo3bo$17bobo5b4o5b4o5bo20bobobo2bobobo5b2o7bobobobobo 27b6o2bo4bo4bo4bo4bo4bo4bo4bo4bo4bo22bob2obo4bo90bo3bo$b2o13bobo23b2o 4b2ob2o5b2o4bo2b2o2bo2b2o14b2o2b2o2bo20b2o5bob2obo4bo4bo4bo4bo4bo4bo4b o4bo4bo4bo21bo2bo3b2o29b2o10b2o47bo$3bobobo8bo97bobobo8bo2bo3b2o3b2o3b 2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o$3bobobo106bobobo122b2o10b2o2$79b2o3b2o$ 46b4o29b2o3b2o$19b2obo5b2o16b4o7b2o20b2o3b2o105bo$21b2o6bo6bo2bo4b2o4b 2o5bo7b2o5b2o5b2o3b2o105bo$26b4obo5b3o4b2o4b2o3b2o3bo5bo2bo2bo8b3o85bo bo$16bo2b2o5bob4o4b3o5b2o4b2o3bo3b2o4bo2bobo2bo5b2o3b2o105bo50b2o3bobo bobo$16bo2bo8bo7bo2bo4b2o4b2o6bo7bo2bo2bo6b2o3b2o82bo2bo16b2o3b2o9bo 42bobobobo$17bo10b2o16b4o7b2o6b2o5b2o5b2o3b2o41b2o39b3obo15bobobobo10b o36b2o10b2o$16b2o28b4o29b2o3b2o40bo43bobo34bobo$128bo3bo2bo4bo2bo4bo2b o6bo2bo10bo12b2o4bo4b2o8bo35b2o10b2o12bo$128bo2bob2obo2bob2obo2bob2obo 4bob2obo22bo4b3o4bo10bo54bo3b2o$126bo4b6o2b6o2b6o4b6o7bobo13bo2bo3bo2b o9bo2b3o30b2o7b2o9bo2b4o$20b2ob2o5bo4bo3bo4bo5bo26b2ob2o45b2o41bo2bo7b 2obo3b2o3b2o3bob2o7b2obo52b3o$16b2o6bo6bo4bobo4bo3bobobo8b2o4b2o8bo94b obo12bo2bo3bo2bo12bob2o29b2o7b2o11b4o2bo$16bobob4o9bo10b2o2b2o5bobo2bo 5bobo6bobob3obo41b4o3bo52bo4b3o4bo12b3o2bo48b2o3bo$18bobo10bobob3o7bo 9b2obo2bo6bobo4bo2bo2bobo40bob2obobob2o12b6o2b6o10bo13b2o4bo4b2o15bo 28b2o4b2o14bo$16bobo3b2obo4bo2bo10bo5bo9bo5bo2bo7bobobo42bob2obobob2o 4b6o2bob2obo2bob2obo10bobo41bo$16bob2o3bobo10bo2bo9bo7bo7bo4b2o3bobo2b o2bo42b2o3bob2o4bob2obo3bo2bo4bo2bo11bob3o12bobobobo17bobo27b2o4b2o$ 21bobo8b3obobo6b2o2b2o5bo2bob2o9bo2bob3obobo42b2o3bob2o5bo2bo28bo2bo 12b2o3b2o21bo$18b4obobo10bo6bobobo3bo5bo2bobo6bob2o9bo49bo58bo25bo24b 2o4b2o$17bo6b2o5bobo4bo5bo5bo5b2o10bo8b2ob2o90bobo$17b2ob2o8bo3bo4bo 151bo$191bo2$33bo24bo$16b2o2bo2b2o7bobo9bo5bo6bo15bo5b2o$16bo4bo2bo7bo 10bo5bobo3b3o2bo7b2o2bo9bo$18bob3o8b3obo8b2ob3o8bobo18b2o$17b2o10bo5b 3o7bo7bo2b3ob2o4bob3o9bob2o2bobobo42b2o3b2o$16bobo3bobo3bo2bo3bo2bo6bo 3bo4b2ob3o2bo3bobobobo5bobo7bobo43b2ob2o140b6o$22b2o5b3o5bo11bo5bobo 10b3obo5bobobo2b2obo43bobobobobo139b4o$18b3obo8bob3o9b3ob2o4bo2b3o27b 2o42bo7bo$16bo2bo4bo9bo8bobo5bo6bo7bo2b2o15bo49bo$16b2o2bo2b2o7bobo9bo 5bo6bo7bo22b2o44bo3bo141b4o$33bo245b6o$133bob3obo$136bo$19bo15b2o17b2o 3b2o16bo55bo2bo2bo97bobobo7bobobo$18bo15bobo7b2o8b2o3b2o15bo12b2o33b2o 21b2o88bobobo7bobobo27b2o$17bob2o12bo10bobo7b2o3b2o9bo17bo2bo30bo6bobo 