OCA:Logic Rule

From LifeWiki
(Redirected from OCA:B2ae/S)
Jump to navigation Jump to search
Logic Rule
x=64, y = 64, rule = B2ae/S ! #C [[ THEME Inverse ]] #C [[ RANDOMIZE2 RANDSEED 1729 THUMBLAUNCH THUMBNAIL THUMBSIZE 2 GRID ZOOM 6 WIDTH 600 HEIGHT 600 LABEL 90 -20 2 "#G" AUTOSTART PAUSE 2 GPS 8 LOOP 256 ]]
LifeViewer-generated pseudorandom soup
Rulestring /2ae
B2ae/S
Character Miscellaneous

Logic Rule (or LogicRule) is a minimalistic isotropic non-totalistic cellular automaton devised by David Conant in March 2001. It is one of the early demonstrations showing how signal circuitry can be built in simple cellular automata.

In this rule, a cell is alive the next generation if it is currently dead and exactly two neighbouring cells are alive, and those two cells are connected to each other either orthogonally or diagonally. With Hensel notation[note 1] this is expressed as B2ae/S. The rule was included as a built-in "general binary" rule in Mirek's Cellebration along with several patterns, but the program uses another notation which turned out to be inaccurate later.[1]

Signal logic

The transition B2a indicates that a domino is a linear replicator at c orthogonal following Wolfram's Rule 90, whereas B2e allows for the existence of a family of Margolus oscillators (see the following section), the smallest of which is the period-2 duoplet (originally named "#2 Oscillator"). Meanwhile, there are two small photons (lightspeed gliders): the first of which is the period-1 moon as in seeds, and the second is the period-2 banana. Serving as the basic unit of information in signal circuitry, any of them may also be called a "bit" and the presence/absence in a "bit stream" can be encoded in binary as 1/0.

Bit stream generators

Guns for both of the photons can easily be constructed from dominoes and duoplets, as an interaction between two dominoes gives two moons as well as two shifted dominoes; and duoplets can suppress dominoes from replicating, eat a moon, or convert a moon to a banana. The smallest known moon gun operates at period 8, and is called an "Index Bit Stream Generator" (IBSG).

x = 66, y = 11, rule = B2ae/S 12b2o38b2o$11bo2bo39bo2$50bo$49bo2$bo8bo4bo8bo16bo8bo4bo8bo$o9bo4bo9bo 14bo9bo4bo9bo2$13bo39bo$12bo39bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 8 ]]
IBSG and a p8 banana gun based on it
(click above to open LifeViewer)

IBSG is systematically called #9 BSG, where the index #9 indicates a distance of 9 cells between the domino and the duoplet. A number of BSGs with larger indices of the form 8n + 1 are documented by comparing their output streams with the IBSG. For example, the next smallest member is #17 BSG that emits a string of 110's with period 3. The actual period measured in ticks is 3 × 8 = 24.

x = 42, y = 5, rule = B2ae/S bo16bo4bo16bo$o17bo4bo17bo2$21bo$20bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 8 ]]
The #17 BSG
(click above to open LifeViewer)

It appears that the period of n-th BSG follows Sloane's OEISicon light 11px.pngA086839 and log₂(period + 1) almost follows Sloane's OEISicon light 11px.pngA003558 except for the #145 BSG in the following list. Here the contents of bit outputs are calculated with a C program.

Click on "Expand" to the right to view statistics and bit outputs for selected BSGs. Only the first eight and last eight bits are shown for long strings; click on them to toggle the view of full strings.