3b3o3bobo6bo91b2o3b2o5b2o24b4o$17b5o6b2ob3o2bo9bo7b2o3b2o8bo4bobo2bo7b o2bo31b3o2bo6b5o6bo2b3o127bobo2bobo$19bo8bo5bobo19b3o9bo7bo2bo6bob2o 33bo5bo3b3ob3o3bo5bo92b2o3b2o5b2o21bo3b2o3bo$16bobobobo6bo2b3ob2o6b5o 7b3o9b2o8bo10b2o33bobo2b3ob2o3b2ob3o2bobo127bo10bo$16bobobobo7b2ob3o2b o5bo4bo4b2o3b2o5bo3bo7b2o6bo36bo5bo3b3ob3o3bo5bo92b2o3b2o5b2o9bo4bo22b o4bo8b4o$31bobo5bo5b2obo5b2o3b2o4bo3bo15bo2bo33b3o2bo6b5o6bo2b3o86bobo bo23b2o2b2o4b2o4b2o4b2o4b2o2b2o8bo6b2ob2o$31bo2b3ob2o14b2o3b2o25b2o34b o6bobo3b3o3bobo6bo86bobobo23b2o2b2o3b2obo2bo2bo2bob2o3b2o2b2o11bo5bo$ 34bo19b2o3b2o63b2o21b2o86b2o10b2o5b2o9b2o2b2o3b2obo2bo2bo2bob2o3b2o2b 2o13bo7bo$31bobo99bo2bo2bo125b2o2b2o4b2o4b2o4b2o4b2o2b2o11bo5bo$31b2o 103bo98b2o10b2o5b2o9bo4bo22bo4bo8bo6b2ob2o$89bo43bob3obo136bo10bo19b4o $74b2o13bo145b2o10b2o5b2o21bo3b2o3bo$27b2o2b2o24bo76bo3bo98bobobo7bobo bo24bobo2bobo$22bob2o2bo14b2o8b2o3bob2o12b2o13bo46bo100bobobo7bobobo 26b4o$21bo6bo10b2o8bo3bo2b4o4b2o3bob3o2b3obo3bob3ob3obo37bo7bo140b2o$ 17b5o2b3o3b4o5b2o2bobo3bobobo2bob3o2bobo3bobo6bobo3bobo5bobo37bobobobo bo$17b5o2b3o3b4o5b2o2bobo5b2obo4b2obo10bo2bo11bobo43b2ob2o$21bo6bo10b 2o8bobobo2bob3o2bobo4b3o4b3o5b3o3b3o39b2o3b2o$22bob2o2bo14b2o4bo3bo2b 4o4b2o3bo10bo3bo9bo184b6o$27b2o2b2o20b2o3bob2o8bo8bo5bo7bo186b4o$57bo 2$280b4o$279b6o4$114bobobo37bo4bo$71bo10b2o30bobobo36b3o2b3o8b4ob4o$ 50b2o9bob2o7bo10bo28b2o42b2o2b2o9b4ob4o11b2o$19bo8bobobo8b2o17bo9bobo 7bo3b2o67bo3bo2bo3bo$4bobobo9bo9bobobo8bobo4b4o7bo10bo9b2o2b2o26b2o14b 4o6bo2b2o2bo6b3o8b3o23b6o$4bobobo7bobo2b2o7bo7bo2b2o9bo6bob2o19b2ob3o 40b4o9b2o10b3o6b3o8b5o10bo2b2o2bo$9b2o5b2o2bo7bo3bo5b2o2bo7b2obo6bo11b 2obo6b3ob2o24b2o14b4o6bob4obo27b5o10bobo2bobo$21b2o5b2ob2o4bobo10bo12b o7bo3bo8b2o2b2o24bobobo9b4o8b4o29b5o8bobo6bobo$9b2o27b2o13bo8bobo8b2o 9b2o3bo24bobobo9b4o9b2o10b3o6b3o8b5o8bobo6bobo$52bo9bobo21bo25b2o5b2o 7b4o20b3o8b3o22bobo2bobo43bobobo6bobobo$9b2o75b2o65bo3bo2bo3bo23bo2b2o 2bo43bobobo6bobobo21b2o15b2o$4bobobo103b2o5b2o35b2o2b2o9b4ob4o9b6o49b 2o9b2o$4bobobo146b3o2b3o8b4ob4o94b2o2b2o11b2o2b2o$9b2o101b2o5b2o35bo4b o29b2o51b2o9b2o6b2o9b2o2b2o11b2o2b2o$17b2o5b2o88bobobo147b2o$9b2o5bo2b o6bo24b2o5b2o29bo24bobobo125b2o9b2o7b2o9bo2bo12bo3bo$15bo2bo2b2o4bo23b o7bo12b2o14bo150bobobo6bobobo9b2o13bo2bo6bo3bo$9b2o4bo5bobobobo7bo13b 2o2b2ob2o2b2o23bo153bobobo6bobobo11b2o$4bobobo9bo2b2o3bo9bob2o4bo4bo4b 3o4bo10b4o7b4o57bo6bo25b2o58b2o9b2o13b2o13b2o2b2o4b2o2b2o$4bobobo8bobo 20bo2bo7bo3bo3bo11bo10bo2b3o55bo8bo9b2o13b2o99b2o2b2o4b2o2b2o$17b3o3b 3o11b2ob2o9b2o5b2o12b2o7bobo2bo54bo12bo6bo2bo12b2o13bo3bo40b2o9b2o$23b obo10b2o3bobo8b2o3b2o10bo3bo7bo2bobo33b8o13b2o10b2o22b2o15bo85b2o8b2o$ 16bo3b2o2bo10bo7bo7b2o5b2o6bobobo9b3o2bo34b16o8b8o7b2o4b2o4b14o6bobobo bo39b2o9b2o$15bobobobo5bo7bobo3b2o8bo3bo3bo6bobob2o9b4o43b8o5b2o10b2o 4bobo2bobo4b14o6b2o3b2o41bobobo6bobobo$15bo4b2o2bo2bo9b2ob2o7bo4b3o4bo 6bo13bo58bo12bo7b2o7b14o54bobobo6bobobo$16bo6bo2bo8bo2bo10b2o2b2ob2o2b 2o6bo10bo63bo8bo7bo4bo5b14o8bobo$17b2o5b2o8bo4b2obo8bo7bo18bo65bo6bo 25b2o15bo$43bo7b2o5b2o117b2o$177b2o$177b2o$239bobobo$50b2o12b2o2b2o 169bobobo5b2o5b2o$14bobobobo6b2o8b2o12bo13bo2bo108b2ob2o62b2o$14bobobo bo5bo2bo3bo3bobo2b2o8b2obo9bob3o108bobo68b2o5b2o$15bo3bo6bobo3bo5b2o3b o5bob2o5bo2bobo3bo4bo11bo4b2o56b3o7b3o5b2o9bo5bo61b2o18b2o5bobo21b4o$ 27bo2bo10bo9b2ob2ob2o2b3o3bo2b3o7bo3bo4bo2bo34bo4bo8b3o6bo5bo8b2o8bo7b o65b2o5b2o6b2o5b2obo$16b3o10bo10bo8bo4b3o6b3o13bo2b3o2bo2b2o35bo4bo7bo 4bo15bo3b2o6bo11bo58b2o5bobobo8b2o30b2o$16bobo12b2o5bo3b2o5b3o4bo11b3o 8b2o2bobobo39bo4bo32b2o6b2o9b2o53bobobo7bobobo8b2o6bobo17bo8bo$17bo10b o2bobo4b2o2bobo2b2ob2ob2o6b3o2bo3b3o6bo2bo4bo40bo2bo13bo4bo5bo4bo3b2o 9b7o56bobobo12b2o34bobo4bobo$27bo4b2o9b2o2bo5b2obo4bo4bo3bobo7bo5b2o 37bo8bo5bo6b3o7b3o5b2o6b2o9b2o51b2o29bobo21bobo4bobo$50bob2o10b3obo55b o10bo5b3o21b2o6bo11bo90b2o8bo5bo8bo$54bo10bo2bo96b2o8bo7bo53b2o17b2o 10bob2o6bo8bo8b2o$54b2o8b2o2b2o106bo5bo20b3o63bobo5b2o9bo$178bobo25bo 30b2o17b2o37b4o$177b2ob2o57bobobo$16bo6bo3b2o97bo14bo97bobobo12b2o$15b o5bo5bo37b2o3b2o4b2o5b2o3b2o36bo14bo15b2o32bo2bo11bo$14bo6bobobo2b3o9b 2o3bo4bo3bo20bo114bo4bo7b3o$18b2o5bo5bo7bo5b2o3bo2bobo9b2o3b2o3b2obo4b 2o3b2o34bo3bo10bo3bo11bo4bo29bo4bo3b2o$14b2obobobobobob2ob2o7b5ob2ob3o 2bobo7bo3b3o3bob4o2bo3b3o3bo31bo5bo8bo5bo9bo6bo11b2o2b2o2b2o7bo4bo3bo$ 15bo3bobobobobobo9b2obobobo2bobo12bo2b3o2bo2bo2bo3bo2b3o2bo32bobobobo 8bobobobo9bobo2bobo38bo38bobobo7bobobo$14bo2bobo6bo3bo11b2ob2obo5b4o6b o2b3o2bo2bo2bo3bo2b3o2bo30bobo2bo2bobo3b2obo2bo2bob2o3b2obo2b2o2bob2o 8b2o2b2o2b2o17bo2b2o34bobobo7bobobo$14bo2bobo25b2o16bo3b3o3bob4o2bo3b 3o3bo29bobo2bo2bobo6bobobobo9bobo2bobo10bo2bo4bo2bo12bob2ob2obo39b2o3b 2o$41bo3bo10b2o7b2o3b2o3b2obo4b2o3b2o33bobobobo8bo5bo9bo6bo11bobo4bobo 13b2o2bo$40bo34bo47bo5bo9bo3bo11bo4bo14bo4bo19bo43b2o3b2o$65b2o3b2o4b 