Index Statistics Content
Period log₂(Period+1) Brief Full
9 1 1 1
17 3 2 110
25 7 3 1101001
33 7 3 1101000
41 31 5 11010001...00110111
1101000100101011
000011100110111
49 63 6 11010001...01111110
1101000100001011
0010101001001111
0000011011100110
001110101111110
57 15 4 110100010000001
65 15 4 110100010000000
73 511 9 11010001...01111111
1101000100000001
0010101000001011
0000010001001110
0010101011101101
0000001010110010
0001000011110100
1010011001001100
0111111011111011
0000101000101110
0100010100101110
1010001100101000
0101111100010010
0100011010110110
1011100011011000
1011011101110100
1101010101001111
0000000011100110
0000011011111100
0011101000011001
1010010011111110
0110111000001111
1010110001100010
0011101111010101
1010100100000110
0001101000111100
1110010110011110
1110011111001010
1111000111000010
0110110110010111
1011011110010010
1101001110110011
001110101111111
81 63 6 11010001...00110110
1101000100000001
0000101000101011
0000000001101110
000011100110110
89 2047 11 11010001...01101001
1101000100000001
0000001010100011
0000000010100110
0100011010100111
0000101000101010
0100010000111110
0001000010110110
0110110010010111
0000000001001110
0010111001001110
1011001000010010
0010111101110110
0000101100101000
1110011100111110
1011011011110000
1100101110011101
0010101000001010
0001000001011110
0000010001111110
1011100001110110
0100010100000110
1010100110001100
1010010011011111
1011110110010110
0000001011101101
0010111011101000
1111010010110101
0010010101011100
0100111100010110
1111011110001000
1101101001100111
1100101111010011
0000010001000100
1010001001001100
0010101100001000
1011001101011110
1010001000111000
0001111101111100
0110111101000010
1001011110011100
0001001010110011
0010101010010110
0100110011000011
0110000001011010
1110011010011010
0101001101010111
0110011111110001
1100100100111110
0010101010101100
0101011011111001
0000111001010100
1111110001001000
0101010110110000
1100010100011011
1010010010010001
1001001111011000
1011000011111111
0000000110011110
1111111110011101
1100001001100010
1111100111100110
0011110000010101
1111000001101101
1101101110001101
0000000000111010
0001101000111010
0110111000001110
0001101011010010
0000011011100111
1010001011101010
0110110110101111
1011100101110100
1110011000000110
0000111111001010
0000001111010101
1001011111010010
0011110011111101
1001100010000100
0110001110110101
0110101101110010
0000000110100100
1110010110100111
1010110001101100
1110001100110100
0011101011110010
0101001010000111
1011011000100010
1011100101001110
1111110000111100
0110000111000100
0001100100000111
1001000100110101
1001111000010111
1111010100101011
1101101011000001
1000110101110100
0000111001101110
1110011001110010
0011101110111110
1101111111001001
1010001001110110
0011000100110010
1101110101010000
1011100011101010
0001100110011011
1100110110101000
1111101000110011
1010101111000111
1100110010010000
0100001100001001
0110001110001111
0111000101001000
0110111110101010
1111111101110101
1010101010001011
0100000111011110
0101011101011101
1110101111110011
0101000000100100
1011011010000100
1111111111101001
1111011000010110
0010010111111010
0000100110110001
1111110110100010
1001111001011001
1101101101100101
011010001101001
97 1023 10 11010001...11101000
1101000100000001
0000000010100011
0000001010100010
0100010010100111
0000000000101110
0100111000101110
0001001010110010
0100111010010111
0010101000001010
0000010001011110
0001000001010110
1010110001110110
0000000100101110
1110110100101100
1011000011110110
1110100110010111
0000010001000100
0010101001001100
1010001000011000
0011101101011100
0000101100101010
1011001100111100
1110011001011010
1001111110010110
0010101010101001
0000011011111100
0101010011110001
1010110001011000
0100111100000000
1111111110011110
1111111001100001
1100001110011101
0000000000011010
0011101000011010
0000111001101110
0011101001110010
1110011000000110
0000001111001010
0000111111001101
1001101111010010
0000000011100101
1010010011100100
0110111110101101
1010011101110010
1111110000111100
0001100111000100
0110000111110111
1110100100110100
0000011011100110
0110111011101011
1010001000110110
0111010101110010
0001100110011000
1111110110101011
1100110001010000
1001101111001000
0011101011111111
1010101010001010
0101010111011111
0100000101110100
1111111111110110
0001011000001001
1111101000100101
111010011101000
105 511 9 11010001...10110111
1101000100000001
0000000000101011
0000101000101010
0000010001101111
0000000001000100
1010011001000110
0000101000111000
1011011001111101
0000001010100010
0001000010110010
0100010000010110
1011001010111110
0010101001001110
1010011101001000
0100111100111100
1001110111011011
0000000000001110
0110111000001110
0000000110100010
0110110110101100
0011101000011010
0000001110111110
1110011110100100
0110110101010110
0000011011100110
0001101011011100
1110011000111111
1011100011000010
0011101001110101
1010111111010010
1110100111110011
110110110110111
113 16383 14 (See archieve)
121 31 5
129 31 5
137 4095 12
145 87381 16.3244 (See archieve)
153 4095 12
161 1023 10
169 127 7
177 4095 12
185 8388607 23
193 2097151 21
201 255 8
209 67108863 26
217 1048575 20
225 511 9