2o5b2o3b2o34bo3bo42b4o2b2o2b4o16bo3bo4bo$141bo15b2o41b2o3bo4bo33b2o3b 2o13b3o$43b2o5bo75bo14bo31b2o2b2o2b2o12b3o7bo4bo28bobobo7bobobo8bob2o$ 40b2o2bo4bobo74bo67bo11bo2bo29bobobo7bobobo9b2obo$16b2o3b2o16bob3o2bo 2bob2ob2o181b2o10b2o5b2o8b3o$36bo4bobo2bo8bo11b2o$16b7o9bo2bo2bo7b3o2b 3o6bobo8bobo7bo8bo103bo42b2o10b2o5b2o$14b3o2bo2b3o7b4ob3o2bo4bo2b3o7bo bo8bobo8b2o4b2o105b3o$14b2ob2ob2ob2o7b3o5bobo9b2o8bobob2obobo7b3ob2o2b 2ob3o144b2o10b2o5b2o$14b2ob2ob2ob2o7b4ob3o2bo4bo2b3o9bobo4bobo58bo2b2o 2bo101bobobo7bobobo$14b3o2bo2b3o7bo2bo2bo7b3o2b3o10bob2obo11b3o4b3o42b 2o104bobobo7bobobo$16b7o13bo4bobo2bo8bo6bobo4bobo8bo10bo41b2o$39bob3o 2bo2bob2ob2o6bobo4bobo9bo8bo39b3o2b3o$16b2o3b2o17b2o2bo4bobo$43b2o5bo 77bo$128bo2bo$126b2o3bo107bobobo7bobobo$239bobobo7bobobo$121bo2bo119b 2o3b2o5b2o13bo$87b2o35bo2b2o143bo$86bo2bo34bo119b2o3b2o5b2o13bob2o8b3o $17b2o5b2o7bob2o16bo33b2o32b3o144bo5bo$16bo2bo3bo2bo3bo2b3o6b2o2bo7bo 7b2o10bo12b2o32b3o120b2o3b2o5b2o11bo14bo$16b3obo4bobo2bo2bo3b3o5bobob 2o4b2ob2o4bo8bob2o7bo6bo32bo114bobobo7bobobo14bo$15bob2o5bo3bobo8b7o4b o2bo2b2o4bobo9bob2o6b3o2b3o32bo114bobobo7bobobo9bobo3bo11bo$12b4o6b2o 2bob3o8b2obob2obob6o4bo2bo8b2o2bobo8bo2bo31bo2bo112b2o10b2o5b2o8bo15bo 3b2o$12b4o4b2obobob4o2bo5b2obo2b2o8bobo4b2o6bobo3bobo7bo2bo177bo17bob 2o$12b4o4b2obobob4o2bo5b2obo2b2o8bobo4b2o6b2o5bo8bo2bo147b2o10b2o5b2o 9b2o16bo2bo$12b4o6b2o2bob3o8b2obob2obob6o4bo2bo11b2o8b3o2b3o$15bob2o5b o3bobo8b7o4bo2bo2b2o4bobo8bobo8bo6bo145b2o10b2o5b2o$16b3obo4bobo2bo2bo 3b3o5bobob2o4b2ob2o4bo8b2o12b2o150bobobo7bobobo$16bo2bo3bo2bo3bo2b3o6b 2o2bo7bo7b2o23b2o150bobobo7bobobo$17b2o5b2o7bob2o16bo32bo2bo$87b2o3$ 205b2o$203bo4bo2$171b2o3b2o6b2o3b2o10bo8bo$113bobobobo82bob4obo$48bo 25b2o2bo34bobobobo13bobo17bo2bo42bo4b4o4bo$48bo23bo4bobo40b2o5bo5bobo 5bo5bo5bo2bo5bo10bobo10bobo11bo10bo$2o5b2o7b2o4bobo21b2ob2o11bo10b2o2b o2bo46bo3bo5bo3bo5bo3bo6bo3bo9bobobo8bobobo7bo16bo$16bo7bo4b2o6b2o7b2o b2o7bo5b2o5bobo2bobo2bo38b2o8bobo3bobo11bobo4bobo13bobo10bobo11b2o3b2o 3b2o$2o5b2o8b2o5bo3bo3bo3bob2o6b2ob2o6bo2bobo2bo5bo5bob2o50bo5bo13bo6b o11b2o5b2o4b2o5b2o4bo3b2o2bo2bo2b2o3bo$18b2o3b2o3bo2b2o3b2ob2o5b2ob2o 6b2o5bo9bo3bo38b2o12bo5bo13bo6bo37bo3b2o2bo2bo2b2o3bo$2o5b2o37b2ob2o9b o11b2obo5bo48bobo3bobo11bobo4bobo23b2o5b2o8b2o3b2o3b2o$2bobobo41bo22bo 2bobo2bobo35b2o8bo3bo5bo3bo5bo3bo6bo3bo7b2o5b2o7bobo8bo16bo$2bobobo41b