From another point of view, any BSG with width 8 n + 1 generates the output of a linear-feedback shift register[note 2] (LFSR). Only numbers from Sloane's OEISicon light 11px.pngA123399 generate maximum length LFSRs with periods of 2n - 1.

The highest number listed is 419 which has a period of 2419 - 1, about 1.35 × 10126 before the output repeats.

OEISicon light 11px.pngA123399 Width Period
1 9 1
2 17 3
3 25 7
5 41 31
6 49 63
9 73 511
11 89 2,047
14 113 16,383
23 185 8,388,607
26 209 67,108,863
29 233 536,870,911
30 241 1,073,741,824
33 265 8,589,934,592
35 281 34,359,738,368
39 313 549,755,813,887
41 329 2,199,023,255,551
51 409 2,251,799,813,685,247
53 425 9,007,199,254,740,991

When removing the two terminal duoplets of a BSG, the dominoes replicate unboundedly and result in a non-repeating bit stream generator (XBSG). Its output string is predictable, though; the 1's appear at 1, 2, 4, 8, ..., 2n-th place and the rest is sea of 0's. This is listed in Sloane's OEISicon light 11px.pngA036987, the Fredholm-Rueppel sequence. An equivalent device akin to a caber tosser can be designed with only one unbounded replicator and two IBSG's, so that signals from the other stationary end can be fed into circuitry easily; the n-th output starting from 0 arrives at the shown location at generation 2n + 3 - 8.

x = 6, y = 5, rule = B2ae/S o4bo$o4bo2$3bo$2bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 8 ]]
XBSG, or Fredholm-Rueppel sequence generator
(click above to open LifeViewer)


x = 35, y = 34, rule = B2ae/S 21bo$20bo6$18b2o3$11bo$10bo7b2obo$10bo7b2o2bo2$15bo$16bo$18b2o6$20bo$ 21bo2$11b2o5bo15bo$9bo3bo4bo15bo$8bo2$3bo3bo2bobo3bo3bo$3bo3bo8bo3bo$b o20bo$o11bo10bo$11bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 8 ]]
The equivalent device with only one side of the bounding box growing infinitely
(click above to open LifeViewer)

Logic gates

Photon interactions can be used to demonstrate logic gates, and arranging input(s) and IBSG(s) suffices to construct any of the gates. The simplest case, a NOT gate forms by colliding an intermittent p8 input stream with an IBSG coming orthogonally at certain timing. For each of the 1's in the input stream, a 2-banana annihilation occurs, while each of the 0's allows for a banana to pass through the intersection, thus effectively carrying out inversion.

x = 98, y = 8, rule = B2ae/S 18bo47bo$17bo47bo2$o17bo4bo17bo24bo4bo24bo$bo16bo4bo16bo25bo4bo25bo2$ 21bo47bo$20bo47bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 4 ]]
The BSGs used as signal sources are: A = BSG2 width 17, B = BSG3 width 25
(click above to open LifeViewer)


x = 77, y = 45, rule = B2ae/S 3bo$4bo16$6bo$3b2o2bo2$o$bo2$3b2o14$21bo31bo$20bo31bo2$4bo7bo8bo4bo8b o17bo4bo17bo$3bo7bo9bo4bo9bo16bo4bo16bo2$24bo31bo$23bo31bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 4 ]]
NOT A
(click above to open LifeViewer)


x = 179, y = 67, rule = B2ae/S 3bo$4bo8$6bo$3b2o2bo2$o59bo$bo59bo2$3b2o9$4bo$3bo4$21bo$20bo2$4bo16bo 4bo16bo$3bo17bo4bo17bo2$24bo$23bo23$51bo$50bo2$26bo24bo4bo24bo17bo4bo 17bo24bo4bo24bo$25bo25bo4bo25bo16bo4bo16bo25bo4bo25bo2$54bo47bo47bo$53b o47bo47bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 3 ]]
A AND B
(click above to open LifeViewer)