o23bo2bo2b2o47bo5bobo5bo5bo5bo2bo5bo10bobo9bobobo10bo10bo$7b2o64bobo4b o33b2o17bobo17bo2bo15bobobo9bobo10bo4b4o4bo$18bo3bo32bo7bo4bo5bo2b2o 94bobo26bob4obo28bobobo6bobobo$17bobobo4bo3bo24bob2o5bo2bo46b2o85bo8bo 27bobobo6bobobo$7b2o9bobo5bo3bo4b8o6b2o5b3o7bo117b2o3b2o52b2o2b2o5b2o$ 19bobo6bo6b8o4bob2obo5b2o5b3o5b2o2b2o35b2o55b2o3b2o25bo4bo91bo2b2o2bo$ 7b2o9bobobo3bo3bo4b8o5b4o6b2o4b2obo6b4o127b2o36b2o2b2o5b2o47b2o$17bo3b o4bo3bo4b8o5b4o4b3o6b3o232bob4obo$7b2o46bob2o7bo176b2o2b2o5b2o46b4o5b 2ob2o$48bo2bo3bo8bo2bo6b4o160bobobo19b32o9b2o4bo3bo$63bo4bo4b2o2b2o 159bobobo19b32o23bo$243b2o2b2o5b2o47b2o4bo3bo$302b4o5b2ob2o$243b2o2b2o 5b2o44bob4obo$19b2ob2o30bo7bo240b2o$18bo5bo30bo5bo181b2o2b2o5b2o44bo2b 2o2bo$19bo3bo12bo5bo14b3o178bobobo6bobobo$18bo5bo9bobo5bobo11b2ob2o15b o161bobobo6bobobo$15bobobobobobobo7bo7bo6bo4bob3obo4bo4bo2bo3b2o$14bob obobobobobobo4b2ob3ob3ob2o5bo2bo3bo3bo2bo6bobo4bo$14bo4bo3bo4bo7bobobo bo10bo9bo9bo2b2o$18bo5bo11b3ob3o9b3o7b3o6b2obo2bo2bo79bo2bo$14bo4bo3bo 4bo23bob2o5b2obo93bo6bo$14bobobobobobobobo7b3ob3o9b3o7b3o5bo2bo2bob2o 80bo2bo$15bobobobobobobo8bobobobo10bo9bo9b2o2bo36bobobo10bo17b2o10b2o 2b2o$18bo5bo8b2ob3ob3ob2o5bo2bo3bo3bo2bo5bo4bobo35bobobo9b5o10b2obo8bo 3b2o2b2o3bo26b2o$19bo3bo11bo7bo6bo4bob3obo4bo4b2o3bo2bo32b2o5b2o7bo2b 2ob2o5bo2bo4bo7b3o4b3o9b2o6b2o7bobobo$18bo5bo9bobo5bobo11b2ob2o13bo60b 2o4bo6b2o4bob3o6b3obo7bo6bo9bo2bo$19b2ob2o12bo5bo14b3o52b2o5b2o6b2o2bo 3bo6bo34b2o4b2o8b2o$55bo5bo65b2obobob2o13bo27b3o2b3o5bobobobo$54bo7bo 49b2o5b2o6bo3bo2b2o6b2o6bo3bob3o6b3obo10b2o9b3o$114bobobo7b2o14bo4bo2b o6b3o4b3o22b2o$114bobobo8b2ob2o2bo10bob2o6bo3b2o2b2o3bo11b2o7bo3bo$71b o4bo3b2o30b2o5b2o9b5o8b2o14b2o2b2o25b2o$71bob4o2bo53bo26bo2bo$17bo2bo 3bo2bo2bobobo2bobobo2bobobo5bo2bo4bo2bo6bob3o3bo31b2o5b2o37bo6bo$17bo 2bo3bo2bo2b2ob2o2b2ob2o2b2ob2o5bobo6bobo10bo2b2o79bo2bo$20b2ob2o31bo2b 2o2bo15b2o31b2o5b2o119bobobo6bobobo$19bo2bo2bo6bo6bo6bo9bob4obo7b4o3b 4o32bobobo32bobo86bobobo6bobobo27bo2bo$20b5o8bo4bo6bo12bo2bo10b2o40bob obo31bo3bo83b2o9b2o5b2o$21b3o8bo5bo7bo25b2o2bo205bo4bo$20b5o14bo6bo25b o3b3obo50b2o19bo85b2o9b2o5b2o24b2o2b2o$19bo2bo2bo4b2ob2o12bo10bo2bo11b o2b4obo50bo17bobobo$20b2ob2o5bobobo2b2ob2o4bo9bob4obo7b2o3bo4bo48b3o 34b2o6b2o61b2o9b2o5b2o10b2o2b2o5b2o3b2o3b2o$17bo2bo3bo2bo9bobobo14bo2b 2o2bo64bo2b2obo33bo6bo64bobobo23bo4bo3bo2bo8bo2bo$17bo2bo3bo2bo16b2ob 