x = 205, y = 103, rule = B2ae/S 3bo$4bo23$53bo$6bo47bo$3b2o2bo2$o$bo2$3b2o7$33bo$34bo16$36bo$4bo28b2o 2bo$3bo$30bo$31bo2$33b2o14$51bo$50bo2$34bo7bo8bo4bo8bo$33bo7bo9bo4bo9b o2$54bo$53bo13$71bo53bo47bo$70bo53bo47bo2$62bo8bo4bo8bo22bo16bo4bo16b o25bo4bo25bo$61bo9bo4bo9bo20bo17bo4bo17bo24bo4bo24bo2$74bo53bo47bo$73b o53bo47bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 3 ]]
A NAND B
(click above to open LifeViewer)


x = 219, y = 107, rule = B2ae/S 3bo$4bo7$53bo$54bo$3b2o2$bo$o2$3b2o2bo$6bo8$4bo$3bo4$26bo$27bo2$4bo16b o4bo16bo$3bo17bo4bo17bo2$23bo$24bo23$56bo$57bo2$26bo24bo4bo24bo$25bo25b o4bo25bo2$53bo$54bo33$96bo34bo55bo$97bo32bo55bo2$82bo8bo4bo8bo8bo16bo 4bo16bo8bo24bo4bo24bo$81bo9bo4bo9bo6bo17bo4bo17bo6bo25bo4bo25bo2$93bo 40bo55bo$94bo38bo55bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 2 ]]
A OR B
(click above to open LifeViewer)


x = 176, y = 83, rule = B2ae/S 3bo$4bo24$6bo$3b2o2bo2$o56bo$bo56bo2$3b2o7$33bo$34bo16$36bo$4bo28b2o2b o$3bo$30bo$31bo2$33b2o14$51bo39bo52bo$50bo39bo52bo2$34bo7bo8bo4bo8bo8b o16bo4bo16bo5bo24bo4bo24bo$33bo7bo9bo4bo9bo6bo17bo4bo17bo3bo25bo4bo25b o2$54bo39bo52bo$53bo39bo52bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 3 ]]
A NOR B
(click above to open LifeViewer)


x = 250, y = 188, rule = B2ae/S 64bo$63bo2$35bo25bo4bo25bo$36bo24bo4bo24bo2$67bo$66bo6$33bo$34bo16$36b o$33b2o2bo2$30bo38bo$31bo36bo2$33b2o15$3bo$4bo$34bo$33bo6$6bo$3b2o2bo 2$o$bo2$3b2o9$4bo$3bo19$63bo$64bo24$66bo$63b2o2bo2$60bo38bo$61bo38bo2$ 63b2o24$91bo$64bo25bo$63bo$74bo16bo4bo16bo$73bo17bo4bo17bo2$94bo$93bo 23$121bo39bo56bo$120bo39bo56bo2$112bo8bo4bo8bo8bo16bo4bo16bo9bo24bo4b o24bo$111bo9bo4bo9bo6bo17bo4bo17bo7bo25bo4bo25bo2$124bo39bo56bo$123bo 39bo56bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ ZOOM 2 ]]
A XOR B
(click above to open LifeViewer)

Other patterns

x = 3, y = 5, rule = B2ae/S bo$o$o$bo$2bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 4 ]]
(click above to open LifeViewer)

Despite its name, there are more "naturalistic" patterns of note beyond logic circuitry in Logic Rule. Consider a class of extended photons similar to the moon, with one "wing" fixed and the other of variable length. The first two cases are the banana (with length 0) and the moon (with length 1). At length 2 as shown to the right, the pattern is a predecessor of a period-2 spaceship. Depending on the length, these extended photons have different fates and may become either a spaceship or a puffer. The first few cases are tabulated below, with links to the corresponding objects on Catagolue at their first occurrence.

Click on "Expand" to the right to view the fates of this class of patterns.

Length Fate
0 A p2 spaceship (banana)
1 A p1 spaceship (moon)
2 A p2 spaceship
3 A p2 spaceship
4 A p4 spaceship
5 A p4 spaceship
6 A p4 puffer, 1 xp2_12 (duoplet, width 1) per period
7 A p4 spaceship
8 A p8 spaceship
9 A p8 spaceship
10 A p8 puffer, 2 xp2_12 per period
11 A p8 spaceship
12 A p8 puffer, 1 xp6_1248 (width 1) per period
13 A p8 puffer, 1 xp4_25ak8 (width 2) per period
14 A p8 puffer, 1 xp14_0g8421z1 (width 1) per period
15 A p8 spaceship
16 A p16 spaceship
17 A p16 spaceship
18 A p16 puffer, 5 xp2_12 and 1 xp6_1248 per period
19 A p16 spaceship
20 A p16 puffer, 3 xp6_1248 per period
21 A p16 puffer, 2 xp4_25ak8 per period
22 A p16 puffer, 2 xp14_0g8421z1 per period
23 A p16 spaceship
24 A p16 puffer, 1 xp14_xg8421z421 (width 1) per period
25 A p16 puffer, 1 xp12_xg8ka52z4a521 (width 2) per period
26 A p16 puffer, 1 xp62_1248gzy11248g (width 1) per period
27 A p16 puffer, 1 xp8_xg8kalak8z4alala521zx1 (width 4) per period
28 A p16 puffer, 1 xp126_y3g8421zwg8421z21 (width 1) per period
29 A p16 puffer, 1 xp28_y3g8ka52zwg8ka521z2521 (width 2) per period
30 A p16 puffer, 1 xp30_1248gzy11248gzy61248 (width 1) per period
31 A p16 spaceship
32 A p32 spaceship
33 A p32 spaceship
34 A p32 puffer, 14 xp2_12, 4 xp6_1248 and 1 xp4_25ak8 per period
35 A p32 spaceship
36 A p32 puffer, 5 xp2_12, 4 xp6_1248, 1 xp4_25ak8 and 1 xp12_xg8ka52z4a521 per period
37 A p32 puffer, 5 xp4_25ak8 and 1 xp12_xg8ka52z4a521 per period
38 A p32 puffer, 4 xp2_12, 4 xp14_0g8421z1 and 1 xp14_xg8421z421 per period
39 A p32 spaceship
40 A p32 puffer, 3 xp14_xg8421z421 and 1 xp2_12 per period
41 A p32 puffer, 3 xp12_xg8ka52z4a521 per period
42 A p32 puffer, 2 xp2_12, 2 xp6_1248, 2 xp62_1248gzy11248g and 1 xp4_25ak8 per period
43 A p32 puffer, 2 xp8_xg8kalak8z4alala521zx1 per period
44 A p32 puffer, 2 xp126_y3g8421zwg8421z21 and 1 xp14_0g8kala4z12521 per period
45 A p32 puffer, 2 xp28_y3g8ka52zwg8ka521z2521 per period
46 A p32 puffer, 2 xp30_1248gzy11248gzy61248 per period
47 A p32 spaceship
48 A p32 puffer, 1 xp30_y7g8421zy2g8421z0g8421z1 (width 1) per period
49 A p32 puffer, 1 xp28_y7g8ka52zy2g8ka521z0g8ka521z121 (width 2) per period
50 A p32 puffer, 1 xp1022_y9g8421zy4g8421zxg8421z421 (width 1) per period
51 A p32 puffer, 1 xp24_8kalak8gzw125alalak8gzy3125alalak8gzy8125a521 (width 4) per period
52 A p32 puffer, 1 xp126_1248gzy11248gzy61248gzyb1248g (width 1) per period
53 A p32 puffer, 1 xp124_ybg8ka52zy6g8ka521zy1g8ka521zg8ka521z01 (width 2) per period
54 A p32 puffer, 1 xp4094_ydg8421zy8g8421zy3g8421zwg8421z21 (width 1) per period
55 A p32 puffer, 1 xp16_wg842101248gzahy71248gzw1248gy71248gzy31248gy3g842zy81240421 (width 8) per period
56 A p32 puffer, 1 xp2046_1248gzy11248gzy61248gzyb1248gzyg1248 (width 1) per period
57 A p32 puffer, 1 xp252_25ak8gzy0125ak8gzy5125ak8gzya125ak8gzyf125ak8 (width 2) per period
58 A p32 puffer, 1 xp1022_yhg8421zycg8421zy7g8421zy2g8421z0g8421z1 (width 1) per period
59 A p32 puffer, 1 xp56_8kalak8gzw125alalak8gzy3125alalak8gzy8125alalak8gzyd125alalak8zyi121 (width 4) per period
60 A p32 puffer, 1 xp32766_yjg8421zyeg8421zy9g8421zy4g8421zxg8421z421 (width 1) per period
61 A p32 puffer, 1 xp60_yjg8ka52zyeg8ka521zy9g8ka521zy4g8ka521zxg8ka521z4a521 (width 2) per period
62 A p32 puffer, 1 xp62_1248gzy11248gzy61248gzyb1248gzyg1248gzyl1248g (width 1) per period
63 A p32 spaceship
64 A p64 spaceship
65 A p64 spaceship
66 A p64 puffer, 41 xp2_12, 8 xp6_1248, 6 xp4_25ak8, 1 xp12_xg8ka52z4a521 per period
67 A p64 spaceship