2o5bobo6bobo78bo2bo2bo3bo2bo2bo7b2o4b2o64bobobo21bo2b4o2bo6bo4bo$44bob obo5bo2bo4bo2bo59b4obobo2bo7bo8bo8bo6b3o2b3o6bo2bo52b2o5b2o2b2o5b2o8bo 2b4o2bo6bo4bo$125bob2o5b2obo8b2o3bobo3b2o12b2o9b2obo82bo4bo3bo2bo8bo2b o$127bo2bobob4o5bo8bo8bo76b2o5b2o2b2o5b2o10b2o2b2o5b2o3b2o3b2o$144bo2b o2bo3bo2bo2bo10b2o$65b2o6b2o2bobo2bo45bob2o2bo33bo6bo10b2o50b2o5b2o2b 2o5b2o24b2o2b2o$49bobo3b2o15bo6bo3bo46b3o36bo4bo10b2ob3o49bobobo6bobob o26bo4bo$18bo2b2o4bo23bo4b2o7b2o4b2ob2o2bo6bo44bo19bobobo12bo2bo2bo2bo 11b3o49bobobo6bobobo$14bob3o3bo3bobo6b2o3bobo6bobobo4bo6bo5b2obo6b4obo 43b2o20bo14bo8bo106bo2bo$12bo2bobo2bobo5bo8bo2bo6bobo4bob3o6bobo3b4o2b 2o2bo2bobo$15bobo2b3obobobo7b2o2bo12b3ob2o6bob2ob3ob4o3bo68bo3bo$12bo 2bo2bo4bo3bo7b2o3b2o7bo5bo9b4o3bobobo4bo2bo66bobo$14bo4b2o2bo26b2o3b2o 10bob2obo4bobo2bo$67b2o3bo3$42b2ob2o10b2o$42bo3bo12bo56bobobo$43b3o4bo 8bo2bo46b2o5bobobo$18bo2b2o4bo20bobo3b4o5bo13b2o35b2o5b2o$14bo3bo4bo2b o12bo4bo2bob2o2b2ob7o14bo31b2o129bobobo6bobobo$13bobobob3o2bobo2b2o8b 3obo2bobobobo2bo15b2o4bo7bo28b2o5b2o56bo2bo3b2o52bobobo6bobobo$13bo5bo bo2bobo12b3o2bo2bobo3bo2bo2b2o9bo2bo3bobo3b2obo22b2o32b4o39bo51b2o16b 2o$13bobo3bo3b3obo11b3obo2bobobobo2bo12bobo3b2o3b3ob3o28b2o5b2o8b2ob2o 6bob2obo30bo4bo4bo$14bo4b2o2bo15bo4bo2bob2o2b2ob7o7bo2bo3bobo3b2obo22b 2o20bo3bo6bob2obo9b2ob2o4b2ob2o7bo4bo3b2o49b2o16b2o$48bobo3b4o5bo7b2o 4bo7bo43bo2b3o2bo6b2o13bo8bo10bo2bo$43b3o4bo8bo2bo14bo31b2o3b2o5b2o8bo 3bo8b2o9bo16bo6bo2bo55b2o16b2o$42bo3bo12bo17b2o52b2ob2o6bob2obo11bo8bo 9bo4bo3b2o51bobobo6bobobo$42b2ob2o10b2o50b2o3b2o5b2o19bob2obo9b2ob2o4b 2ob2o7bo4bo4bo51bobobo6bobobo11b20o$143b4o39bo51b2o5b2o2b2o16b20o$13b 2o94b2o3b2o5b2o56bo2bo3b2o$14bo60b2o4b2o33bobobo117b2o5b2o2b2o$12bob2o 11b2o7bobo3b2o8bo9bo12bo6bo26b2o5bobobo$12bo3bo7bobo5bo6bo4bo8bo7bo15b o2bo11bo145b2o5b2o2b2o$15bo8bobobo2bo4bo2bo3b2o11bobo13b2o3b4o159bobob o6bobobo$14bo11bob2o3b6o3b2o8bo2b2ob2o2bo9bo167bobobo6bobobo$16b2o8bo 2bobo4bo11bob2ob2o5b2ob2obo7b2o13b7o$26bo2bobo4bo13b3o4bo4b3o10bo9b15o $26bob2o3b6o3b2o4bob2ob2o5b2ob2obo8bo9b15o17b2o3b2o$24bobobo2bo4bo2bo 3b2o7bo2b2ob2o2bo11b2o13b7o$24bobo5bo6bo4bo11bobo13bo44b2o3b2o$27b2o7b obo3b2o9bo7bo10b2o$52bo9bo29bo24b2o3b2o5b2o$131bo$117b2o3b2o7b4obo$27b 2o103bobobo$15b2o8bo4bo24b2o31bo28b2o3b2o8bob4o$18bobo4bob4o25bo30bo 49bo$16b3obo5bo15bo11bo62b2o3b2o14b2o$13bo13bo8bobo2bo11bo9b2ob2o3b2o 12bo$13bo3b3o7bo8bo4b3o11bo6bo5bo16b2o30b2o3b2o$20bo5bo9bo2bo11bobo2bo 