Several trends can be found from the list for positive lengths.

  • Regardless of the type, a length-n extended photon has a period of 2floor(log₂(n)), i.e. Sloane's OEISicon light 11px.pngA053644(n).
  • A length-n extended photon will converge to a spaceship if n is in Sloane's OEISicon light 11px.pngA099627. A vanishing T-square fractal[note 3] can be seen at the tail for large enough n close to some power of 2.
  • A length-n extended photon will converge to a clean puffer leaving one oscillator per period if n not in A099627 and 3 × 2kn ≤ 2k + 2 for some positive integer k. Its trailing end is divided into two halves, one becomes a disappearing spark from a diagonal line of 2k + 1 - 1 cells while another evolves into the oscillator.
    • The oscillators are square and oscillate according to a block cellular automaton on the Margolus neighbourhood. Previously the phenomenon was observed and studied in an outer-totalistic rule called 2×2, where the oscillators are made up of 2 × 2 blocks, followed by several other non-totalistic rules later.[2][3] Here the oscillators can be seen as composed of tubs, though it is not the smallest element because width-1 forms as labelled above exist. A width-1 diagonal line of 2m cells has a period of Sloane's OEISicon light 11px.pngA160657(m), and appears in the list above at length n = OEISicon light 11px.pngA079946(m), or Sloane's OEISicon light 11px.pngA049039(m)-th place among oscillators. Other diagonal widths are resulted from inflation by a factor of 2k × 2k, which also multiplies the period by 2k.
  • An extended photon is dirty if its length does not satisfy any requirements above. In particular, a period-2k extended photon produces the largest amount of ash if its length is 2k + 2. Behind a puffer of this kind, straight diagonal lines replicate and decay in a complex manner leading to configurations with some self-similarity.
The tail of a westbound length-16386 extended photon at generation 40960, showing both decaying and settled ash fields. Scale is 2^5:1.
However, no matter how dirty the ash is, it is guaranteed not to emit photons or replicators because B2e-governed evolution will only have new cells born at the same checkerboard parity, therefore prohibiting domino frontend from forming.
  • Regardless of the type, the reaction envelope of the tail is limited to one side of the extended photon. This implies that it can have two halves extended independently; not only their length can be different, but also they can operate at different periods with any phase difference.
x = 3, y = 3, rule = B2ae/S 2o$2bo$2bo! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] #C [[ THUMBSIZE 4 ]]
(click above to open LifeViewer)

Apart from the long extended photons above, the emergence of patterns may also be observed with smaller seeds, for instance the diagonally symmetric tetraplet shown to the right. If random soups are put behind the long diagonal line after a while to perturb the wavestretcher, the outcome will be more complicated.[4]

Notes

  1. Hensel notation is a rulestring notation for isotropic rules, supported in CA simulation software including Golly and LifeViewer.
  2. Linear-feedback shift register at Wikipedia
  3. T-square fractal at Wikipedia

References

  1. Jeremy Tan (November 30, 2018). Interpreting MCell's "general binary" rule family (discussion thread) at the ConwayLife.com forums
  2. Dave Greene (December 25, 2017). Re: Thread for basic questions (discussion thread) at the ConwayLife.com forums
  3. Dave Greene (December 26, 2017). Re: Thread for basic questions (discussion thread) at the ConwayLife.com forums
  4. blah (January 10, 2017). Re: Thread for basic questions (discussion thread) at the ConwayLife.com forums

External links