6b10o15bo4bo$19bo5bob4o5b2o12bo5bo10bo5bo8b2obo6bo24b2o3b2o$25bo4bo17b o3bo10b2o3b2ob2o10bo2bo2bo189b2o$27b2o19b2o3b2o25bo6bob2o188b2o$79bo4b o194b2o$86b2o191b2o$87bo152bobobo7bobobo22b2o$17b2o2b2o13bo3bo192b2o5b obobo7bobobo22b2o$35b7o10bobobobobo2bobobo17bo49b2o108b2o3b2o27b2o$15b 3o4b3o9bo7bo9bobobobobo2bobobo16bo32bobobo12bo2bo95b2o44b2o$14bo10bo8b o7bo11bo3bo6bo44b2o5bobobo11bo4bo55bo4b2o44b2o3b2o27b2o$14bob8obo8bo7b o10bo2bobo4bobobo54b2o10bo2bo11b11o15bo2b2o4bo5b2o2bo7bo30b2o44b2o$15b o8bo27b2o3b2o2b3obo44b2o19bo3b2o3bo8b11o11bob3o3bo3bobo4bobobob2o2b2o 43b2o3b2o27b2o$17b2o2b2o14bobo12b2o3b2o2b3obo56b2o6bobo6bobo7b11o12bob o2bobo5bo4bo4bobo35b2o5bobobo7bobobo22b2o$37bobo13bo2bobo4bobobo42b2o 17bo3bo4bo3bo6b11o8b2o2bobo2b3obobobo4bobo47bobobo7bobobo22b2o$54bo3bo 6bo56b2o5bo3bo4bo3bo6b11o12bo2bo4bo3bo5b2o4b2o35b2o3b2o10b2o5b2o20b2o$ 52bobobobobo2bobobo42b2o5bobobo8bobo6bobo7b11o11bo4b2o2bo98b2o$52bobob obobo2bobobo49bobobo9bo3b2o3bo8b11o73b2o3b2o10b2o5b2o20b2o$110b2o3b2o 17bo2bo11b11o119b2o$133bo4bo94b2o3b2o10b2o5b2o20b2o$110b2o3b2o17bo2bo 102bobobo7bobobo22b2o$135b2o96b2o5bobobo7bobobo22b2o$110b2o3b2o162b2o$ 117bobobo157b2o$21bobobo2bobobo2bobobo2bobobo2bobobobobo2bobobo2bobobo 2bobobo2bobobo2bobobo17b2o5bobobo157b2o$21bobobo2bobobo2bobobo2bobobo 2bobobobobo2bobobo2bobobo2bobobo2bobobo2bobobo71b3o112b2o$23bo6bo6bo6b o6bo3bo6bo6bo6bo6bo6bo76bo$22bo2bo2bobobo4bobo3bo2bo3bo2bobo4bobobo2bo 2bo3bo2bo3bobo4bobobo41b2ob2o34b2o$21b2o3bo3bob3o2b2o4bob2o2b2o3b2o2b 3obo3bo3b2o2b2obo4b2o2b3obo42bo5bo33bob2o19b2ob2o$21b2o3bo3bob3o2b2o4b ob2o2b2o3b2o2b3obo3bo3b2o2b2obo4b2o2b3obo76bo27bo5bo$22bo2bo2bobobo4bo bo3bo2bo3bo2bobo4bobobo2bo2bo3bo2bo3bobo4bobobo38bo9bo22b3o8bo$23bo6bo 6bo6bo6bo3bo6bo6bo6bo6bo6bo39bobobo3bobobo14bob2o13bobo9bo6bo9bo$21bob obo2bobobo2bobobo2bobobo2bobobobobo2bobobo2bobobo2bobobo2bobobo2bobobo 64bob4o22bo2bo3bobobo3bobobo$21bobobo2bobobo2bobobo2bobobo2bobobobobo 2bobobo2bobobo2bobobo2bobobo2bobobo37bobobo3bobobo15b5o22b2o$131bo9bo 16bo17bo11bo3bobobo3bobobo$152b3o4bo16bobo14bo9bo$133bo5bo11bo25b2o$ 134b2ob2o56bo5bo$196b2ob2o$151bo$152b3o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 2 THUMBZOOM 3 HEIGHT 1000 WIDTH 1200 ]]
A stamp collection of oscillators with different periods from 2 through 126
(click above to open LifeViewer)
RLE: here Plaintext: here

One simple infinite family of oscillators is given by the 2 × (4n) boxes of alive cells.[3] Such oscillators can be analyzed by noting that each phase of their oscillation can be represented as an exclusive or (XOR) of rectangles of different sizes that emulate the Rule 90 cellular automaton.[4] The period of these oscillators for n = 1, 2, 3, ... is given by the sequence 2, 6, 14, 14, 62, 126, 30, 30, 1022, ... (Sloane's OEISicon light 11px.pngA160657).

Naturally occurring oscillators

The following table lists the twenty most common oscillators that arise after several generations of a random starting pattern.[2] Of particular interest are some quite high-period oscillators that appear abnormally frequently (in particular, the period 26 stairstep hexomino is the third most common oscillator). The "approx. rel. freq." column gives an estimate of the proportion of all randomly-occurring oscillators that will be of the given type.

Rank Pattern Period Minimum # of cells Approx. rel. freq. (out of 1.00)
1 2x2 oscillator rank1.gif 2 5 0.494
2 2x2 oscillator rank2.gif 2 8 0.204
3 2x2 oscillator rank3.gif 26 6 0.0698
4 2x2 oscillator rank4.gif 2 5 0.0514
5 2x2 oscillator rank5.gif 4 6 0.0332
6 2x2 oscillator rank6.gif 14 7 0.0324
7 2x2 oscillator rank7.gif 4 6 0.0285
8 2x2 oscillator rank8.gif 2 6 0.0217
9 2x2 oscillator rank9.gif 4 6 0.0169
10 2x2 oscillator rank10.gif 4 7 0.0152
Rank Pattern Period Minimum # of cells Approx. rel. freq. (out of 1.00)
11 2x2 oscillator rank11.gif 2 8 0.00848
12 2x2 oscillator rank12.gif 2 6 0.007
13 2x2 oscillator rank13.gif 10 12 0.00457
14 2x2 oscillator rank14.gif 2 7 0.00196
15 2x2 oscillator rank15.gif 2 7 0.00175
16 2x2 oscillator rank16.gif 2 6 0.00175
17 2x2 oscillator rank17.gif 14 6 0.00156
18 2x2 oscillator rank18.gif 2 8 0.00106
19 2x2 oscillator rank19.gif 6 16 0.00106
20 2x2 oscillator rank20.gif 22 8 0.00043
x = 5, y = 4, rule = B36/S125 3bo$obo2$2b3o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ AUTOSTART ZOOM 32 GPS 4 TRACKLOOP 8 -1/8 1/8 ]]
The c/8 glider
(click above to open LifeViewer)
RLE: here Plaintext: here
Catagoluehere

Spaceships

There are a number of spaceships known to occur in 2×2.[5] Of these, only one is known to occur naturally from soup. It travels diagonally at c/8.

Infinite growth

The first known infinitely-growing pattern in 2×2 was discovered in June 2009 by Nathaniel Johnston while testing The Online Life-Like CA Soup Search -- a c/8 diagonal wickstretcher based on the above c/8 glider.[6][7]

x = 11, y = 15, rule = B36/S125 10bo$9bo$8bo$7bo$6bo$5bo$4bo$3bo$2bo2$o$o2bo$obo2$2bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ AUTOSTART X -2 Y 4 ZOOM 32 GPS 4 TRACKLOOP 8 -1/8 1/8 ]]
The c/8 wickstretcher (Catagoluehere)
(click above to open LifeViewer)
RLE: here Plaintext: here
Catagoluehere

Multiple c/2 puffers have been discovered by Paul Tooke in 2010 including p60 forward and backward c/8 glider rakes, a 2c/5 puffer was also discovered. An MMS breeder was discovered by Arie Paap on June 25, 2015.[8] On February 4, 2021, FWKnightship constructed a Rule 110 unit cell in 2×2 with these rakes, proving the rule Turing-complete.[9]

On February 10, 2023, Luka Okanishi constructed a period-1024 gun for the c/8 diagonal spaceship by combining three p1024 oscillators made of 2 × 2 blocks. Every 1024 generations, two of the oscillators react once, and the other reacts twice for cleanup.[10]

Soup search

See also: Catagolue, Tutorials/Contributing to Catagolue

The b36s125/C1 census on Catagolue accumulated over 5 billion objects by April 2015,[c 1] over 415 billion objects by June 2017,[c 2] over 427 billion objects by October 2017,[c 3] over 466 billion objects by March 2020,[c 4] over 562 billion objects by November 2020,[c 5] over 598 billion objects by December 2021,[c 6] over 688 billion objects by February 2023.[c 7] The C1 census reached a total of 700 billion objects on April 3, 2023,[c 8] 800 billion objects on August 12, 2023.[c 9]

On September 28, 2023, the b36s125/C1 census reached a total of one trillion objects,[c 10] making 2×2 one of several Life-like rules with hauls subject to statistical verification and peer review before being committed.

See also

References

  1. Computed using the EnumStillLifes.c script located here.
  2. 2.0 2.1 Full results are located here.
  3. Nathaniel Johnston (May 22, 2009). "Rectangular Oscillators in the 2×2 (B36/S125) Cellular Automaton". Retrieved on May 24, 2009.
  4. "Life 2x2: long oscillator". comp.theory.cell-automata (November 2, 2001). Retrieved on May 24, 2009.
  5. 2x2 (B36/S125) at David Eppstein's Glider Database
  6. Nathaniel Johnston (June 29, 2009). First infinite growth in 2x2 (B36/S125)? (discussion thread) at the ConwayLife.com forums
  7. "The Online Life-Like CA Soup Search". NathanielJohnston.com (July 11, 2009). Retrieved on July 13, 2009.
  8. Arie Paap (June 25, 2015). Re: 2x2 (discussion thread) at the ConwayLife.com forums
  9. FWKnightship (February 4, 2021). Re: List of the Turing-complete totalistic life-like CA (discussion thread) at the ConwayLife.com forums
  10. Luka Okanishi (February 10, 2023). Re: 2x2 (discussion thread) at the ConwayLife.com forums

Catagolue:

  1. /census (archived copy as of 2015-04-22)
  2. /census (archived copy as of 2017-06-17)
  3. /census/b36s125/C1 (archived copy as of 2017-10-29)
  4. /census/b36s125/C1 (archived copy as of 2020-03-12)
  5. /census/b36s125 (archived copy as of 2020-11-19)
  6. /census/b36s125/C1 (archived copy as of 2021-12-01)
  7. /census/b36s125/C1 (archived copy as of 2023-02-21)
  8. /census/b36s125/C1, /haul/b36s125/C1 (archived copies as of 2023-04-03)
  9. /census/b36s125/C1, /haul/b36s125/C1 (archived copies as of 2023-08-12)
  10. /census/b36s125/C1, /haul/b36s125/C1 (archived copies as of 2023-09-28)

Further reading

External links